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Kraśkiewicz-Pragacz modules and Pieri and
dual Pieri rules for Schubert polynomials

Masaki Watanabe1†

1Graduate School of Mathematics, the University of Tokyo

Abstract. In their 1987 paper Kraśkiewicz and Pragacz defined certain modules, which we call KP modules, over the
upper triangular Lie algebra whose characters are Schubert polynomials. In a previous work the author showed that
the tensor product of Kraśkiewicz-Pragacz modules always has KP filtration, i.e. a filtration whose each successive
quotients are isomorphic to KP modules. In this paper we explicitly construct such filtrations for certain special cases
of these tensor product modules, namely Sw ⊗ Sd(Ki) and Sw ⊗

∧d(Ki), corresponding to Pieri and dual Pieri
rules for Schubert polynomials.

Résumé. Dans leur étude en 1987 Kraśkiewicz et Pragacz ont defini certains modules, que nous appelons modules
KP, sur les algébres de Lie des matrices triangulaires supérieures, dont les caractéres sont les polynômes de Schubert.
Dans une étude récente l’auteur a prouvé que les produits tensoriels de deux modules KP ont des filtrations KP, c’est-á-
dire des filtrations dont les quotients successifs sont des modules KP. Dans cet article nous construisons explicitement
telles filtrations pour certains cas de ces produits tensoriels, á savoir Sw ⊗ Sd(Ki) et Sw ⊗

∧d(Ki), correspondant
aux formules de Pieri et de Pieri double pour les polynômes de Schubert.
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1 Introduction
Schubert polynomials are one of the main subjects in algebraic combinatorics. One of the tools for
studying Schubert polynomials is the modules introduced by Kraśkiewicz and Pragacz. These modules,
which here we call KP modules, are modules over the upper triangular Lie algebra and have the property
that their characters with respect to the diagonal matrices are Schubert polynomials.

It is known that a product of Schubert polynomials is always a positive sum of Schubert polynomials.
The previously known proof of this positivity property uses the geometry of the flag variety. In [Wat15a]
the author showed that the tensor product of two KP modules always has a filtration by KP modules
and thus gave a representation theoretic proof for this positivity. Although the proof there does not give
explicit construction for the KP filtrations, it may provide a new viewpoint for the notorious Schubert-
LR problem, i.e. finding a combinatorial positive rule for the coefficient in the expansion of products of
Schubert polynomials into a sum of Schubert polynomials.
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There are some cases where the expansions of products of Schubert polynomials are explicitly known.
Examples of such cases are the Pieri and the dual Pieri rules for Schubert polynomials conjectured in
[BB93] and proved in [Win98] (also appearing with different formulations in [Las82] and [Sot96]). They
are the cases where one of the Schubert polynomials is a complete symmetric function hd(x1, . . . , xi) or
an elementary symmetric function ed(x1, . . . , xi). The purpose of this paper is to investigate the structure
of tensor product modules corresponding to these products and to give an explicit construction of KP
filtrations for these modules.

The structure of this paper is as follows. In Section 2 we prepare some definitions and results on
Schubert polynomials and KP modules. In Section 3 we review the Pieri and dual Pieri rules for Schubert
polynomials. In Section 4 we give an explicit construction for KP filrartions of the corresponding tensor
product modules Sw ⊗ Sd(Ki) and Sw ⊗

∧d
(Ki). In Section 5 we sketch the proof of the main result.

2 Preliminary
Let N be the set of all positive integers. By a permutation w we mean a bijection from N to itself which
fixes all but finitely many points. The graph of a permutation w is the set {(i, w(i)) : i ∈ N} ⊂ N2. For
i < j, let tij denote the permutation which exchanges i and j and fixes all other points. Let si = ti,i+1.
For a permutation w, let `(w) = #{i < j : w(i) > w(j)}. For a permutation w and p < q, if
`(wtpq) = `(w) + 1 we write wtpq m w. It is well known that this condition is equivalent to saying that
w(p) < w(q) and there exists no p < r < q satisfying w(p) < w(r) < w(q). For a permutation w let
I(w) = {(i, j) : i < j, w(i) > w(j)}.

For a polynomial f = f(x1, x2, . . .) and i ∈ N define ∂if = f−sif
xi−xi+1

. For a permutation w we can
assign its Schubert polynomial Sw ∈ Z[x1, x2, . . .] which is recursively defined by

• Sw = xn−1
1 xn−2

2 · · ·xn−1 if w(1) = n,w(2) = n− 1, . . . , w(n) = 1 and w(i) = i (i > n), and

• Swsi = ∂iSw if `(wsi) < `(w).

Hereafter let us fix a positive integer n. Let S(n) = {w : permutation, w(n+ 1) < w(n+ 2) < · · · }.
Note that if w ∈ S(n) then I(w) ⊂ {1, . . . , n} × N. Let K be a field of characteristic zero. Let
b = bn denote the Lie algebra of all n × n upper triangular matrices over K. For a U(b)-module M
and λ = (λ1, . . . , λn) ∈ Zn, let Mλ = {m ∈ M : hm = 〈λ, h〉m (∀h = diag(h1, . . . , hn))} where
〈λ, h〉 =

∑
i λihi. If M is a direct sum of these Mλ then we say that M is a weight module and we define

ch(M) =
∑
λ dimMλx

λ where xλ = xλ1
1 · · ·xλnn . For 1 ≤ i ≤ j ≤ n let eij ∈ b be the matrix with 1 at

the (i, j)-th position and all other coordinates 0.
Let V be a vector space spanned by a basis {uij : 1 ≤ i ≤ n, j ∈ N}. Let T =

∧•
V . The Lie

algebra b acts on V by epquij = δiqupj and thus on T . For w ∈ S(n) let uw =
∧

(i,j)∈I(w) uij ∈ T . The
Kraśkiewicz-Pragacz module Sw (or the KP module for short) associated with w is the b-submodule of T
generated by uw. In [KP04] Kraśkiewicz and Pragacz showed the following:

Theorem 2.1 ([KP04, Remark 1.6 and Theorem 4.1]) Sw is a weight module and ch(Sw) = Sw.

Example 2.2 If w = si, then uw = ui,i+1 and thus Sw =
⊕

1≤j≤iKuj,i+1
∼=
⊕

1≤j≤iKuj =: Ki

where b acts by epquj = δqjup.

A KP filtration of a b-module M is a filtration 0 = M0 ⊂ · · · ⊂Mr = M such that each Mi/Mi−1 is
isomorphic to some KP module.
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3 Pieri and dual Pieri rules for Schubert polynomials
Definition 3.1 For w ∈ S∞, i ≥ 1 and d ≥ 0, let

Xi,d(w) = {tp1q1tp2q2 · · · tpdqd : pj ≤ i, qj > i,w1 l w2 l · · · , w1(p1) < w2(p2) < · · · }

and

Yi,d(w) = {tp1q1tp2q2 · · · tpdqd : pj ≤ i, qj > i,w1 l w2 l · · · , w1(p1) > w2(p2) > · · · }

where w1 = w,w2 = wtp1q1 , w3 = wtp1q1tp2q2 · · · .

Note that the condition above for Xi,d(w) (resp. Yi,d(w)) also implies w1(q1) < w2(q2) < · · · (resp.
w1(q1) > w2(q2) > · · · ). Also note that the condition for Xi,d(w) (resp. Yi,d(w)) implies that q1, . . . , qd
(resp. p1, . . . , pd) are all different.

Theorem 3.2 (conjectured in [BB93] and proved in [Win98] ) (i) We have

Sw · hd(x1, . . . , xi) =
∑

ζ∈Xi,d(w)

Swζ

and
Sw · ed(x1, . . . , xi) =

∑
ζ∈Yi,d(w)

Swζ .

where hd and ed denote the complete and elementary symmetric functions respectively. 2

Note here that the sums above are multiplicity-free: that is, the permutation ζ actually determines
uniquely its decomposition into transpositions satisfying the conditions in Definition 3.1. So we can write
without ambiguity, for example “for ζ = tp1q1 · · · tpdqd ∈ Xi,d(w) define (something) as (some formula
involving pj and qj)”. Hereafter if we write such we will always assume the conditions in Definition 3.1.

4 Explicit Pieri and dual Pieri rules for KP modules
The author showed in [Wat15a] that the tensor product of KP modules always has a KP filtration. Since
Sd(Ki) and

∧d
(Ki) are special cases of KP modules for any 1 ≤ i ≤ n and d ≥ 1, Sw ⊗ Sd(Ki) and

Sw ⊗
∧d

(Ki) (w ∈ S(n)) have KP filtrations. In this section we give an explicit construction of these
filtrations.

For integers p ≤ q we define an operator e′qp acting on T as e′qp(ua1b1 ∧ ua2b2 ∧ · · · ) =
∑
k(· · · ∧

δpbkuakq ∧ · · · ). Let these operators act on T ⊗ Sd(Ki) and T ⊗
∧d

(Ki) by applying them on the
left-hand side tensor component. We also define operators µj on T ⊗

⊗a
(Ki) → T ⊗

⊗a−1
(Ki) by

u⊗ (v1 ⊗ v2 ⊗ · · · ) 7→ (ιj(v1) ∧ u)⊗ (v2 ⊗ v3 ⊗ · · · ) where ιj : up 7→ upj . We denote the restrictions
of µj to T ⊗ Sa(Ki) and T ⊗

∧a
(Ki) by the same symbol. Note that e′rs and µj give b-endomorphisms

on T ⊗ S•(Ki) and T ⊗
∧•

(Ki).

(i) Also appears with different formulations in [Las82] and [Sot96].
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For a permutation z and p < q let mpq(z) = #{r > q : z(p) < z(r) < z(q)} and m′qp(z) = #{r <
p : z(p) < z(r) < z(q)}. For ζ = tp1q1 · · · tpdqd ∈ Xi,d(w) (resp. Yi,d(w)) define

vζ = (
∏
j

e
mpjqj (wj)
pjqj uw)⊗

∏
j

upj

= (
∏
j

e
mpjqj (wj)
pjqj uw)⊗

(∑
σ∈Sd

upσ(1) ⊗ · · · ⊗ upσ(d)

)
∈ Sw ⊗ Sd(Ki)

(resp.

vζ = (
∏
j

e
mpjqj (wj)
pjqj uw)⊗

∧
j

upj

= (
∏
j

e
mpjqj (wj)
pjqj uw)⊗

(∑
σ∈Sd

sgnσ · upσ(1) ⊗ · · · ⊗ upσ(d)

)
∈ Sw ⊗

d∧
(Ki)

) where wj = wtp1q1 · · · tpj−1qj−1
as in Definition 3.1 (note that these are also well-defined if some qj

are greater than n, since in such case mpjqj (wj) = 0). Also, for such ζ, define a b-homomorphism

T ⊗
⊗d

(Ki)→ T by φζ = µqd · · ·µq1 ·
∏
j(e
′
qjpj )

m′qjpj
(wj).

Proposition 4.1 For ζ, ζ ′ ∈ Xi,d(w) (resp. Yi,d(w)),

• φζ(vζ) is a nonzero multiple of uwζ ∈ T , and

• φζ′(vζ) = 0 if (wζ)−1 <
lex

(wζ ′)−1 (resp. (wζ)−1 <
rlex

(wζ ′)−1).

A sketched proof for this proposition is given in the next section.
For a b-module M and elements x, y, . . . , z ∈ M let 〈x, y, . . . , z〉 denote the submodule generated by

these elements. Consider the sequence of submodules

0 ⊂ 〈vζ1〉 ⊂ 〈vζ1 , vζ2〉 ⊂ · · · ⊂ 〈vζ : ζ ∈ Xi,d(w) (resp. Yi,d(w))〉

inside Sw⊗Sd(Ki) (resp. Sw⊗
∧d

(Ki)), where ζ1, ζ2, . . . ∈ Xi,d(w) (resp. Yi,d(w)) are all the elements
ordered so that (wζ1)−1 <

lex
(wζ2)−1 <

lex
· · · (resp. (wζ1)−1 <

rlex
(wζ2)−1 <

rlex
· · · ). From the proposition

we see that there is a surjection 〈vζ1 , · · · , vζj 〉/〈vζ1 , · · · , vζj−1
〉 � Swζj induced from φζj . Thus we

have

dim(Sw ⊗ Sd(Ki)) ≥ dim〈vζ : ζ ∈ Xi,d(w)〉 ≥
∑

ζ∈Xi,d(w)

dimSwζ = dim(Sw ⊗ Sd(Ki))

and

dim(Sw ⊗
d∧

(Ki)) ≥ dim〈vζ : ζ ∈ Yi,d(w)〉 ≥
∑

ζ∈Yi,d(w)

dimSwζ = dim(Sw ⊗
d∧

(Ki))

respectively, where the last equalities are by Theorem 3.2. So the equality must hold everywhere, and thus
the surjection above is in fact an isomorphism. So we get:
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Theorem 4.2 Let M = Sw ⊗ Sd(Ki) (resp. Sw ⊗
∧d

(Ki)). Define vζ and φζ as above. Then M is
generated by {vζ : ζ ∈ Xi,d(w) (resp. Yi,d(w))} as a b-module and

0 ⊂ 〈vζ1〉 ⊂ 〈vζ1 , vζ2〉 ⊂ · · · ⊂ 〈vζ : ζ ∈ Xi,d(w) (resp. Yi,d(w))〉

gives a KP filtration of M , where ζ1, ζ2, . . . ∈ Xi,d(w) (resp. Yi,d(w)) are all the elements ordered
increasingly by the lexicographic (resp. reverse lexicographic) ordering on (wζ)−1. The explicit isomor-
phism 〈vζ1 , · · · , vζj 〉/〈vζ1 , · · · , vζj−1〉 ∼= Swζj is given by φζj defined above.

Remark 4.3 In [Wat15b] we related KP modules with the notion of highest weight categories ([CPS88])
as follows. For Λ′ ⊂ Zn let CΛ′ be the category of weight bn-modules whose weights are all in Λ′.
Then if Λ′ is an order ideal with respect to a certain ordering on Zn then CΛ′ has a structure of highest
weight category whose standard objects are KP modules. One of the axioms required for a highest weight
category states that the projective objects should have filtrations by standard objects.

It can be shown that the projective cover of the one dimensional bn-module Kλ with weight λ =
(λ1, . . . , λn) ∈ Zn≥0 in the category CZn≥0

is given by Sλ1(K1)⊗· · ·⊗Sλn(Kn). Thus Theorem 4.2 gives
a proof to the fact that the indecomposable projective modules in CZn≥0

have KP filtrations, which leads
to a different proof from the one in [Wat15b, §3] for the axiom mentioned above (we do not need these
results about highest weight structure for b-modules in the proof of Theorem 4.2).

5 Skeched Proof of Proposition 4.1
Lemma 5.1 ( Implicit in [Wat15b, Proof of Theorem 5.1] ) (ii) Let w ∈ S(n) and i ≥ 1. For p, p′ ≤
i and q, q′ > i such that `(wtpq) = `(wtp′q′) = `(w) + 1 (i.e. tpq, tp′q′ ∈ Xi,1(w)), if upq′ ∧
e
mpq(w)
pq (e′q′p′)

m′
q′p′ (w)uw 6= 0 then w(p′) ≥ w(p) and w(q′) ≥ w(q), and if (p, q) = (p′, q′) it is a

nonzero multiple of uwtpq . 2

Lemma 5.2 Let w be a permutation, i ≥ 1 and d ≥ 0. Let ζ = tp1q1 · · · tpdqd ∈ Xi,d(w) (resp.
Yi,d(w)) and 1 ≤ a ≤ d. Suppose that there exists no b < a satisfying pb = pa (resp. qb = qa). Then
mpaqa(wa) = mpaqa(w) and m′qapa(wa) = m′qapa(w) where wa = wtp1q1 · · · tpa−1qa−1 as in Definition
3.1. 2

Proof of Proposition 4.1: The proofs for the cases of Xi,d(w) and Yi,d(w) are similar. Here we give a
proof for the case of Xi,d(w).

We assume (wζ)−1 ≤
lex

(wζ ′)−1 (resp. (wζ)−1 ≤
rlex

(wζ ′)−1) and show that φζ′(vζ) = 0 unless ζ ′ = ζ

and φζ(vζ) is a nonzero multiple of uwζ . Let ζ = tp1q1 · · · tpdqd and ζ ′ = tp′1q′1 · · · tp′dq′d as in Definition
3.1. We write wa = wtp1q1 · · · tpa−1qa−1

and w′a = wtp′1q′1 · · · tp′a−1q
′
a−1

.
For ζ =

∏
j tpjqj and ζ ′ =

∏
j tp′jq′j in Xi,d(w) we have

φζ′(vζ) =
∑
σ∈Sd

upσ(d)q′d ∧ · · · ∧ upσ(1)q′1 ∧ (
∏
j

Ej
∏
j

E′j · uw)

 (∗)

where Ej = e
mpjqj (wj)
pjqj and E′j = (e′q′jp′j

)
m′
q′
j
p′
j
(w′j).

(ii) In a revised version (in preparation) of [Wat15b] this will appear as a separate lemma.
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If w(p1) < w(p′1), then (wζ)−1(w(p1)) = q1 > p1 = (wζ ′)−1(w(p1)) and (wζ)−1(j) = w−1(j) =
(wζ ′)−1(j) for all j < w(p1), and this contradicts the assumption (wζ)−1 ≤

lex
(wζ ′)−1. Thus w(p1) ≥

w(p′1).
Fix σ ∈ Sd. Let 1 ≤ a ≤ d be minimal such that pa = pσ(1). Then we have

upσ(d)q′d ∧ · · · ∧ upσ(1)q′1 ∧ (
∏
j

Ej
∏
j

E′j · uw)

= upσ(d)q′d ∧ · · · ∧ upσ(2)q′2 ∧
∏
j 6=a

Ej
∏
j 6=1

E′j · (upσ(1)q′1 ∧ EaE
′
1uw)

= upσ(d)q′d ∧ · · · ∧ upσ(2)q′2 ∧
∏
j 6=a

Ej
∏
j 6=1

E′j · (upaq′1 ∧ e
mpaqa (wa)
paqa (e′q′1p′1)

m′
q′1p
′
1
(w′1)

uw)

= upσ(d)q′d ∧ · · · ∧ upσ(2)q′2 ∧
∏
j 6=a

Ej
∏
j 6=1

E′j · (upaq′1 ∧ e
mpaqa (w)
paqa (e′q′1p′1)

m′
q′1p
′
1
(w)
uw)

where the last equality is by Lemma 5.2 (note that w′1 = w by definition).
First consider the case w(p1) > w(p′1). We show that the summand in (∗) vanishes for all σ. It suffices

to show upaq′1 ∧ e
mpaqa (w)
paqa (e′q′1p′1

)
m′
q′1p
′
1
(w)
uw = 0. We have w(pa) = wa(pa) ≥ w(p1) > w(p′1). Thus

by Lemma 5.1 we see upaq′1 ∧ e
mpaqa (w)
paqa (e′q′1p′1

)
m′
q′1p
′
1
(w)
uw = 0.

Next consider the case w(p1) = w(p′1). Here (wζ)−1(w(p1)) = q1, (wζ ′)−1(w(p1)) = q′1 and
(wζ)−1(j) = w−1(j) = (wζ ′)−1(j) for all j < w(p1), and thus q1 ≤ q′1 by the hypothesis. First
consider the case q1 < q′1. Then since wtp1q1 , wtp′1q′1 m w it follows that w(q′1) < w(q1). So w(q′1) <

w(q1) ≤ w(qa) and again by Lemma 5.1 we see upaq′1 ∧ e
mpaqa (w)
paqa (e′q′1p′1

)
m′
q′1p
′
1
(w)
uw = 0.

Now consider the case w(p1) = w(p′1) and q1 = q′1. Then if a > 1 we see

upaq′1 ∧ e
mpaqa (w)
paqa (e′q′1p′1)

m′
q′1p
′
1
(w)
uw = 0

by Lemma 5.1 since w(q′1) = w(q1) < w(qa) in such case. So the only remaining summands in (∗) are
the ones with a = 1, i.e. pσ(1) = p1. It is easy to see that the sum of such summands is a nonzero multiple
of the sum of terms with σ(1) = 1. If σ(1) = 1 we have, by the latter part of Lemma 5.1,

upσ(d)q′d ∧ · · · ∧ upσ(1)q′1 ∧ (
∏
j

Ej
∏
j

E′j · uw)

= upσ(d)q′d ∧ · · · ∧ upσ(2)q′2 ∧
∏
j 6=1

e
mpjqj (wj)
pjqj

∏
j 6=1

(e′q′jp′j )
m′
q′
j
p′
j
(w′j)

(up1q1 ∧ e
mp1q1 (w)
p1q1 (e′q1p1)m

′
q1p1

(w)uw)

= (6= 0 const.) · upσ(d)q′d ∧ · · · ∧ upσ(2)q′2 ∧
∏
j 6=1

e
mpjqj (wj)
pjqj

∏
j 6=1

(e′q′jp′j )
m′
q′
j
p′
j
(w′j)

uwtp1q1 .

So, working inductively on d (using wtp1q1 , tp2q2 · · · tpdqd and tp′2q′2 · · · tp′dq′d in places for w, ζ and ζ ′ re-
spectively: note that if (p1, q1) = (p′1, q

′
1) then (wζ)−1 ≤

lex
(wζ ′)−1 implies ((wtp1q1)·tp2q2 · · · tpdqd)−1 =

(wζ)−1 ≤
lex

(wζ ′)−1 = ((wtp1q1) · tp′2q′2 · · · tp′dq′d)−1) we see that
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• (upσ(d)q′d ∧ · · · ∧ upσ(1)q′1)∧
∏
j e
mpjqj (wj)
pjqj

∏
j(e
′
q′jp
′
j
)
m′
q′
j
p′
j
(w′j)

uw vanishes if (wζ)−1 <
lex

(wζ ′)−1,

or if ζ ′ = ζ and σ 6= id, and

• if ζ ′ = ζ and σ = id then it is a nonzero multiple of uwζ .

This finishes the proof. 2
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