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Decomposition of the product of a monomial
and a Demazure atom

Anna Ying Pun†

Department of Mathematics, University of Pennsylvania, Philadelphia, 19103, USA

Abstract. Abstract. We prove that the product of a monomial and a Demazure atom is a positive sum of Demazure
atoms combinatorially. This result proves one particular case in a conjecture which provides an approach to a combi-
natorial proof of Schubert positivity property.

Résumé. Nous montrons combinatoirement que le produit d’un monôme et d’un atome de Demazure est une somme
positive d’atomes de Demazure. Ce résultat montre un cas particulier d’une conjecture qui fournit une approche
combinatoire de la propriété de positivité de Schubert.

Keywords. generalized Demazure atoms, key polynomials, Schubert positivity, nonsymmetric Macdonald polyno-
mials, skyline filings

1 Introduction
Let N (or Z+) be the set of all positive integers and Z≥0 be the set of non-negative integers. Also we
denote by Sk the set of all permutations of the set {1, ..., k}. For n ∈ Z≥0 and k ∈ N, we say α =

(α1, α2, . . . , αk) ∈ (Z≥0)k is a weak composition n (denoted as α � n) with k parts if
k∑
i=1

αi = n and

write l(α) = k to denote the length (the number of parts) of α. Furthermore, if α1 ≥ α2 ≥ · · · ≥ αk ≥ 0,
we call α a partition of n with k parts and write α ` n (usually we denote l(α) = max{ i | αi > 0} for
α being a partition).

We denote α as the reverse of α, that is, α = (αk, . . . , α1). Define ωα as the permutation of minimal
length such that ωα(α) := (αωα(1), αωα(2), . . . , αωα(k)) is a partition. Given two weak compositions α
and β, we write β ≥ α if and only if ωβ ≤ ωα in the strong Bruhat order.

Let α be a weak composition. The augmented diagram of shape α is the figure with |α| + l(α) cells
(or boxes) where column i has αi + 1 cells. The bottom row is called the basement of the augmented
diagram.

For example, if α = (1, 0, 1, 0, 0, 4, 0, 6, 5), then the augmented diagram of α is
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Also we impose an order, called the reading order, on the cells of the diagram which reads each row
from left to right, starting from the top row and ends in the bottom row. So the order of the above diagram
is:

1
2 3

4 5 6
7 8 9
10 1112

13 14 15 1617

181920212223242526

where the number in each cell represents the order of that cell in reading order.

A filling of an augmented diagram is an assignment of a positive integer to each cell in the diagram.
Macdonald [Mac96] defined a family of non-symmetric polynomials, called non-symmetric Macdonald

polynomials,
{Eγ(x1, . . . , xn; q, t)|γ is a weak composition with n parts, n ∈ N}

which shares many properties with the family of symmetric Macdonald polynomials [Mac95]

{Pλ(x1, . . . , xn; q, t)|λ is a partition with n parts, n ∈ N}.

Haglund, Haiman and Loehr [HHL08] obtained a combinatorial formula for Eγ(x1, . . . , xn; q, t) using
fillings of augmented diagram of shape γ, called skyline fillings, satisfying certain constraints.
Marshall[Mar99] studied the family of non-symmetric Macdonald polynomials using another notation
Êγ(x1, . . . , xn; q, t) := Eγ(xn, . . . , x1;

1
q ,

1
t ). In particular, by setting q = t = 0 in Êγ , one can obtain

Demazure atoms (first studied by Lascoux and Schützenberger[LS90]) Aγ = Êγ(x1, . . . , xn; 0, 0) =
Eγ(xn, . . . , x1;∞,∞). Similarly, one can obtain Demazure characters (key polynomials) by setting
q = t = 0 in Eγ , i.e., κγ = Eγ(x1, . . . , xn; 0, 0) = Êγ(xn, . . . , x1;∞,∞). The set of all Demazure
atoms forms a basis for the polynomial ring, as does the set of all key polynomials.

Haglund, Luoto, Mason, Remmel and van Willigenburg [HLMvW11], [HMR13] further studied the
combinatorial formulas for Demazure atoms and Demazure characters given by the skyline fillings and
obtained results which generalized those for Schurs functions like the Pieri Rule, the Robinson-Schensted-
Knuth (RSK) algorithm, and the Littlewood-Richardson (LR) rule.

From now on we only consider fillings whose entries in each column are weakly decreasing from
bottom (to top) since those are the fillings related to Demazure atoms and Demazure characters [HHL08].

For any two columns (including the basement cells) i and j with i < j, we pick three cells X,Y and
Z, where cell X is immediately above cell Y in the ‘taller’ column k , where

k =

{
i if αi ≥ αj
j if αi < αj

,
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and cell Z from the ‘shorter’ column to form a triple (X,Y, Z) in the following way:{
Type A triple: cell Z is in the same row as cell X if αi ≥ αj
Type B triple: cell Z is in the same row as cell Y if αi < αj

.

We say (X,Y, Z) forms a coinversion triple if the filling F of the diagram assigns each cell in the
triple a positive integer, say F (X), F (Y ), F (Z) respectively, in such a way that F (X) ≤ F (Z) ≤ F (Y ).
Otherwise we call (X,Y, Z) an inversion triple.

Here are some examples of triples:

1 3
2

4 7
8

5
5 9

6
4 6

The first two are type A triples and the last two are type B triples while the second and the third ones
are coinversion triples and the first and the last one are inversion triples.

A semi-standard augmented filling (SSAF) of an augmented diagram with shape being a weak compo-
sition α = (α1, α2, . . . , αk) is a filling satisfying:

1. the basement entries form a permutation σ (in one line notation) of {1, ..., k}, i.e., σ ∈ Sk;

2. every (Type A or B) triple is an inversion triple.

We denote SSAF (σ, α) the set of all SSAF of an augmented diagram of shape α = (α1, α2, . . . , αk)
with basement entries (from left to right) being σ ∈ Sk (i.e., basement of column i has entry σ(i)).

The following combinatorial formulas can be found in [HHL08, LS90, Mas09].

1. Let Aα be the Demazure atom of shape α. Then

Aα =
∑

F∈SSAF(εk,α)

xF ,

where εk ∈ Sk is the identity. In particular, if α is a partition, then Aα = xα =
k∏
i=1

xαii is a

monomial.

2. Let κα be the key polynomial (Demazure character) of shape α. Then

κα =
∑

F∈SSAF(εk,α)

xF ,

where εk(i) = k + 1− i.
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Note that if α is a partition, κα = Aα which is a monomial by 1.
The following are some properties among keys and atoms and their products:

3. A key polynomial is a positive sum of Demazure atoms. In fact,

κα =
∑
β≥α

Aβ .

4. A key polynomial with a partition shape λ, with l(λ) = k, is the Schur polynomial sλ, i.e., κλ =
sλ(x1, . . . , xk).

Let λ, µ be partitions and α, β be weak compositions. Denote +A and +κ as being able to be decomposed
into positive sum of atoms and keys respectively. Note that by 3, +κ implies +A. Otherwise, we put a
× in the cell. For example, a partition (µ)-shaped atom times a key of any shape (α) is key positive and
hence we put +κ in the corresponding box.

Atoms Keys
shape λ α λ α

Atoms µ +A +A 1© +A +κ 2©
β × +A ×

Keys µ +κ +κ
β open 3©

Tab. 1: Decomposition of products of atoms and keys into atoms

The positive results in the table can be found in [HLMvW11], except for the cells marked 1©, 2© and 3©.

This paper proves 1© combinatorially in Section 4 which was open:

Theorem 1 The product Aµ · Aα is atom-positive for any partition µ and weak composition α.

The coefficients in the decomposition into atoms are actually counting the number of ways to insert
words arising from SSAF of shape α into a SSAF of shape µ and we will discuss properties of words and
how to record different ways of insertion in Section 2 and 3. Also note that the product in the theorem is
not key positive. A simple counter example would be just putting µ as the empty partition, that is, with all
entries 0.

2© is proved in [Jos03] (the proof involves crystals but does not involve SSAF). Both results 1© and 2©
imply +A for theAµ ·κα cell. Also we conjecture that we can apply the bijection in the proof in Theorem
6.1 in [HLMvW11] on Theorem 13 in Section 4 to give a tableau-combinatorial proof to 2©.

As for the product of two keys of arbitrary shapes, that is, the cell marked 3©, there are examples
showing that the product of two key polynomials of arbitrary shapes is not a positive sum of keys. So
it remains to check if it is a positive sum of atoms, which is still open. Hence 3© gives the following
conjecture which we have verified for l(α), l(β) ≤ 3:
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Conjecture 1 Let α, β be weak compositions. Then the product of the key polynomials of shape α and β
can be written as a positive sum of atoms, i.e.,

κα · κβ =
∑

γ�|α|+|β|

cγαβAγ

for some non-negative integers cγαβ .

It is a classical result in Algebraic Geometry that the product of two Schubert polynomials can be
written as a positive sum of Schubert polynomials. A representation theoretic proof is also given recently
by using Kráskiewicz-Pragacz modules [Wat14]. However a combinatorial proof of the positivity property
of Schubert polynomials has long been open. Since every Schubert polynomial is a positive sum of key
polynomials [LS89], the product of two Schubert polynomials is a positive sum of product of two key
polynomials and hence by Conjecture 1 is a positive sum of atoms. This provides a possible approach to a
combinatorial proof of the positivity property of Schubert polynomials by trying to recombine the atoms
into keys and hence into Schubert polynomials.

Since words and insertion are the crucial tools used to prove Theorem 13, we will discuss an algorithm
on words in Section 2, then we will relate it to SSAF and recording tableaux in Section 3. Finally we will
use the results we obtained in Section 2 and 3 to prove the main theorem that the product of Aλ · Aα is
atom-positive for partition λ and weak composition α in Section 4.

2 Convert a column word to a row word
Definition 1 A word is a sequence of positive integers.

Definition 2 Let a, b, c ∈ N and u, v be some fixed (can be empty) words. Define twisted Knuth relation
v∗ by:

1. ubacv v∗ ubcav if c ≤ b < a

2. uacbv v∗ ucabv if c < b ≤ a.

Then we say two wordsw andw′ are twisted Knuth equivalent ifw can be transformed tow′ by repeated
use of 1. and 2. and we write w v∗ w′.

Definition 3 A word w is a column word if it can be broken down into k weakly decreasing subsequences
of weakly decreasing lengths

w = a11 . . . a1c1 |a21 . . . a2c2 | · · · |ak1 . . . akck

where c1 ≥ c2 ≥ · · · ≥ ck > 0, c1, . . . , ck ∈ N such that{
aij ≥ ai,j+1 for 1 ≤ j < ci, 1 ≤ i ≤ k
ai+1,ci+1−j > ai,ci−j for 0 ≤ j < ci, 1 ≤ i < k

.

Definition 4 A word w is a row word if it can be broken down into k strictly increasing subsequences of
weakly decreasing lengths

w = a11 . . . a1r1 |a21 . . . a2r2 | · · · |ak1 . . . akrk
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where r1 ≥ r2 ≥ · · · ≥ rk > 0, r1, . . . , rk ∈ N such that{
aij < ai,j+1 for 1 ≤ j < ri, 1 ≤ i ≤ k
ai+1,ri+1−j ≤ ai,ri−j for 0 ≤ j < ri, 1 ≤ i < k

.

Given a SSAF, one can get its column word by using the algorithm described in [HLMvW11], while
one can get its row word by reading the entries of each row in ascending order, starting from the bottom
row to the top row. We call a word a column (row resp.) word because when we insert each subsequence
of the word using the insertion in [Mas08], a new column (row resp.) will be created.

Example 1 886531|97643|9764|5|6 is a column word whose corresponding SSAF is:

6
6 4

3 7 5
4 7 6
5 8 9

1 3 6 8 9

1 2 3 4 5 6 7 8 9

and the corresponding row word is 13689|589|467|357|46|6.

Lemma 2 Let u := a1a2 . . . an|b and v := a1a2 . . . an|b|c be two column words, where c > b > an,
n ∈ N. Then

1. u v∗ b′a′1...a
′
n where b′ < a′1, a′1 ≥ a′2 ≥ · · · ≥ a′n, and b′ := at where t = min{ j | b > aj},

2. v v∗ b′c′a′′1a
′′
2 . . . a

′′
n where b′ is defined as in 1., b′ < c′ < a′′1 and a′′1 ≥ a′′2 ≥ · · · ≥ a′′n.

Lemma 3 Let k ≥ 2 be an integer and i1, . . . , ik be nonnegative integers. Let

w0 = a
(i1)
11 . . . a

(i1)
1c1
|a(i2)21 . . . a

(i2)
2c2
| · · · |a(ik)k1 . . . a

(ik)
kck

be a column word. Then there exist a(ir+1)
rs where 1 ≤ s ≤ cr, 1 ≤ r < k and a(ik+m)

k1 where 1 ≤ m < k
satisfying

a
(ik−j−1)
k−j−1,ck−j−1

< a
(ik+j)
k1 < a

(ik−j+1)
k−j,1 for 1 ≤ j < k − 1 (k > 3)

a
(ik+k−1)
k1 < a

(i1+1)
11

a
(i1+1)
1,1 . . . a

(i1+1)
1,c1

| · · · |a(ik−1+1)
k−1,1 . . . a

(ik−1+1)
k−1,ck−1

|a(ik)k2 . . . a
(ik)
kck

is a column word

such that w0 v∗ w1 v∗ · · · v∗ wk−1, where
wj := a

(i1)
11 . . . a

(i1)
1c1
· · · a(ik−j−1)

k−j−1,1 . . . a
(ik−j−1)
k−j−1,ck−j−1

a
(ik+j)
k1 a

(ik−j+1)
k−j,1 . . . a

(ik−j+1)
k−j,ck−j · · ·

· · · a(ik−1+1)
k−1,1 . . . a

(ik−1+1)
k−1,ck−1

a
(ik)
k2 . . . a

(ik)
kck

for 1 ≤ j < k − 1,

wk−1 := aik+k−1k1 a
(i1+1)
11 . . . a

(i1+1)
1c1

· · · a(ik−1+1)
k−1,1 . . . a

(ik−1+1)
k−1,ck−1

a
(ik)
k2 . . . a

(ik)
kck

.
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The proof is basically induction on k.
Lemma 3 shows how to create the first entry of the corresponding row word, leaving the remaining part

as a column word . We illustrate the Lemma by an example with a(ik+j)k1 circled for all 0 ≤ j ≤ k − 1.

Example 2 Let w0 be the word in Example 1, hence k = 5, c1 = 6, c2 = 5, c3 = 4, c4 = c5 = 1. Set
ij = 0 for all j. Then we have

w0 = a
(0)
11 . . . a

(0)
16 |a

(0)
21 . . . a

(0)
25 |a

(0)
31 . . . a

(0)
34 |a

(0)
41 | a

(0)
51 = 886531|97643|9764|5| 6

w1 = a
(0)
11 . . . a

(0)
16 |a

(0)
21 . . . a

(0)
25 |a

(0)
31 . . . a

(0)
34 | a

(1)
51 |a

(1)
41 = 886531|97643|9764| 5 |6

w2 = a
(0)
11 . . . a

(0)
16 |a

(0)
21 . . . a

(0)
25 | a

(2)
51 |a

(1)
31 . . . a

(1)
34 |a

(1)
41 = 886531|97643| 4 |9765|6

w3 = a
(0)
11 . . . a

(0)
16 | a

(3)
51 |a

(1)
21 . . . a

(1)
25 |a

(1)
31 . . . a

(1)
34 |a

(1)
41 = 886531| 3 |97644|9765|6

w4 = a
(4)
51 |a

(1)
11 . . . a

(1)
16 |a

(1)
21 . . . a

(1)
25 |a

(1)
31 . . . a

(1)
34 |a

(1)
41 = 1 |886533|97644|9765|6

.

Lemma 4 Let w = a11 . . . a1c1 · · · ak1 . . . akck be a column word. Then there exists a sequence
{bij}1≤j≤ci,1≤i≤k such that w v∗ bk1bk−1,1 . . . b11b12 . . . b1c1b22 . . . b2c2 · · · bk2 . . . bkck , where
b11 > b21 > · · · > bk1 and b11 . . . b1c1 |b22 . . . b2c2 | · · · |bk2 . . . bkck is a column word
(with lengths c1 > c2 − 1 ≥ · · · ≥ ck − 1).

The proof is applying Lemma 3 inductively.
Using the notation in Lemma 4, since w v∗ bk1bk−1,1 . . . b11b12 . . . b1c1b22 . . . b2c2 · · · bk2 . . . bkck ,

where b11 > b21 > · · · > bk1, the SSAF with basement being the identity (i.e., 1 2 · · ·n, for some
positive integer n) representing the word w is the same as that representing
bk1bk−1,1 . . . b11b12 . . . b1c1b22 . . . b2c2 · · · bk2 . . . bkck . Denote F (w) as the SSAF created.

Since bk1bk−1,1 . . . b11 is strictly increasing, by Lemma 15 in [HMR13], they create new cells in as-
cending reading order (i.e., one after another) and hence is exactly the first entire row of F (w) as the
entries are fixed when inserting bk1bk−1,1 . . . b11 into an empty atom, and there are k columns (as w
has k subsequences) and so the first row has length k and hence the row reading word has exactly
bk1, bk−1,1, . . . , b11 as the first subsequence. That means we can apply Lemma 4 to find the first sub-
sequence of the row reading word of F (w).

Since b12 . . . b1c1b22 . . . b2c2 · · · bk2 . . . bkck is a column word, we can apply Lemma 4 again and get
the second subsequence of the row reading word of F (w), and we can apply Lemma 4 repeatedly on the
remaining bij’s until we get all the subsequences of the row reading word of F (w). As a result, we can
convert w into the row reading word of F (w) by applying Lemma 4 repeatedly as described.

3 Convert a Column Recording Tableau to a Row Recording Tableau
This section gives an interpretation of the twisted Knuth equivalence using recording tableaux. We use
the insertion in [Mas08] and the generalized Littlewood-Richardson rule in [HLMvW11]. We also use
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the notation U ← W for a SSAF U and a biword W =

(
x1 x2 . . . xn
y1 y2 . . . yn

)
for some integer n to denote

the pair (U ′, L) where U ′ is the SSAF obtained by U ← y1y2 . . . yn while L is the recording tableau, i.e.,
by putting xi into the cell created when yi is being inserted. In particular, if y1y2 . . . yn is a column (row
resp.) word, then we callL as a column (row resp.) recording tableau. By abuse of notation, we sometimes
refer U ← W to either U ′ or L (depending on the context). Note that if we change the basement εn into
the large basement in [HLMvW11], a column recording tableau is the same as an LRS in [HLMvW11].

Lemma 5 Let U be a SSAF with basement εn and shape α for some positive integer n and l(α) ≤ n.

Consider the biwordW =

(
2 2 1
a b c

)
, a ≥ b, c > b (i.e., ab|c is a column word.). Let L be the recording

tableau of U ← W . Let V be the SSAF representing the word abc and a′b′c′ be the row reading word of

V (so a′ < b′ and c′ ≤ b′ and abc v∗ a′b′c′). Consider the biword W̃ =

(
1 1 2
a′ b′ c′

)
and let L̃ be the

recording tableau of U ← W̃ . Then L determines L̃.

Lemma 6 Let U be a SSAF with basement εn and shape α for some positive integer n and l(α) ≤ n.

Consider the biword W =

(
2 2 · · · 2 1
a1 a2 · · · ak b

)
, a1 ≥ a2 ≥ · · · ≥ ak, b > ak (i.e., a1a2 . . . ak|b is a

column word ). Let L be the recording tableau of U ← W . If b > a1, then L has reading word 22 . . . 21,
i.e., b creates the last cell in reading order and the insertion of a2 . . . ak is independent of the insertion of
b.

Lemma 6 follows by applying Lemma 5 inductively.

Lemma 7 Let U be a SSAF with basement εn and shape α for some positive integer n and l(α) ≤ n.

Consider the biword W =

(
2 2 · · · 2 1
a1 a2 · · · ak b

)
, a1 ≥ a2 ≥ · · · ≥ ak, b > ak (i.e., a1a2 . . . ak|b is

a column word ). Let L be the recording tableau of U ← W . If i = min{ j | b > aj}, then the cell
created by inserting am for m > i is not affected by the insertion of b.

Proof: Since U ← a1a2 . . . akb = (U ← a1a2 . . . ai−1)← ai . . . akb. By applying Lemma 6 with the U
in the lemma being U ← a1 . . . ai−1 and result follows.

2

Lemma 8 Let U be a SSAF with basement εn and shape α for some positive integer n and l(α) ≤ n.

Consider the biword W =

(
2 2 · · · 2 1
a1 a2 · · · ak b

)
, a1 ≥ a2 ≥ · · · ≥ ak, b > ak (i.e., a1a2 . . . ak|b is a

column word ). Let L be the recording tableau of U ← W . Suppose b ≤ ak−1. Let L̃ be the recording

tableau of U ← W̃ where W̃ =

(
1 1 2 · · · 2 2
ak a1 a2 · · · ak−1 b

)
, then L determines L̃.

The above result follows by applying Lemma 5 inductively.

Lemma 9 Let U be a SSAF with basement εn and shape α for some positive integer n and l(α) ≤ n.

Consider the biword W =

(
2 2 · · · 2 1
a1 a2 · · · ak b

)
, a1 ≥ a2 ≥ · · · ≥ ak, b > ak (i.e., a1a2 . . . ak|b



Atom positivity of products of atoms and keys 1023

is a column word ). Let L be the recording tableau of U ← W . Let L̃ be the recording tableau of

U ← W̃ where W̃ =

(
1 1 2 · · · 2
b′ a′1 a′2 · · · a′k

)
, such that b′ = ai, where i = min{ j | b > aj} and

b′ < a′1, a′1 ≥ a′2 ≥ · · · ≥ a′k (one can verify that b′a′1 . . . a
′
k is indeed the row reading word of the SSAF

representing the word a1a2...akb by 1. in Lemma 2), then L determines L̃.

Proof: If i = k, then we are done by Lemma 8.
If i = 1, then by 1. in Lemma 2, we have b′a′1 . . . a

′
k = a1ba2 . . . ak and hence by Lemma 6, b would

create the last cell in reading order in L̃ when being inserted and hence we know that which two cells are
created by a1 and b in L̃ and hence we know how to label the entries by marking those two cells as 1 and
the rest as 2.

Suppose i < k then by 1. in Lemma 2, we have b′a′1 . . . a
′
k = aia1 . . . ai−1bai+1 . . . ak. Now by

Lemma 7, we know all aj , where j > i, create the same cells in L and L̃ and since a1 . . . ai−1aib v∗

aia1 . . . ai−1b, we just need to first apply Lemma 8 on U ← a1 . . . aib as the insertion recorded by L in
the lemma in order to find the first (i+1) cells created in L̃ by the insertion U ← aia1 . . . ai−1b and then
label the rest of cells created by (U ← aia1 . . . ai−1b) ← ai+1 . . . ak as 2 and get the entries of L̃ and
result follows. 2

Lemma 9 gives a recording tableau interpretation of 1. in Lemma 2 using L and L̃.

Lemma 10 Let U be a SSAF with basement εn and shape α for some positive integer n and l(α) ≤ n.
Let w0 = a11 . . . a1c1 |a21 . . . a2c2 | · · · |ak1 . . . akck with k ≤ n be a column word and using the notation
in Lemma 3 while we assume ij = 0 for 1 ≤ j ≤ cr, 1 ≤ r ≤ k, the recording tableau L of U ← W0

determines the recording tableau L̃m of U ← Wm for 0 ≤ m ≤ k − 1, where L := L̃0 and Wm is a
biword with the lower word being wm and the upper word has entry k+1− t if the lower word entry just
below it is a(s)tj for s = it, it + 1, and 1(1) if m > 0 and the entry is a(ik+m)

k1 .

Lemma 10 follows by inductively using Lemma 9.

Lemma 11 Let U be a SSAF with basement εn and shape α for some positive integer n and l(α) ≤ n.
Let w = a11 . . . a1c1 |a21 . . . a2c2 | · · · |ak1 . . . akck with k ≤ n be a column word and using the notation
in Lemma 4, the recording tableau L of U ← W determines the recording tableau L̃ of U ← W̃ , where
W =

(
k k . . . k · · · 1 1 . . . 1

a11 a12 . . . a1c1 · · · ak1 ak2 . . . akck

)

W̃ =

(
1(1) 2(1) . . . k(1) k k . . . k · · · 1 1 . . . 1

bk1 bk−1,1 . . . b11 b12 b13 . . . b1c1 · · · bk2 bk3 . . . bkck

) .

We apply Lemma 10 (which is like the tableaux version of Lemma 3) to get the result above.

Lemma 12 Let U be a SSAF with basement εn and shape α for some positive integer n and l(α) ≤ n.
Let w = a11 . . . a1c1 |a21 . . . a2c2 | · · · |ak1 . . . akck with k ≤ n be a column word. Let V be the SSAF
representing w (i.e., inserting w into an empty atom). Let w̃ = x11x12 . . . xr1 · · ·xc1,1 . . . xc1,rc1 (as V
has c1 rows and k columns and so r1 is k), where k = r1 ≥ r2 ≥ · · · ≥ rc1 > 0 are the row lengths of V
from bottom to top, be the row reading word of V . Then the recording tableau L of U ← W determines
the recording tableau R of U ← W̃ , where
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W =

(
k k . . . k · · · 1 1 . . . 1

a11 a12 . . . a1c1 · · · ak1 ak2 . . . akck

)

W̃ =

(
1 1 . . . 1 · · · c1 c1 . . . c1

x11 x12 . . . x1r1 · · · xc1,1 xc1,2 . . . xc1,rc1

) .

Proof:
By Lemma 11 and the corresponding word in Lemma 4, given L, we know how to enter all the 1’s in

R, which are those cells marked 1(1), 2(1), . . . , k(1) after applying Lemma 11 as the bk1bk−1,1 . . . b11 =
x11x12 . . . x1r1 (by the argument after Lemma 4).

We remove the cells from L̃ in Lemma 11 to create a new L to apply Lemma 11 on, we can get the
second row entries (as described in the paragraphs after Lemma 4 ),and hence we know how to put all the
2’s into R. By the same argument, we can fill in all entries in R and hence L determines R.

2

4 Decomposition of the product of a monomial and an atom into
positive sum of atoms

We prove Theorem 1 mentioned in the Introduction. We rephrase the statement more precisely as follows.

Theorem 13 Let λ be a partition and α be a weak composition. LetAλ andAα be atoms of shape λ and
α respectively. Then

Aλ · Aα =
∑

β�|λ|+|α|,λ⊆β

cβλαAβ

where cβλα is the number of distinct LRS of shape β/λ created by column words whose corresponding
SSAF has shape α.

Proof: SinceAλ = xλ (there is exactly one SSAF with shape λ, denoted byUλ) andAα =
∑

F∈SSAF(εl(α),α)

xF ,

we have
Aλ · Aα =

∑
F∈SSAF(εl(α),α)

xλxF

.
To prove the theorem, we only need to check that given a LRS L of shape β/λ created by column words

whose corresponding SSAF has shape α, if there is some column word

w = a11 . . . a1c1 |a21 . . . a2c2 | · · · |ak1 . . . akck

and biword

W =

(
k k . . . k · · · 1 1 . . . 1
a11 a12 . . . a1c1 · · · ak1 ak2 . . . akck

)
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such that Uλ ←W creates the same L, then the SSAF corresponding to w also has shape α.
First consider the last cell in reading order among all those containing entry k in L, that means it is the

very first entry inserted. Since a11 must be inserted in a cell immediately above the cell (including those
in basement) containing a11, the position of that cell fixes the value of a11.

Now consider all the cells with k and also the last cell in reading order among all those containing
the entry k − 1, then these cells are created by Uλ ← a11 . . . a1c1a21. By Lemma 12, we know the
corresponding row recording tableau and hence we know which two cells are the first two entries being
inserted using the corresponding row word. Note that the first row consists of distinct entries and is
inserted in ascending order using the row word, then by Lemma 15 in [HMR13], we know the cells are
created in ascending reading order (one after another in reading order) and so they must be the cells
immediately above those in Uλ, and hence the value inside each of those cells in the SSAF created by
inserting the row word into Uλ is exactly the value inside the cell just below it. Hence we know what
the first two row entries of the corresponding SSAF of a11a12 . . . a1c1a21 are. Since we already know the
first row entry, which is the lowest entry of the column corresponding to a11 . . . a1c1 is, we now know
what the lowest entry of the second column (corresponding to a11 . . . a1c1a21 and hence the same for
a11 . . . a1c1a21 . . . a2c2 ) is.

We can repeat the same process until we get all the last entries of the k columns and hence fix the shape
of the SSAF corresponding to w. Since we read those entries just by considering L, this shows that L
fixes the shape of the corresponding SSAF of w and result follows.

2
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(237):Exp. No. 797, 4, 189–207, 1996. Séminaire Bourbaki, Vol. 1994/95.
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