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The determining number of Kneser graphs†
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A set of vertices S is a determining set of a graph G if every automorphism of G is uniquely determined by its action
on S. The determining number of G is the minimum cardinality of a determining set of G. This paper studies the
determining number of Kneser graphs. First, we compute the determining number of a wide range of Kneser graphs,
concretely Kn:k with n ≥ k(k+1)

2
+ 1. In the language of group theory, these computations provide exact values for

the base size of the symmetric group Sn acting on the k-subsets of {1, . . . , n}. Then, we establish for which Kneser
graphs Kn:k the determining number is equal to n − k, answering a question posed by Boutin. Finally, we find all
Kneser graphs with fixed determining number 5, extending the study developed by Boutin for determining number 2,
3 or 4.

Keywords: Determining set, determining number, Kneser graph, hypergraph.

1 Introduction
The determining number of a graph G = (V (G), E(G)) is the minimum cardinality of a set S ⊆ V (G)
such that the automorphism group of the graph obtained from G by fixing every vertex in S is trivial.
In this paper, we continue the study on the determining number of Kneser graphs carried out by Boutin
(2006), introducing a different technique from the tools used in that article.

An automorphism f of G is a bijective mapping of V (G) onto itself such that f(u)f(v) ∈ E(G)
whenever uv ∈ E(G). As usual Aut(G) denotes the automorphism group of G. A subset S ⊆ V (G)
is said to be a determining set of G if whenever g, h ∈ Aut(G) so that g(s) = h(s) for all s ∈ S, then
g(v) = h(v) for all v ∈ V (G). The minimum cardinality of a determining set of G, denoted by Det(G),
is the determining number of G; a set of that cardinality is said to be a minimum determining set. Observe
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that 0 ≤ Det(G) ≤ |V (G)| − 1 since any subset of V (G) containing all but one vertex is a determining
set of G. It is easy to see that the only connected graphs G with Det(G) = |V (G)| − 1 are the complete
graphs. A graph G with Det(G) = 0 is called asymmetric or rigid. Erdős and Rényi (1963) proved that
almost all graphs are rigid.

The Kneser graph Kn:k has vertices associated with the k-subsets of the n-set [n] = {1, . . . , n} and
edges connecting disjoint sets. This family of graphs is usually considered for n ≥ 2k but here we shall
assume that n > 2k since the case n = 2k gives a set of disconnected edges and its determining number
is half the number of vertices.

Determining sets are particular cases of bases which were introduced by Sims (1971) in the context of
computational group theory. Indeed, a base of a permutation group Γ acting on a set X is a subset B of
X such that the pointwise stabilizer of B in Γ is trivial, i.e., the only element of Γ which fixes each point
of B is the identity element. The base size of Γ is the minimum cardinality of a base. When X is the
vertex-set of a graph G and Γ = Aut(G), a base B is precisely a determining set of G and the base size
of Aut(G) is Det(G).

There exists an extensive literature on determining the base sizes of primitive permutation groups. See
Bailey and Cameron (2011) for a number of references on this topic, and also Burness et al. (2011)
where primitive actions on symmetric groups are considered. Erwin and Harary (2006) introduced the
term fixing set to refer to a base for Aut(G), and Boutin (2006) used the term determining set for the
same concept. Here we shall follow the terminology of Boutin (2006) (see also Albertson and Boutin
(2007)) since in that paper, a study on Kneser graphs was performed. Concretely, the author proved that
their determining number is tightly bound by log2(n + 1) ≤ Det(Kn:k) ≤ n − k computing also the
exact value Det(K2r−1:2r−1−1) = r. Further, all Kneser graphs with determining number 2, 3 or 4 were
provided. The main tools used in Boutin (2006) to find determining sets or to bound the determining
number of Kneser graphs are based on characteristic matrices and vertex orbits.

This paper contains two main results. In Section 2, we compute the determining number of all Kneser
graphsKn:k with n ≥ k(k+1)

2 +1. Our technique is based on two key ideas. First, every subset of vertices
of Kn:k has an associated k-regular hypergraph. The fact of being determining is achieved by imposing
conditions on the edges of the corresponding hypergraph. Second, the relevant hypergraphs that let us
compute Det(Kn:k) for n ≥ k(k+1)

2 + 1 are constructed by using perfect matchings and Hamiltonian
cycles in a complete graph. These hypergraphs are, in fact, graphs with loops or they have only one edge
of cardinality bigger than 2.

We want to stress that since the automorphism group of the Kneser graph Kn:k is the action of the
symmetric group Sn on the k-subsets of [n] (see Godsil and Royle (2001)), our results in Section 2
provide exact values for the base size of Sn acting on the k-subsets of [n] for n ≥ k(k+1)

2 + 1. The
problem of computing base sizes for the action of Sn on k-subsets was first studied in the (unpublished)
D. Phil. thesis of Maund (1989). His approach was given in the context of group theory and ours using the
language of graphs, but both approaches obtain similar results. We have also recently learnt of a related
result by Halási (2012) which provides the values for the base size of Sn acting on k-subsets for n = 2k
and n ≥ k2.

Our second main result concerns the question of whether there exists an infinite family of Kneser graphs
Kn:k with k ≥ 2 and determining number n−k, which was posed by Boutin (2006). The above approach
by hypergraphs is our main tool to answer this question which is done in Section 3. Concretely, we show
that Kn:1 for any n, K5:2 and K6:2 are the only Kneser graphs with determining number n− k.
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Finally, as an application of our technique and so following with the series of results presented in Boutin
(2006) providing all Kneser graphs with fixed determining number 2, 3 or 4, we list all Kneser graphs with
fixed determining number 5; this is the content of Section 4. We conclude the paper with some remarks
and open problems.

2 Computing the determining number of Kneser graphs
In this section, we compute the determining number of a wide range of Kneser graphs, obtaining a
characterization of their determining sets in terms of hypergraphs. In order to do this, we shall apply
the following result from Boutin (2006).

Lemma 2.1 (Boutin (2006)) The set {V1, . . . Vr} is a determining set of Kn:k if and only if there exists
no pair of distinct elements a, b ∈ [n] so that for each i either {a, b} ⊆ Vi or {a, b} ⊆ V c

i .

Observe that the above lemma implies that every determining set ofKn:k has to contain all the elements
of [n] but at most one.

Recall that a hypergraph is a generalization of a graph, where edges can connect any number of vertices.
Formally, a hypergraph H is a pair (V (H), E(H)) where V (H) is the set of vertices, and E(H) is a set
of non-empty subsets of V (H) called hyperedges or simply edges. When edges appear only once, the
hypergraph is called simple. The order of a hypergraph is the number of its vertices, denoted by |V (H)|,
and the size is the number of its edges |E(H)|. A hyperedge containing r vertices is said to be an edge of
cardinality r. Thus, given a hypergraph H with n vertices there are edges of cardinality ranging over the
set {1, . . . , n}. The edge-cardinality-sequence ofH, written as r1 ≥ ... ≥ r|E(H)|, gives the cardinality ri
of the edges ofH. The degree δ(v) of a vertex v is the number of hyperedges containing v. A hypergraph
is called k-regular if every vertex has degree k. In all the figures in this paper, hyperedges of cardinality
bigger than 2 are illustrated as shadowed regions.

For any set of vertices S ⊆ V (Kn:k) denote by HS the k-regular hypergraph obtained as follows: The
vertex-set V (HS) is equal to S, and two vertices belong to the same hyperedge whenever they contain a
common element. When an element of [n] appears only once in the vertices of S, we have a loop in the
corresponding vertex ofHS . Figure 1 shows an instance of a hypergraph associated to a set S ⊆ V (K6:3).

Fig. 1: Hypergraph associated to S = {{1, 2, 3}, {3, 4, 5}, {1, 4, 5}, {4, 5, 6}, {3, 5, 6}}. Number 2 appears only
once in S so there is a loop attached to {1, 2, 3}. There are two edges of cardinality 2 determined by numbers 1
and 6, two edges of cardinality 3 since numbers 3 and 4 appear in three vertices of S, and one edge of cardinality 4
determined by number 5.

The two following results state that the condition of being determining set can be captured from the
structure of the associated hypergraph.
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Lemma 2.2 A set S ⊆ V (Kn:k) is a determining set of Kn:k if and only if the associated k-regular
hypergraphHS is simple and has either n or n− 1 edges.

Proof: Consider a determining set S of Kn:k and the hypergraphHS . By Lemma 2.1, there exists no pair
of distinct elements a, b ∈ [n] so that for each vertex V ∈ S either {a, b} ⊆ V or {a, b} ⊆ V c. Hence,
HS is simple. Indeed, having multiple edges in HS is equivalent to have at least two elements of [n] in
exactly the same vertices of S, which implies that they are not distinguishable by any vertex of S.

It is clear that HS has either n or n − 1 edges since Lemma 2.1 says that S has to contain all the
elements of [n] but at most one. Thus, elements of [n] in S correspond to edges inHS .

Suppose now that HS is simple and has either n or n − 1 edges. Then, for every a, b ∈ [n] the
corresponding edges inHS are different and at most one element of [n] is contained in no vertex of S. By
Lemma 2.1 yields the result. 2

Lemma 2.3 For every k-regular simple hypergraphH with either n or n−1 edges and n ≥ 2k+1, there
exists a determining set S of Kn:k such thatH is isomorphic toHS .

Proof: We first label every edge ofH with the elements of either [n] or [n− 1] depending on the number
of edges. The vertices of H are given the labels of their incident edges, giving rise to |V (H)| different
k-subsets of [n]. Take S as the set formed by these k-subsets. Clearly, H is isomorphic to HS and by
Lemma 2.2 the result follows. 2

When a determining set S is minimum, Lemma 2.3 guarantees that there does not exist a k-regular
simple hypergraph H with either n or n − 1 edges and |V (H)| < |S| = |V (HS)|. Thus, we say that
among the k-regular simple hypergraphs with either n or n − 1 edges, HS is of minimum order. More
generally, a k-regular simple hypergraphH with either n or n− 1 edges is said to be of minimum order if
there does not exist a k-regular simple hypergraphH′ with either n or n−1 edges and |V (H′)| < |V (H)|.

Lemma 2.4 A set S ⊂ V (Kn:k) is a minimum determining set of Kn:k with n ≥ 2k+ 1 if and only if the
hypergraphHS is simple, has either n or n− 1 edges and minimum order.

Remark 2.5 The above characterization ensures us that the number of Kneser graphs Kn:k with fixed
determining number, say d, is finite. Indeed, the hypergraph associated to a minimum determining set
must have a fixed number of vertices d which implies that neither k nor n can take infinite values.

Lemmas 2.2 and 2.3 let us compute the determining number of all Kneser graphs Kn:k with n ≥
k(k+1)

2 + 1, which is done in Theorems 2.6 and 2.7 below. We shall use, as a main tool to construct
an appropriate hypergraph, the fact that every complete graph Kd has a 1-factorization whenever d is
even (i.e., a collection of d − 1 pairwise disjoint perfect matchings), and a Hamiltonian decomposition
whenever d is odd (i.e., a collection of d−1

2 pairwise disjoint Hamiltonian cycles). (See Lucas (1892) and
Baranyai (1975) or the recent paper by Bryant (2007).)

Theorem 2.6 Let k and d be two positive integers such that k ≤ d and d > 2. Then,

Det
(
Kb d(k+1)

2 c+1:k

)
= d.
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Proof: We first show that Det(Kb d(k+1)
2 c+1:k

) ≤ d. By Lemma 2.3, it suffices to prove that there exists

a k-regular simple hypergraph, say Hk,d, with order d and either bd(k+1)
2 c or bd(k+1)

2 c+ 1 edges (in this
proof hypergraphs will be, in fact, graphs with loops). We distinguish three cases according to the parity
of k and d.

Case 1. d even: Hk,d is the hypergraph formed by d vertices, a loop attached at each vertex, and the
edges of k − 1 pairwise disjoint perfect matchings of the complete graph Kd (see Figure 2(a)). Clearly,
this hypergraph is k-regular and has d(k+1)

2 edges. Note that its construction does not depend on the parity
of k.

Case 2. d odd and k odd: Hk,d is formed by d vertices with one loop attached at each vertex, and k−1
2

pairwise disjoint Hamiltonian cycles of Kd (see Figure 2(b)). It is easy to check that Hk,d is a k-regular
hypergraph with d(k+1)

2 edges.
Case 3. d odd and k even: Consider the hypergraphHk+1,d obtained from Case 2. Take a Hamiltonian

cycle, say C = (e1, e2, . . . , ed). Now, delete the edges with even subindex, i.e., e2, e4, . . . , ed−1, and the
loop attached at the common vertex of e1 and ed. This construction gives rise to a k-regular hypergraph
Hk,d with d(k+1)−1

2 = bd(k+1)
2 c edges.

To complete the proof, it remains to show that Det(Kb d(k+1)
2 c+1:k

) is exactly equal to d. By Lemma

2.3, it suffices to prove that every k-regular hypergraph with either bd(k+1)
2 c or bd(k+1)

2 c+ 1 edges has at
least d vertices. Suppose on the contrary that there exists a k-regular hypergraph H with bd(k+1)

2 c edges
(analogous for bd(k+1)

2 c+ 1 edges) and d′ < d vertices. By Theorem 2.8 of Duchet (1995) it follows that
d′ = |V (H)| ≥ d2|E(H)|

k+1 e. Hence,

d′ ≥
⌈

2

k + 1

⌊
d(k + 1)

2

⌋⌉
= d

which is a contradiction. 2

(a) (b)

Fig. 2: Hypergraphs (graphs with loops in both cases) constructed by using perfect matchings and Hamiltonian cycles:
(a) H4,6 has 6 vertices, a loop attached at each vertex, and the edges of 3 pairwise disjoint perfect matchings of the
complete graph K6, (b) H5,7 has 7 vertices with loops attached at each vertex, and 2 pairwise disjoint Hamiltonian
cycles of K7.

Our next aim is to extend Theorem 2.6 to Kneser graphs Kn:k where d ≥ k, d > 2 and b (d−1)(k+1)
2 c <

n−1 < bd(k+1)
2 c. For our purpose, we need to introduce an operation on the edge-set of a hypergraphH.
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Let e1, e2 ∈ E(H). We say that e1 and e2 are merged obtaining a new hypergraphH′ if V (H′) = V (H)
and E(H′) = (E(H) \ {e1, e2}) ∪ {e1 ∪ e2}. Now, we can extend this operation to merge a finite set of
edges, say {e1, e2, . . . , et} obtaining the hypergraphH′ with E(H′) = (E(H)\{e1, e2, . . . , et})∪{e1∪
e2 ∪ . . . ∪ et}. Note that |E(H′)| = |E(H)| − t + 1. We shall apply the operation of merging edges in
regular hypergraphs and for ei 6= ej whenever i 6= j. Observe that ifH is k-regular and e1, e2, . . . , et are
pairwise disjoint edges, i.e., they have no vertex in common, thenH′ is k-regular (see Figure 3).

(a) (b)

Fig. 3: The edge {a, b, c, d, e, f} of the hypergraph in (b) is the result of merging three edges of the hypergraph in
(a): {a}, {b, c} and {d, e, f}. Both hypergraphs are 5-regular.

Theorem 2.7 Let k and d be two positive integers where 3 ≤ k + 1 ≤ d. For every n ∈ N such that
b (d−1)(k+1)

2 c < n < bd(k+1)
2 c it holds that Det(Kn+1:k) = d.

Proof: Since b (d−1)(k+1)
2 c < n < bd(k+1)

2 c then there exists r ∈ N such that n = bd(k+1)
2 c − r with

r ≤ bk−12 c whenever d is odd or d is even and k is odd, and r ≤ k
2 whenever k is even and d is even.

We first prove that Det(Kn+1:k) ≤ d by distinguishing four cases according to the parity of d and k.
By Lemma 2.3, it suffices to show that there exists a k-regular simple hypergraph with d vertices and n
edges. We shall construct hypergraphs (all with only one edge of cardinality bigger than 2) by using the
constructions of Theorem 2.6 and the above operation of merging.

Case 1. d even and k even: Consider the hypergraphHk,d constructed in Case 1 of the proof of Theorem
2.6. Since k ≤ d− 1 and k and d are even, then k ≤ d− 2 and so r ≤ k

2 ≤
d−2
2 < d

2 . Hence we can take
r+1 ≤ d

2 edges of any perfect matching on the vertices ofHk,d and merge them obtaining the hypergraph
H′k,d. Since the edges of a perfect matching are disjoint, H′k,d is k-regular. Moreover, by construction
d = |V (Hk,d)| = |V (H′k,d)| and

|E(H′k,d)| = |E(Hk,d)| − r =
d(k + 1)

2
− r = n.

Case 2. d even and k odd: Analogous to the previous case but considering,

r ≤
⌊
k − 1

2

⌋
≤
⌊
d− 2

2

⌋
<
d

2

and so r + 1 ≤ d
2 .

Case 3. d odd and k odd: Let Hk,d be the hypergraph constructed by considering d vertices with one
loop attached at each vertex, and k−1

2 pairwise disjoint Hamiltonian cycles of Kd (see Case 2 of the proof
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of Theorem 2.6). Each cycle has d edges and r ≤ k−1
2 ≤ d−3

2 , then we can merge r disjoint edges of a
Hamiltonian cycle, say C = (e1, . . . , ed). Merge those edges with even subindex plus the loop attached
at the common vertex of e1 and ed; r + 1 disjoint edges in total. Thus, we obtain a k-regular simple
hypergraphH′k,d with d vertices and n = bd(k+1)

2 c − r edges.
Case 4. d odd and k even: Consider the hypergraphHk,d constructed in Case 3 of the proof of Theorem

2.6. This hypergraph is k-regular, has d vertices and d(k+1)−1
2 edges. Note that we can merge r+1 disjoint

edges of a Hamiltonian cycle C of order d since r ≤ bk−12 c = k−2
2 and so r + 1 ≤ k

2 ≤
d−1
2 < dd2e.

It suffices to consider r + 1 pairwise disjoint edges among the odd labeled edges of C. The resulting
hypergraphH′k,d is simple, k-regular, has d vertices and n = bd(k+1)

2 c − r edges.
It remains to prove that Det(Kn+1:k) = d. Suppose on the contrary that Det(Kn+1:k) ≤ d− 1, then by

Lemma 2.2 there exists a k-regular simple hypergraphH with d− 1 vertices and either n+ 1 or n edges.
Assume first that H has n + 1 edges. The edge-cardinality-sequence r1 ≥ ... ≥ rn+1 of H satisfies (see
Theorem 2.8 of Duchet (1995)):

n+1∑
i=1

ri =
∑

v∈V (H)

δ(v) = k(d− 1).

Note that the number of loops in H is at most d− 1, so there are n+ 1− (d− 1) = n− d+ 2 edges of
cardinality at least 2. Hence, we obtain the following inequalities about the sum on the edge cardinalities:

n+1∑
i=n+1−(d−2)

ri ≥ d− 1

n+1−(d−2)−1∑
i=1

ri ≥ 2(n− d+ 2)


⇒ k(d− 1) =

n+1∑
i=1

ri ≥ d− 1 + 2(n− d+ 2) = 2n− d+ 3.

Therefore, n ≤ (d−1)(k+1)
2 − 1 which is a contradiction since b (d−1)(k+1)

2 c < n.
Suppose now thatH has n edges. Then,

n∑
i=n−(d−2)

ri ≥ d− 1

n−(d−2)−1∑
i=1

ri ≥ 2(n− d+ 1)

⇒ k(d− 1) =

n∑
i=1

ri ≥ d− 1 + 2(n− d+ 1) = 2n− d+ 1.

Hence, n ≤ (d−1)(k+1)
2 which contradicts b (d−1)(k+1)

2 c < n. 2
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3 Kneser graphs Kn:k with determining number n− k

In this section, we answer a question posed by Boutin (2006): ”We know that Det(Kn:k) = n − k for
Kn:1 for any n, K5:2 and K6:2. However, Det(K7:2) = 4 6= 7 − 2. Is there an infinite family of Kneser
graphs with k ≥ 2 for which Det(Kn:k) = n − k?” Theorem 3.3 below says that Kn:1, K5:2 and K6:2

are the only Kneser graphs with that property.

Lemma 3.1 Let k and n be two positive integers such that 2k ≤ n < k(k+1)
2 . Then, Det(Kn+1:k) ≤ k.

Proof: By Lemma 2.3, it suffices to prove that there exists a k-regular simple hypergraphHwith k vertices
and n edges. Consider the k-regular simple hypergraph Hk,d constructed in the proof of Theorem 2.6.
Recall that, independently of the parity of k and d, the hypergraph Hk,d is k-regular, has d vertices and
bd(k+1)

2 c edges. Take k = d and the hypergraphHk,k with k vertices and k(k+1)
2 edges.

Let {v0, v1, ..., vk−1} be the vertex-set of Hk,k. We distinguish two cases according to the parity of k.
Note that all the indices below are taken modulo k.

Case 1. k odd: Hk,k is the hypergraph formed by k vertices with one loop attached at each vertex, and
a Hamiltonian decomposition of Kk (see Case 2 of Theorem 2.6). Assign the following set of k−1

2 edges
to each vertex vi ∈ V (Hk,k) (see Figure 4):

Ei = {{vi−1, vi+1}, {vi−2, vi+2}, ..., {vi− k−1
2
, vi+ k−1

2
}}.

Note that the edges of Ei are disjoint and two sets Ei, Ej have no edges in common whenever i 6= j. Thus,
the k-regularity is preserved in the process of merging that we are going to describe next. We consider
again two cases.

Case 1.1. If k(k+1)
2 − k−1

2 + 1 < n < k(k+1)
2 then merge a subset of k(k+1)

2 − n + 1 edges of E0,
obtaining a k-regular hypergraphH′k,k with k(k+1)

2 − (k(k+1)
2 − n+ 1) + 1 = n edges.

Case 1.2. If 2k ≤ n ≤ k(k+1)
2 − k−1

2 + 1 then we can merge the edges of at least one set Ei obtaining
a k-regular hypergraph with at least n edges. If the number of edges is equal to n then the process is
concluded. Otherwise, suppose that we can merge the edges of s subsets with 0 ≤ s ≤ k − 1, say
E0, E2, . . . , Es−1, obtaining a k-regular hypergraphH′k,k with k(k+1)

2 − s(k−1)
2 + s edges which satisfies

k(k + 1)

2
− (s− 1)(k − 1)

2
+ (s− 1) < n <

k(k + 1)

2
− s(k − 1)

2
+ s.

Then the edges of Es cannot be merged since if so the resulting hypergraph would have less than n edges.
Hence, we proceed as in Case 1.1 merging k(k+1)

2 − s(k−1)
2 + s− n+ 1 edges of Es. This process leads

to a k-regular simple hypergraphH with k vertices and n edges.
Case 2. k even: Hk,k is a hypergraph with k vertices, a loop attached at each vertex, and the edges of a

1-factorization of the complete graph Kk (see Case 1 of Theorem 2.6). We distinguish three cases.
Case 2.1. If k(k+1)

2 − k
2 (k

2 −1)+ k
2 ≤ n <

k(k+1)
2 then we can follow an analogous process of merging

than in Case 1 preserving also the k-regularity, but instead of assigning the sets Ei to each vertex vi, we
now assign the following set of edges to vi for i = 0, . . . , k2 − 1 (see Figure 5(a)):

Fi = {{vi−1, vi+1}, {vi−2, vi+2}, ..., {vi− k
2+1, vi+ k

2−1
}}.
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Fig. 4: The selected edges form the set E0 inH7,7.

Note that the assignment is done to half of the vertices since Fi = Fi+ k
2

because of the parity of k.
Observe also that the edges of Fi are disjoint and two sets Fi, Fj have no edges in common whenever
i 6= j.

This process of merging leads to a k-regular simple hypergraph H′k,k resulting from merging at most∑ k
2−1
i=0 |Fi| = k

2 (k
2 − 1) edges inHk,k. In this case, we obtain a hypergraph with k(k+1)

2 − k
2 (k

2 − 1) + k
2

edges. Note that the edges obtained by this procedure are all of cardinality k − 2 except at most one of
smaller cardinality.

Case 2.2. If k(k+1)
2 − k

2 (k
2 − 1) + k

2 −
k
2 (k

2 − 2) + k
2 = 3k ≤ n < k(k+1)

2 − k
2 (k−2

2 − 1) then we first
merge all the sets of edges Fi, obtaining a hypergraphH′k,k with k(k+1)

2 − k
2 (k

2 − 1) + k
2 edges. We now

assign the following set of edges to vi for i = 0, . . . , k2 − 1 (see Figure 5(b)):

F ′i = {{vi−1, vi+2}, {vi−2, vi+3}, ..., {vi− k
2+2, vi+ k

2−1
}}.

Again, we follow the procedure described in Case 1 which gives a k-regular simple hypergraph that is

the result of merging at most
∑ k

2−1
i=0 |F ′i| = k

2 (k
2 − 2) edges in H′k,k. In this case, a hypergraph with

k(k+1)
2 − k

2 (k
2 −1)+ k

2 −
k
2 (k

2 −2)+ k
2 edges is obtained. Observe that the edges obtained by this process

are all of cardinality k − 4 except at most one of smaller cardinality.
Case 2.3. If 2k ≤ n < 3k then merge the sets Fi and F ′i, obtaining a hypergraph with 3k edges. These

edges are: k loops, k
2 edges of cardinality k − 2, k

2 edges of cardinality k − 4 and k edges of cardinality
2 forming the cycle {v0, ...vk−1}. For every vertex vi, consider now the set of edges (see Figure 5(c)):

F ′′i = {{vi}, {vi+1, vi+2}}

and merge the required sets F ′′i to obtain a hypergraph with n edges.
2

Remark 3.2 The process of merging described in the proof of Lemma 3.1 leads to hypergraphs which
have in most cases a number of edges of cardinality bigger than 2.

Now, we can formulate our main result in this section.

Theorem 3.3 Det(Kn+1:k) = n+ 1− k if and only if either k = 1 or k = 2 and n = 4, 5.
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(a) (b) (c)

Fig. 5: The selected edges form the set: (a) F0, (b) F ′0, (c) F ′′0 inH8,8.

Proof: The values k = 1 or k = 2 and n = 4, 5 give the Kneser graphs Kn+1:1 for any n, K5:2 and K6:2

whose determining numbers are, respectively, n, 3 and 4.
Let Kn+1:k be a Kneser graph with Det(Kn+1:k) = n+ 1− k. By Lemma 3.1, there are no values of

n and k such that 2k ≤ n < k(k+1)
2 and Det(Kn+1:k) = n+ 1− k since Det(Kn+1:k) ≤ k < n+ 1− k.

Then, we can assume that n ≥ k(k+1)
2 and k ≥ 2 (for k = 1 the Kneser graph Kn+1:1 is isomorphic to

the complete graph Kn+1 and so Det(Kn+1:k) = n).
Suppose first that there exists d ∈ N with d > 2 such that n = bd(k+1)

2 c. Then d ≥ k and by
Theorem 2.6 we have Det(Kn+1:k) = d. Thus, it suffices to prove that d < bd(k+1)

2 c+ 1− k except for
d = 3 and k = 2 which gives the graph K5:2. Suppose on the contrary that either d 6= 3 or k 6= 2 and
d ≥ bd(k+1)

2 c+ 1− k. We distinguish two cases.
Case 1. d even or k odd: The contradiction follows since (2− k − 1)d ≥ 2(1− k) and so d ≤ 2.
Case 2. d odd and k even: We have 2d ≥ d(k+1)−2k+1 which easily implies that (k−1)(d−2) ≤ 1.

Clearly, the inequality only holds for k = 2 and d = 3.
Assume now that there exists d ∈ N with 3 ≤ k + 1 ≤ d such that b (d−1)(k+1)

2 c < n < bd(k+1)
2 c. By

Theorem 2.7, Det(Kn+1:k) = d and it suffices to show that d < n + 1 − k except for k = 2 and d = 4
which leads to the Kneser graph K6:2. The following expression holds for all positive integers d, k and n
satisfying the above conditions except for k = 2 and d = 4:

d− 1 < b (d− 1)(k + 1)

2
c+ 1− k < n+ 1− k.

Hence, the result follows. 2
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4 Kneser graphs with fixed determining number
As an application of our technique and following the list of cases studied in Boutin (2006) characterizing
all Kneser graphs with fixed determining number 2, 3 or 4, we provide all Kneser graphs with fixed
determining number 5. Our method also works for the cases presented in Boutin (2006).

Lemma 4.1 Let H be a k-regular simple hypergraph with d vertices and m edges. Then the following
statements hold:

(a) k ≤ 2d−1 and m ≤ 2d − 1.

(b) If m > d+
(
d
2

)
then kd ≥ 3m− 2d−

(
d
2

)
.

(c) If m > d+
(
d
2

)
+
(
d
3

)
then kd ≥ 4m− 3d− 2

(
d
2

)
−
(
d
3

)
.

Proof: Statement (a) follows since the cardinality of the power set P(V (H)) of the vertex-set V (H) is
2d, and a hyperedge is a non-empty subset of vertices.

To prove Statement (b), assume that m > d +
(
d
2

)
and consider the edge-cardinality-sequence r1 ≥

r2 ≥ . . . ≥ rm−1 ≥ rm ofH which satisfies kd =
∑m

i=1 ri (see Theorem 2.8 of Duchet (1995)). Then,

kd =

m∑
i=m−d+1

ri +

m−d∑
i=m−(d+(d

2))+1

ri +

m−(d+(d
2))∑

i=1

ri

≥ d+ 2

(
d

2

)
+ 3

(
m− d−

(
d

2

))
= 3m− 2d−

(
d

2

)
.

Suppose now that m > d+
(
d
2

)
+
(
d
3

)
. Since kd =

∑m
i=1 ri we have,

kd =

m∑
i=m−d+1

ri +

m−d∑
i=m−(d+(d

2))+1

ri +

m−(d+(d
2))∑

i=m−(d+(d
2)+(d

3))+1

ri

m−(d+(d
2)+(d

3))∑
i=1

ri

≥ d+ 2

(
d

2

)
+ 3

(
d

3

)
+ 4

(
m− d−

(
d

2

)
−
(
d

3

))
= 4m− 3d− 2

(
d

2

)
−
(
d

3

)
.

Hence, Statement (c) holds. 2

Proposition 4.2 The Kneser graphs with determining number 5 are K6:1, K8:2, K10:3, K11:3, K12:4,
K13:4, K13:5, K14:5, K15:5, K16:5, K14:6, K15:6, K16:6, K17:6, K16:7, K17:7, K18:7, K19:7, K17:8, K18:8,
K19:8, K20:8, K21:8, K19:9, K20:9, K21:9, K22:9, K21:10, K22:10, K23:10, K24:10, K23:11, K24:11, K25:11,
K26:11, K25:12, K26:12, K27:12, K27:13, K28:13, K29:14, and K31:15.
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k 6 7 8 9 10 11 12 13 14 15
n 13, 14, 15, 16, 16, 17, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28 30

15, 16 17, 18 19, 20 20, 21 22, 23 24, 25 26 27

Tab. 1: Values of n for k ≥ 6 for which Det(Kn+1:k) = 5.

Proof: Since every Kneser graph Kn+1:1 is isomorphic to the complete graph Kn+1 then only K6:1 has
determining number 5. Consider now the graph Kn+1:k with k ≥ 2 and suppose that Det(Kn+1:k) = 5.
By Lemma 2.4, there exists a k-regular simple hypergraph H with minimum order 5 and either n or
n + 1 edges. By Lemma 4.1 it follows that 2k ≤ n ≤ 31 and 2 ≤ k ≤ 16. Thus, we obtain a list of
196 candidate Kneser graphs to have determining number 5. When n ≥ k(k+1)

2 (which happens for 157
graphs among the 196) we can apply Theorems 2.6 and 2.7 obtaining that only K8:2, K10:3, K11:3, K12:4,
K13:4 and K16:5 have determining number 5.

Assume now that 2k ≤ n < k(k+1)
2 which implies that 4 ≤ k ≤ 16. When k = 4, the possible values

of n are 8 or 9 but they correspond to Kneser graphs with determining number 4 (see Proposition 14 of
Boutin (2006)). When k = 5, Lemma 4.1 gives 10 ≤ n ≤ 14. However for n equal to either 10 or
11, we obtain Kneser graphs already studied in Boutin (2006), whose determining numbers are equal to
4. The remaining values of n correspond to the Kneser graphs K13:5, K14:5 and K15:5 whose associated
hypergraphs with 5 vertices are illustrated in Figure 6.

(a) (b) (c)

Fig. 6: Hypergraphs associated to Kneser graphs with determining number 5: (a) K13:5, (b) K14:5, (c) K15:5.

Table 1 shows the values of n obtained for k ≥ 6 for which Det(Kn+1:k) = 5. In all the cases, it is easy
to construct the associated hypergraph. On the other hand, note that for k = 6 and n = 12 or k = 7 and
n = 14, the corresponding Kneser graph has determining number 4. For the remaining available values
of n and k, we use Statements (b) and (c) of Lemma 4.1 in order to show that the hypergraph H does not
exist and hence the determining number in those cases cannot be equal to 5. For instance, if k = 6 and
n = 18 then it is straightforward to check that Statement (b) of Lemma 4.1 does not hold when d = 5. 2
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5 Concluding Remarks
We have introduced a new technique to find determining sets and compute the determining number of
Kneser graphs. Concretely, we have shown that every subset S of vertices of Kn:k has an associated
k-regular hypergraph HS . The set S is a determining set if and only if HS is simple and has either n or
n− 1 edges.

Our main results use perfect matchings and Hamiltonian cycles in a complete graph to construct the
appropriate hypergraphs to obtain the determining number of all Kneser graphsKn:k with n ≥ k(k+1)

2 +1.
Also, we find all Kneser graphs Kn:k with k ≥ 2 and determining number n − k, answering a question
posed by Boutin (2006). Finally, as an application of our approach and following with the study developed
in Boutin (2006), we give all Kneser graphs with fixed determining number 5.

Figure 7 illustrates values of n and k for which Det(Kn:k) has been computed. The determining number
of Kn:k remains to be computed for the integer points (n, k) on the line n = 2k+ 1 with n 6= 2r − 1 and
those in between the line n = 2k + 1 and the curve n = k(k+1)

2 + 1. It appears that our technique should
be generalized to be applied for these points, constructing hypergraphs from other structures instead of
perfect matchings and Hamiltonian cycles in complete graphs.

Proposition 4.2 gives all Kneser graphs with determining number 5. As was said before, our method
can also be applied for determining number 2, 3 or 4 (see Propositions 12, 13 and 14 of Boutin (2006)).
We believe that our technique lets us go further to determining number 6 or larger, but the list of candidate
graphs increases rapidly and so a computational implementation would be required.

Fig. 7: The integer points (n, k) in the shadowed region correspond to values of n and k for which the determining
number is provided by Theorems 2.6 and 2.7. The squared points represent values (2r − 1, 2r−1 − 1) studied in
Boutin (2006).
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