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Abstract

We suggest an approach for the enumeration of minimal permuta-
tions having d descents which uses skew Young tableaux. We succeed
in finding a general expression for the number of such permutations in
terms of (several) sums of determinants. We then generalize the class
of skew Young tableaux under consideration; this allows in particular
to discover some presumably new results concerning Eulerian numbers.

1 Introduction

This article deals with minimal permutations with d descents (also called
d-minimal permutations here). This family of permutations has been intro-
duced in [BoRo] in the study of the whole genome duplication-random loss
model of genome rearrangement. In this context, genomes are represented
by permutations, and minimal permutations with d = 2p descents are the
basis of excluded patterns that describes the class of permutations that can
be obtained from the identity with cost at most p.

In order to describe properties of this class of permutations, its basis has
been studied, and the first natural question to address is to count how many
excluded patterns it contains. In [BP] some partial results on the enumera-
tion of minimal permutations with d descents have been obtained: namely,
minimal permutations with d descents and of size n have been enumerated
by closed formulas, for n = d+1, d+2 and 2d (d+1 and 2d being lower and
upper bounds for the size of a minimal permutation with d descents – see
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[BP]). In [MY], further results on the enumeration of minimal permutations
with d descents have been obtained using multivariate generating functions,
allowing in particular to derive a closed formula enumerating those of size
2d− 1 as well as some asymptotic results.

In this work we offer an alternative approach for the enumeration of
minimal permutations with d descents, making extensive use of a bijection
between these permutations and a family of skew Young tableaux. This
gives a general formula for the number pd+k,d of minimal permutations with
d descents and of size d+ k, as a sum of determinants of matrices (Theorem
4.2). This expression for k = d will specialize into a determinant expression
of Catalan numbers which is believed to be new. When specializing it for
k = 3, it also allows us to give a closed formula for pd+3,d (Theorem 4.4).
Finally, the family of skew Young tableaux under consideration has a natural
generalization which is investigated in Section 5.

2 Preliminary definitions and results

For any integer n, Sn denotes the set of permutations of [1..n]. A per-
mutation σ ∈ Sn will be represented either by the word σ(1) . . . σ(n) or by
the n× n grid, where a cell contains a dot if and only if it is at coordinates
(i, σ(i)) for some i ∈ [1..n].

The pattern involvement order on permutations [P] is defined as follows.
A permutation π ∈ Sk is involved in (or is a pattern of) σ ∈ Sn when there
exist integers 1 ≤ i1 < . . . < ik ≤ n such that π and σ(i1) . . . σ(ik) are order-
isomorphic sequences, i.e. they are such that π(ℓ) < π(m) ⇔ σ(iℓ) < σ(im)
for all ℓ,m ∈ [1..k].

A descent in a permutation σ ∈ Sn is an integer i ∈ [1..(n − 1)] such
that σ(i) > σ(i + 1). Similarly, an ascent is an integer i ∈ [1..(n − 1)] such
that σ(i) < σ(i+ 1).

A minimal permutation with d descents, or d-minimal permutation, of
length n is a permutation of Sn that is minimal in the sense of the pattern-
involvement relation for the property of having d descents. In other words, it
is a permutation with d descents such that, when removing any of its entries
and suitably renaming the remaining elements, the resulting permutation
of Sn−1 has d − 1 descents. For instance (see Figure 1), the permutation
σ = 1412 9 3 13 5 15 10 6 2 1 11 8 7 4 is minimal with 11 descents, as it has
exactly 11 descents and every permutation it involves as a pattern has at
most 10 descents.

In [BP], minimal permutations with d descents have been characterized
as follows:

Theorem 2.1 A permutation σ is minimal with d descents if and only if
it has exactly d descents and its ascents i satisfy the “ diamond property”,
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Figure 1: The 11-minimal permutation σ = 1412 9 3 13 5 15 10 6 2 1 11 8 7 4,
and the corresponding poset.

i.e. are such that 2 ≤ i ≤ n − 2 and σ(i − 1)σ(i)σ(i + 1)σ(i + 2) forms an
occurrence of either the pattern 2143 or the pattern 3142.

As explained in [BP], this characterization allows to represent d-minimal
permutations by means of certain labelled posets. These posets, labelled with
the integers from 1 to n, are made of chains somehow linked by diamond-
shaped structures (corresponding to the ascents of the permutation). Figure
1 shows an example of this one-to-one correspondence. Notice that each of
these labelled posets represents a unique d-minimal permutation, whereas
the underlying unlabelled poset can be seen as representing a set of d-
minimal permutations (those that are in correspondence with a legal la-
belling of the poset).

Posets and labelled posets in these families are in one-to-one correspon-
dence with skew Ferrers diagrams and skew Young tableaux having special
properties. These combinatorial objects have been widely studied in the lit-
erature, in particular from an enumerative point of view (see, for instance,
the recent paper [BaRo]). In the following sections, we explicitly describe the
correspondence between unlabelled (resp. labelled) posets and skew Ferrers
diagrams (resp. skew Young tableaux), as well as some enumerative results
on these objects, and how they can be used for our purposes.

3 Connection with skew Young tableaux

In order to explain how the poset representation of d-minimal permu-
tations described in the previous section can be conveniently interpreted by
using skew Young tableaux, we first need to recall some definitions.
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An integer partition of an integer n is a sequence of positive integers
λ = (λ1, . . . , λk) such that λi ≥ λi+1 for 1 ≤ i ≤ k−1 and

∑k
i=1 λi = n. The

integer n is called the size of the integer partition, and we write n = |λ|.
The number of parts k will be denoted by k = ℓ(λ) (this is also called the
length of λ).

An integer partition λ = (λ1, . . . , λk) can be represented by its Ferrers
diagram, which is obtained by drawing k rows of contiguous unit cells, from
top to bottom, such that row i contains λi cells, and with the first cells of
these k rows vertically aligned. An example is shown in Figure 2. We will
also denote by λ the Ferrers diagram associated with the integer partition
λ. The size |λ| obviously corresponds to the number of cells of the Ferrers
diagram, and the number of rows is given by ℓ(λ).

For our purposes, a Young tableau is a filling of a Ferrers diagram λ

using distinct positive integers from 1 to n = |λ|, with the properties that the
values are (strictly) decreasing along each row and each column of the Ferrers
shape. This constitutes a slight departure from the classical definition, which
requires the word “increasing” instead of the word “decreasing”. However,
it is clear that all the properties and results on (classical) Young tableaux
can be translated into our setting by simply replacing the total order “≤”
with the total order “≥” on N. In Figure 2 a Young tableau of shape λ =
(8, 6, 3, 3, 2, 1) is shown. Like for Ferrers diagrams, the size of a Young tableau
is given by the number of its cells.

23 22 21 19 16 12 9 5

20 17 13 8 4 1

18 14 6

15 10 3

11 2

7

Figure 2: The Ferrers diagram associated with the integer partition λ =
(8, 6, 3, 3, 2, 1), and a Young tableau on this shape.

The main definition we need in our work is that of a skew Young tableau.
The definition can be given exactly as for a Young tableau, with the only
difference that the underlying shape consists of a Ferrers diagram λ with
a Ferrers diagram µ removed (starting from the top-left corner). Such a
skew shape is usually denoted λ \ µ. We refer the reader to [St1] for the
formal definition and some important facts concerning the enumeration of
skew Young tableaux. In Figure 3 a skew Young tableau of skew shape
(8, 6, 3, 3, 2, 1) \ (3, 2, 2, 1) is depicted. As before, the size of a skew Young
tableau denotes its number of cells.

4



14 11 6 4 2

15 12 9 5

13

8 3

10 7

1

Figure 3: The skew shape (8, 6, 3, 3, 2, 1) \ (3, 2, 2, 1), and a skew Young
tableau on this shape.

As announced at the beginning of the present section, we can translate
the poset representation of a d-minimal permutation into a suitable skew
Young tableaux.

Proposition 3.1 The set of d-minimal permutations of length d + k is in
bijection with the set of skew Young tableaux whose skew shapes λ\µ satisfy
|λ \ µ| = d + k, having k rows and such that two consecutive rows have
precisely two columns in common.

Proof. A d-minimal permutation of length d+k consists of k descending
runs and, denoting with a, b, c, d four consecutive elements such that a, b and
c, d belong to different descending runs, then necessarily a > b, c > d, a < c

and b < d (see Theorem 2.1). Then, starting from a d-minimal permutation
π of length d+k, one can construct a skew Young tableau as follows: starting
from the bottom, the i-th row of the tableau consists of the elements of the
i-th descending run of π; moreover two consecutive rows are required to
have exactly two columns in common. The resulting tableau is skew Young
thanks to the above recalled diamond property of d-minimal permutations.

�

In Figure 4 the skew Young tableau determined by the permutation
whose poset representation is given in Figure 1 is shown.

Example. For k = 2 and d = 4, the set of 4-minimal permutations of
length 6 is in bijection with the set consisting of all skew Young tableaux of
one of the following skew shapes:

• (4, 2) \ ∅, i.e. ,

• (4, 3) \ (1), i.e. ,

• (4, 4) \ (2), i.e. .
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Figure 4: The skew shape corresponding to the underlying unlabelled poset
of Figure 1, and the skew Young tableau corresponding to the permutation
σ of Figure 1.

There are respectively 9, 14 and 9 skew Young tableaux of these shapes,
giving a total of 32 4-minimal permutations of length 6.

Remarks. Let π be a d-minimal permutation and suppose it has k

descending runs. Obviously this means that π has k − 1 ascents and that
|π| = d + k. Moreover, suppose that λ \ µ is the skew shape associated
with π. Recall that ℓ(λ) and ℓ(µ) denote the number of rows of λ and µ

respectively. Finally, let ℓi be the length of the i-th descending run of π.
Some straightforward consequences of the above bijection are the following:

1. The skew shape associated with π is connected.

2. ℓ(λ) = k.

3. Set λ = (λ1, λ2, . . . λk). Then λi =
∑k−i+1

j=1 ℓj − 2(k − i).

4. ℓ(µ) < ℓ(λ) and, more precisely, ℓ(µ) = (ℓ(λ) − 1) −
#(starting descending runs of length 2 in π).

5. Set µ = (µ1, µ2, . . . µk). Then µi = λi+1 − 2.

4 Some enumerative results

The main goal of the present section is to enumerate d-minimal permu-
tations of length n, with d+1 ≤ n ≤ 2d. A general result in this direction can
be obtained by considering the above described bijection with skew Young
tableaux. In particular, an interesting result due to Aitken is our starting
point.

Theorem 4.1 ([A]) Let λ\µ be a skew shape, with |λ\µ| = N and ℓ(λ) = n.
Then, the number fλ\µ of skew Young tableaux of shape λ \ µ is

fλ\µ = N ! det

(

1

(λi − µj − i+ j)!

)

i,j=1..n

. (1)
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Formula (1) can be deduced from the well known Jacobi-Trudi identity,
as shown, for instance, in [St2]. Moreover, in such a formula the entry (i, j)
of the considered matrix is intended to be 0 if the expression λi − µj − i+ j

is negative.
The main result of this section is essentially a corollary of Theorem 4.1,

in the case in which the skew shape λ \ µ has the properties of Proposition
3.1.

Theorem 4.2 Denote by pd+k,d the number of d-minimal permutations of
length d+ k (so that 1 ≤ k ≤ d). Then

pd+k,d =
∑

a1,a2,...,ak≥2
a1+a2+···+ak=d+k

(d+ k)! · det(A(a1, . . . , ak)),

where A(a1, . . . , ak) is the following matrix:

















































1
a1!

1
(a1+a2−1)!

1
(a1+a2+a3−2)! · · · · · · · · · 1

(a1+···+ak−k+1)!

1 1
a2!

1
(a2+a3−1)! · · · · · · · · · 1

(a2+···+ak−k+2)!

χa2=2 1 1
a3!

. . .
...

0 χa3=2 1
. . .

...

0 0 χa4=2
. . .

...
...

. . . 0
. . .

...
...

. . .
...

... 1
(ak−2+ak−1+ak−2)!

...
. . .

. . .
. . .

. . . 1
(ak−1+ak−1)!

0 · · · · · · 0 χak−1=2 1 1
ak!

















































.

Here χP denotes the characteristic function of the property P (i.e., χP = 1
when P is true and χP = 0 otherwise). In other words, A(a1, . . . , ak) is the
k × k matrix whose entries ai,j obey the following equalities:

ai,j =
1

(ai + · · ·+ aj + i− j)!
, when i ≤ j,

ai,i−1 = 1,

ai,i−2 = χai−1=2,

ai,j = 0, when i > j + 2.

Proof. Theorem 4.1 ensures that

pd+k,d =
∑

λ\µ

(d+ k)! det

(

1

(λi − µj − i+ j)!

)

7



where the sum is over all skew shapes λ \ µ of size d+ k having k rows and
such that two consecutive rows have exactly two columns in common.

For such a skew shape λ\µ, let us define the sequence a = (a1, a2, . . . , ak)
by ai = λi−µi, 1 ≤ i ≤ k. The sequence a is such that a1, a2, . . . , ak ≥ 2 and
a1+a2+· · ·+ak = d+k. From the remark at the end of the previous section,
we additionally have that µk = 0 (point 4.) and that µi = λi+1 − 2 for all
1 ≤ i ≤ k − 1 (point 5.). It is now trivial matter to check that the sequence
a = (a1, a2, . . . , ak) completely and uniquely determines λ \ µ. Hence, the
sum in the above formula can be taken over sequences a = (a1, a2, . . . , ak)
such that a1, a2, . . . , ak ≥ 2 and a1 + a2 + · · ·+ ak = d+ k.

In what follows, we give expressions of the entries ai,j =
1

(λi−µj−i+j)! in

terms of (a1, a2, . . . , ak).
If i ≤ j, then, by Theorem 4.1, ai,j = 1

(λi−µj−i+j)! . Thanks to the re-

marks stated at the end of the previous section, we have that:

ai+ai+1+. . .+aj = (λi−µi)+(λi+1−µi+1)+. . . (λj−µj) = λi−µj+2(j−i).

This yields for the denominator of the above fraction the following ex-
pression (leaving aside the factorial):

λi − µj − i+ j = ai + ai+1 + . . .+ aj + i− j,

as desired.
If j = i− 1, then we have immediately:

ai,i−1 =
1

(λi − µi−1 − 1)!
=

1

(2− 1)!
= 1.

Concerning the case j = i − 2, since µi−1 = λi − 2 and µi−2 ≥ µi−1,
we observe that λi − µi−2 ≤ 2, and that the equality holds precisely when
µi−1 = µi−2, i.e. when ai = λi−1 − µi−1 = 2. Thus we get:

ai,i−2 =
1

(λi − µi−2 − i+ i− 2)!
= χai−1=2.

Finally, if i > j + 2, then the denominator of ai,j is easily seen to be
negative, hence ai,j = 0. �

From a theoretical point of view, Theorem 4.2 completely solves the
problem of the enumeration of d-minimal permutations with respect to their
length, giving a formula for pd+k,d. Unfortunately, it is clear that such a
formula is very difficult to use in concrete cases, due to its intrinsic com-
plexity. However, using our result we are able to rediscover some known
cases (namely k = 1, 2) and to give an interpretation of Catalan numbers
(corresponding to the case k = d), as well as to get a formula for the case
k = 3 (that is, d-minimal permutations of length d + 3), which was first
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discovered in [MY] with different methods in terms of generating functions.
The formula we derive has been found with the help of Maple.

We start by collecting in a single theorem the known cases d = 1, 2,
showing how they can be derived from Theorem 4.2.

Theorem 4.3 ([BP]) The following equalities hold:

pd+1,d = 1,

pd+2,d = 2d+2 − (d+ 1)(d+ 2)− 2.

Proof. When k = 1, the formula of Theorem 4.2 becomes completely
trivial:

pd+1,d = (d+ 1)! ·

∣

∣

∣

∣

1

(d+ 1)!

∣

∣

∣

∣

= 1.

In the case k = 2, we have a single sum where a 2 × 2 determinant
appears:

pd+2,d =
∑

a1,a2≥2
a1+a2=d+2

(d+ 2)! ·

∣

∣

∣

∣

∣

1
a1!

1
(d+1)!

1 1
a2!

∣

∣

∣

∣

∣

=

d
∑

a=2

((

d+ 2

a

)

− (d+ 2)

)

= 2d+2 − 2(d + 3)− (d− 1)(d + 2) = 2d+2 − 2− (d+ 1)(d + 2).

�

If k = d, the formula of Theorem 4.2 gives an evaluation of Catalan
numbers (Cn)n∈N. The fact that p2d,d is the d-th Catalan number is clear
from Proposition 3.1, since d-minimal permutations are in bijection with
Young tableaux of rectangular shape having d rows and 2 columns (see
[St2]). Another combinatorial proof of this fact is given in [BP]. Thus we get
the following expression for Catalan numbers, which we have not been able
to find in the literature:

Cd = p2d,d = (2d)! ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
2!

1
3!

1
4!

1
5!

1
6! · · · 1

(d+1)!

1 1
2!

1
3!

1
4!

1
5! · · · 1

d!
1 1 1

2!
1
3!

1
4! · · · 1

(d−1)!

0 1 1 1
2!

1
3! · · · 1

(d−2)!

0 0 1 1 1
2! · · · 1

(d−3)!
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 1
2!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We close the section with the evaluation of pd+3,d. As we stated above,
to compute this value we have made extensive use of Maple.
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Theorem 4.4 The following equality holds:

pd+3,d = 3d+3 − (d2 + 4d+ 7) · 2d+2 +
1

2
d4 +

5

2
d3 +

33

4
d2 + 6d− 8.

Proof. We just have to apply Theorem 4.2 in the case k = 3, thus
obtaining:

pd+3,d =
∑

a,b,c≥2
a+b+c=d+3

(d+ 3)! ·

∣

∣

∣

∣

∣

∣

∣

1
a!

1
(a+b−1)!

1
(d+1)!

1 1
b!

1
(b+c−1)!

χb=2 1 1
c!

∣

∣

∣

∣

∣

∣

∣

. (2)

The presence of the characteristic function χb=2 suggests to consider
two distinct cases.

i) In Formula (2), the partial sum for the tuples (a, b, c) such that b = 2
is:

∑

a,c≥2
a+c=d+1

(d+ 3)! ·

∣

∣

∣

∣

∣

∣

∣

1
a!

1
(a+1)!

1
(d+1)!

1 1
2

1
(c+1)!

1 1 1
c!

∣

∣

∣

∣

∣

∣

∣

=

d−1
∑

a=2

(d+ 3)! ·

∣

∣

∣

∣

∣

∣

∣

1
a!

1
(a+1)!

1
(d+1)!

1 1
2

1
(d+2−a)!

1 1 1
(d+1−a)!

∣

∣

∣

∣

∣

∣

∣

=
d−1
∑

a=2

((

d+ 3

a, 2, d + 1− a

)

+

(

d+ 3

a+ 1

)

+ (d+ 2)(d + 3)+

−
1

2
(d+ 2)(d+ 3)− (d+ 3)

(

d+ 2

a

)

− (d+ 3)

(

d+ 2

a+ 1

))

=

d−1
∑

a=2

(

(d+ 2)(d + 3)

2

(

d+ 1

a

)

+
1

2
(d+ 2)(d + 3)− (d+ 2)

(

d+ 3

a+ 1

))

=

(

d+ 3

2

)

(2d+1 − d− 6)− (d+ 2)(2d+3 − d2 − 7d− 14). (3)

ii) The partial sum for the tuples (a, b, c) such that b 6= 2 is a bit more
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complicated to compute but gives the following:

∑

a,c≥2,b>2
a+b+c=d+3

(d+ 3)! ·

∣

∣

∣

∣

∣

∣

∣

1
a!

1
(a+b−1)!

1
(d+1)!

1 1
b!

1
(b+c−1)!

0 1 1
c!

∣

∣

∣

∣

∣

∣

∣

=
∑

a,c≥2,b>2
a+b+c=d+3

((

d+ 3

a, b, c

)

+ (d+ 2)(d + 3)− (d+ 3)

(

d+ 2

a

)

− (d+ 3)

(

d+ 2

c

))

=

d−2
∑

a=2

d−a
∑

c=2

(

d+ 3

a, d+ 3− a− c, c

)

+

d−2
∑

a=2

d−a
∑

c=2

(d+ 2)(d + 3)

−
d−2
∑

a=2

d−a
∑

c=2

(d+ 3)

(

d+ 2

a

)

−
d−2
∑

a=2

d−a
∑

c=2

(d+ 3)

(

d+ 2

c

)

= α+ β − 2γ, (4)

if we set

α =
d−2
∑

a=2

d−a
∑

c=2

(

d+ 3

a, d+ 3− a− c, c

)

, β =
d−2
∑

a=2

d−a
∑

c=2

(d+ 2)(d + 3)

and γ =

d−2
∑

a=2

d−a
∑

c=2

(d+ 3)

(

d+ 2

a

)

.

We compute the two terms α and γ using Maple:

α = 3d+3 − (d+ 11)(d + 6) · 2d + (d3 + 10d2 + 37d+ 51)

γ = (d2 − d− 12) · 2d+1 −

(

1

2
d3 − d2 −

41

2
d− 39

)

.

Instead, the term β is of course very easy to compute directly:

β = (d+ 2)(d + 3)
(d− 3)(d − 2)

2
=

(d2 − 4)(d2 − 9)

2
.

Thus using Formula (4) we get:

∑

a,c≥2,b>2
a+b+c=d+3

(d+ 3)! ·

∣

∣

∣

∣

∣

∣

∣

1
a!

1
(a+b−1)!

1
(d+1)!

1 1
b!

1
(b+c−1)!

0 1 1
c!

∣

∣

∣

∣

∣

∣

∣

= 3d+3 − (5d2 + 13d + 18) · 2d +

(

1

2
d4 + 2d3 +

3

2
d2 − 4d− 9

)

.(5)
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Now, to finish the proof of our theorem, we just have to sum the result
of (3) and (5), thus obtaining:

pd+3,d = 3d+3 − (d2 + 4d+ 7) · 2d+2 +
1

2
d4 +

5

2
d3 + 5d2 + 6d+ 1.

�

Table 1 shows the first few terms of the sequence (pd+3,3)d.

d 3 4 5 6 7 8 9

pd+3,3 5 84 686 3936 18387 75372 283052

Table 1: The first few terms of the sequence (pd+3,3)d

5 A generalization

The main motivation of the present paper is the study of d-minimal
permutations and, in particular, their enumeration. Our approach is based
on a bijection between the set of d-minimal permutations and a special class
of skew Young tableaux, namely those in which every pair of consecutive
rows has precisely two columns in common. Denote by SkY T2(n, k) this
set of tableaux, n being the number of cells and k the number of rows.
We can generalize this setting in a very natural way, by defining the set
SkY Th(n, k) of skew Young tableaux having n cells and k rows such that any
two consecutive rows have precisely h ≥ 1 columns in common. In this final
section we wish to relate these tableaux with some families of permutations,
as well as to describe some enumerative results for low values of h.

Our first result is a generalization of Theorem 3.1.

Theorem 5.1 The set SkY Th(d+k, k) is in bijection with the set of permu-
tations of length d+ k having exactly d descents and satisfying the following
property (call it DESh):

DESh











for every i ≤ h− 1, if one deletes i elements of a permutation

and renames the remaining elements in the usual way,

the resulting permutation has precisely d− i descents.

Proof. Denote with S
(h)
d+k(d) the set of permutations of length d+k hav-

ing precisely d descents and satisfying DESh. Define a map f : S
(h)
d+k(d) →

SkY Th(d + k, k) by suitably generalizing the one given in Proposition 3.1:
starting from the bottom, the i-th row of the tableau consists of the elements
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of the i-th descending run of π, and two consecutive rows are required to
have exactly h columns in common. We claim that this map is well-defined.
Indeed suppose, ab absurdo, that in f(π) there is a column in which a is
above b and a < b. Without loss of generality, we can assume that a is in the
cell immediately above b. Then, removing the h− 1 entries of π preceding a

and following b and belonging to the columns common to the rows of a and
b, we obtain a permutation not satisfying DESh (the number of descents is
easily seen to be d−h+2), as shown on Figure 5. The fact that f is injective
and surjective is trivial, and follows directly from its definition. �

b

a

h cells

h− 1 points

b

a

Figure 5: Proof of Theorem 5.1. The gray area corresponds to the h − 1
points removed in the proof.

It is clear that, when h = 2, we get precisely Theorem 3.1, since the
resulting class of permutations is that of d-minimal permutations.

We also have a characterization of the above classes of permutations in
terms of patterns, which follows quite easily from the above theorem, and
so will be stated without proof.

Theorem 5.2 A permutation σ belongs to S
(h)
d+k(d), for some k, if and only

if it has exactly d descents and its ascents occur in the middle of a consecutive
pattern of the form π = π1π2, where π1 and π2 are words of the same length
h, both decreasing and π1 < π2 componentwise.

Having introduced this generalized setting, it is natural to ask what
happens when h < 2.

If h = 1, what we obtain is the class of permutations having exactly
d descents. It is well known that the number of permutations of length n

having d descents is given by the Eulerian number En,d (sequence A008292 in
[Sl]). Thanks to our approach, we find a determinant expression of Eulerian
numbers which is believed to be new. Once again, the key ingredient to
obtain such a formula is of course Theorem 4.1.

13



Theorem 5.3 The number Ed+k,d of permutations of length d + k having
exactly d descents (i.e. satisfying condition DES1) is

Ed+k,d =
∑

a1,a2,...,ak≥1
a1+a2+···+ak=d+k

(d+ k)! · det(B(a1, . . . , ak)),

where B(a1, . . . , ak) is the following matrix:























1
a1!

1
(a1+a2)!

1
(a1+a2+a3)!

· · · 1
(a1+···+ak−1)!

1
(a1+···+ak)!

1 1
a2!

1
(a2+a3)!

· · · 1
(a2+···+ak−1)!

1
(a2+···+ak)!

0 1 1
a3!

· · · 1
(a3+···+ak−1)!

1
(a3+···+ak)!

...
... 1

. . .
...

...

0 0 · · ·
. . . 1

ak−1!
1

(ak−1+ak)!

0 0 0 · · · 1 1
ak !























.

In other words, B(a1, . . . , ak) is the k× k matrix whose entries bi,j obey
the following equalities:

ai,j =
1

(ai + · · ·+ aj)!
, when i ≤ j,

ai,i−1 = 1,

ai,j = 0, when i ≥ j + 2.

Proof. The proof essentially follows the same lines of the proof of The-
orem 4.2; just observe that, in this case, it is λi+1 − µi = 1. �

Moreover, the determinant of the matrix B(a1, . . . , ak) has a very neat
recursive expression, from which a closed formula can be deduced.

Proposition 5.1 Set D(a1, . . . , ak) = det(B(a1, . . . , ak)). Then

D(a1, a2, . . . , ak) =
1

a1!
·D(a2, a3, . . . , ak)−D(a1 + a2, a3, . . . , ak).

Proof. Just expand D(a1, . . . , ak) with respect to its first column. �

Corollary 5.1 The following formula holds:

D(a1, . . . , ak) =
k

∑

i=1

(−1)k−i ·
∑

α=(α1,...,αi)
α∈PL(a1,··· ,ak)

1

|α1|! · . . . · |αi|!
, (6)

where PL(a1, · · · , ak) denotes the set of linear partitions of the totally or-
dered set {a1, . . . , ak} and |αi| is the sum of the elements of the block αi.
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Proof. We start by observing that, when k = 1, the outer sum of the
r.h.s of (6) reduces to a single summand (for i = 1), as well as the inner
sum, which has the unique summand 1

a1!
. Moreover, when k = 2, the r.h.s.

of (6) consists of two summands, which are (−1) · 1
(a1+a2)!

(for i = 1) and
1
a1!

· 1
a2!

(for i = 2), and this coincides with the expression of D(a1, a2).
We can now conclude our proof using an inductive argument. The set

PL(a1, · · · , ak) can be partitioned into two subsets, namely the linear par-
titions in which a1 occurs as a singleton (call this subset X) and the linear
partitions in which a1 occurs in a block of cardinality at least 2 (call this
subset Y ). Using this partition of PL(a1, · · · , ak) we can split the sum in
the r.h.s of (6) into two sums, the first taking into account the contribution
of X and the second taking into account the contribution of Y . We thus
obtain the following equalities:

∑

α=(α1,...,αi)
α∈PL(a1,··· ,ak)

1

|α1|! · . . . · |αi|!
=

1

a1!
·

∑

β=(β1,...,βj)

β∈PL(a2,··· ,ak)

1

|β1|! · . . . · |βj |!

+
∑

γ=(γ1,...,γt)
γ∈PL({a1,a2},a3,··· ,ak)

1

|γ1|! · . . . · |γt|!
,

whence, using the induction hypothesis and the above proposition:

k
∑

i=1

(−1)k−i ·
∑

α=(α1,...,αi)

α∈PL(a1,··· ,ak)

1

|α1|! · . . . · |αi|!

=
1

a1!
·D(a2, . . . , ak)−D(a1 + a2, a3, . . . , ak) = D(a1, . . . , ak),

as desired. �

Remark. An alternative approach to the case h = 1 could be done via
the notion of Hessenberg matrix. An (upper) Hessenberg matrix is a square
matrix having zero entries below the first subdiagonal. Hessenberg matrices
prove their usefulness especially in numerical analysis and computer pro-
gramming, being a sort of normal form to which any square matrix can be
reduced in a finite number of steps. There are also some papers in the lit-
erature concerning the evaluation of the determinant of certain Hessenberg
matrices having special form (see for instance [BS] and [LCT]). In [T], the
determinant of Hessenberg matrices having all the elements of the first sub-
diagonal equal to 1 is considered (this is precisely the kind of matrices we
meet in Theorem 5.3).

Theorem 5.1 does not have meaning when h = 0. The corresponding set
SkY T0(n, k) consists of all skew Young tableaux having n cells and k rows
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such that any two consecutive rows only have the corners of two cells in
common. In this case, it is immediate to see that SkY T0(n, k) is in bijection
with all surjective functions from an n-set to a k-set: just interpret the
elements of a tableau as balls and the rows of a tableau as boxes. Thus we
get immediately that |SkY T0(n, k)| = k! · S(n, k), where the S(n, k)’s are
the Stirling numbers of the second kind. We can also use Theorem 4.1 to
get an analog of Theorems 4.2 and 5.3; indeed, we can derive the following
formula:

|SkY T0(d+ k, k)| =
∑

a1,a2,...,ak≥1
a1+a2+···+ak=d+k

(d+ k)! · det(C(a1, . . . , ak)),

where C(a1, . . . , ak) is the following triangular matrix:





















1
a1!

1
(a1+a2+1)!

1
(a1+a2+a3+2)! · · · 1

(a1+···+ak−1+k−2)!
1

(a1+···+ak+k−1)!

0 1
a2!

1
(a2+a3+1)! · · · 1

(a2+···+ak−1+k−3)!
1

(a2+···+ak+k−2)!

0 0 1
a3!

· · · 1
(a3+···+ak−1+k−4)!

1
(a3+···+ak+k−3)!

...
...

. . .
. . .

...
...

0 0 · · · 0 1
ak−1!

1
(ak−1+ak+1)!

0 0 0 · · · 0 1
ak !





















.

From here it is then immediate to obtain |SkY T0(d + k, k)| =
∑

a1,a2,...,ak≥1
a1+a2+···+ak=d+k

(

d+k
a1,...ak

)

which is known to be the number of surjective

functions from an (d+ k)-set to a k-set, as already shown a few lines above.

6 Further work

Even if our approach to the enumeration of d-minimal permutations
allows us to completely solve the problem from a purely theoretical point
of view, it is doubtless that its application to concrete cases shows some
technical difficulties. This is of course due to the intrinsic complexity of the
sums of determinants appearing in Theorem 4.2. However, it seems plausible
that at least a few more cases than those we deal with in the present paper
can be managed by means of our technique.

Another interesting problem that remains untouched concerns the study
of the structure of the poset determined by a minimal permutations with d

descents, defined in [BP] and recalled in Section 2 here. For instance, one can
observe that a d-minimal permutation corresponds to a linear extension of
the associated poset. Moreover, an interesting (and classical) line of research
could be the investigation of the properties of the distributive lattice of the
sup-irreducibles of these posets.
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