McKay Centralizer Algebras

Georgia Benkart^{1†} and Tom Halverson^{2‡}

¹University of Wisconsin – Madison, Madison, WI 53706 USA ²Macalester College, Saint Paul, MN 55105 USA

Abstract. For a finite subgroup G of the special unitary group SU_2 , we study the centralizer algebra $Z_k(G) = End_G(V^{\otimes k})$ of G acting on the *k*-fold tensor product of its defining representation $V = \mathbb{C}^2$. The McKay correspondence relates the representation theory of these groups to an associated affine Dynkin diagram, and we use this connection to study the structure and representation theory of $Z_k(G)$ via the combinatorics of the Dynkin diagram. When G equals the binary tetrahedral, octahedral, or icosahedral group, we exhibit remarkable connections between $Z_k(G)$ and the Martin-Jones set partition algebras.

Résumé. Pour un sous-groupe fini G du groupe unitaire spéciale SU₂, nous étudions la centralisateur algébre $Z_k(G) = End_G(V^{\otimes k})$ de G agissant sur le produit *k*-fold de tenseur de sa représentation définissant $V = \mathbb{C}^2$. La correspondance de McKay concerne la théorie des représentations de ces groupes á une associé Dynkin diagramme, et nous utiliser cette connexion pour étudier la structure et la théorie des représentations de $Z_k(G)$ par l'intermédiaire de la combinatoire du diagramme de Dynkin. Quand G est égale à la groupe tétraédrique binaire, octaédre binaire, ou icosaédrique binaire, nous exhibons connexions remarquables entre $Z_k(G)$ et les algébres de partitions de Martin-Jones.

Keywords. Schur-Weyl duality, McKay correspondence, partition algebra, Temperley-Lieb algebra, Dyck paths

1 Introduction

In 1980, John McKay [13] discovered that there is a natural one-to-one correspondence between the finite subgroups of the special unitary group SU₂ and the simply-laced affine Dynkin diagrams. Let $V = \mathbb{C}^2$ be the defining representation of SU₂, and let G be a finite subgroup of SU₂ with irreducible modules $G^{\lambda}, \lambda \in \Lambda(G)$. The representation graph $\mathcal{R}_V(G)$ (also known as the McKay graph or McKay quiver) has vertices indexed by the $\lambda \in \Lambda(G)$ and $a_{\lambda,\mu}$ edges from λ to μ if G^{μ} occurs in $G^{\lambda} \otimes V$ with multiplicity $a_{\lambda,\mu}$. Almost a century earlier, Felix Klein had determined that a finite subgroup of SU₂ must be one of the following: (a) a cyclic group \mathbb{C}_n of order n, (b) a binary dihedral group \mathbb{D}_n of order 4n, or (c) one of the 3 exceptional groups: the binary tetrahedral group \mathbb{T} of order 24, the binary octahedral group \mathbb{O} of order 48, or the binary icosahedral group \mathbb{I} of order 120. McKay's observation was that the representation graph of \mathbb{C}_n , \mathbb{D}_n , \mathbb{T} , \mathbb{O} , \mathbb{I} corresponds exactly to the affine Dynkin diagram $\hat{\lambda}_{n-1}$, $\hat{\mathbb{D}}_{n+2}$, $\hat{\mathbb{E}}_6$, $\hat{\mathbb{E}}_7$, $\hat{\mathbb{E}}_8$.

[†]Email: benkart@math.wisc.edu. G. Benkart is grateful to the Simons Foundation for the support she received as a Simons Visiting Professor at MSRI.

[‡]Email: halverson@macalester.edu. T. Halverson was partially supported by National Science Foundation grant DMS-0800085 and partially supported by Simons Foundation grant 283311.

^{1365-8050 (}c) 2016 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

In the papers [1], [2], [7], we examine the McKay correspondence from the point of view of Schur-Weyl duality. Since the McKay graph provides a way to encode the rules for tensoring by V, it is natural to consider the *k*-fold tensor product module $V^{\otimes k}$ and to study the centralizer algebra $Z_k(G) = \text{End}_G(V^{\otimes k})$ of endomorphisms that commute with the action of G on $V^{\otimes k}$. The algebra $Z_k(G)$ provides essential information about the structure of $V^{\otimes k}$ as a G-module, as the projection maps from $V^{\otimes k}$ onto its irreducible G-summands are idempotents in $Z_k(G)$, and the multiplicity of G^{λ} in $V^{\otimes k}$ is the dimension of the $Z_k(G)$ -irreducible module corresponding to λ .

The main points of this article are:

- The irreducible $Z_k(G)$ -modules are labeled by vertices of the representation graph $\mathcal{R}_V(G)$.
- The dimension of the $Z_k(G)$ -module labeled by λ is the number of k-walks from 0 to λ on $\mathcal{R}_V(G)$.
- The dimension of $Z_k(G)$ equals the number of 2k-walks on $\mathcal{R}_V(G)$ starting and ending at 0.
- Z_k(G) has generators corresponding to the nodes in R_V(G), as well as generators corresponding to each embedding Z_i(G) ⊆ Z_{i+1}(G), and the relations are determined by the R_V(G) edge structure.
- $Z_k(G)$ has a basis of words in these generators that correspond to 2k-walks on $\mathcal{R}_V(G)$.
- When G is one of the exceptional groups T, O, I, the centralizer Z_k(G) can be described using the Martin-Jones partition algebras and their analogs.
- New formulas for the dimensions of the irreducible representations of partition algebras are given.

When G is a subgroup of SU₂, the centralizer algebras satisfy the reverse inclusion $Z_k(SU_2) \subseteq Z_k(G)$. It is well known that $Z_k(SU_2)$ is isomorphic to the Temperley-Lieb algebra $TL_k(2)$. Thus, the centralizer algebras constructed here all contain a Temperley-Lieb subalgebra. The dimension of $TL_k(2)$ is the Catalan number $\mathcal{C}_k = \frac{1}{k+1} {\binom{2k}{k}}$, which counts walks of 2k steps that begin and end at 0 on the representation graph of SU₂, i.e. the Dynkin diagram $A_{+\infty}$. In this case, the walks correspond to Dyck paths.

2 McKay Centralizer Algebras

The special unitary group SU_2 is the group of 2×2 complex matrices $\begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix}$ satisfying $\alpha \bar{\alpha} + \beta \bar{\beta} = 1$. For each $r \ge 0$, SU_2 has an irreducible module V(r) of dimension r + 1. The module $V = V(1) = \mathbb{C}^2$ with basis $v_{-1} = (1,0)^t$, $v_1 = (0,1)^t$ corresponds to the natural two-dimensional representation on which SU_2 acts by matrix multiplication. These modules satisfy the Clebsch-Gordan formula,

$$\mathsf{V}(r) \otimes \mathsf{V} = \mathsf{V}(r-1) \oplus \mathsf{V}(r+1), \tag{1}$$

where V(-1) = 0. The representation graph $\mathcal{R}_V(SU_2)$ is the infinite graph shown in Figure 1.

Now let G be a subgroup of SU₂. Then G acts on the natural two-dimensional representation $V = \mathbb{C}^2$ by restriction. Let { $G^{\lambda} \mid \lambda \in \Lambda(G)$ } denote a complete set of pairwise non-isomorphic irreducible finitedimensional G-modules occurring in some $V^{\otimes k}$ for k = 0, 1, ... By convention $V^{\otimes 0} = G^{(0)}$ is the trivial G-module. The *representation graph* $\mathcal{R}_V(G)$ is the graph with vertices labeled by elements of $\Lambda(G)$ with $a_{\lambda,\mu}$ edges between λ and μ if the decomposition of $G^{\lambda} \otimes V$ into irreducible G-modules is given by

$$\mathsf{G}^{\lambda} \otimes \mathsf{V} = \bigoplus_{\mu \in \Lambda(\mathsf{G})} a_{\lambda,\mu} \, \mathsf{G}^{\mu}. \tag{2}$$

For finite subgroups $G \subseteq SU_2$, the representation graph $\Re_V(G)$ is an undirected, simple graph (see [15]). Since V is faithful (being the defining module for G) and G is finite, all irreducible G-modules

Fig. 1: The representation graph $\mathcal{R}_{V}(SU_{2})$, which is the Dynkin diagram $A_{+\infty}$, and the first 6 levels of the corresponding Bratteli diagram $\mathcal{B}_{V}(SU_{2})$. In $\mathcal{R}_{V}(SU_{2})$, the label on the node is the index of the SU_{2} -module, and the label above the node is its dimension. The trivial module is shown in blue and the defining module V in red. In $\mathcal{B}_{V}(SU_{2})$ the label below vertex *r* on level *k* gives the number of paths (Dyck paths in this case) from the top of the diagram to *r*, which is multiplicity of V(r) in $V^{\otimes k}$. These numbers also count the walks of length *k* from 0 to *r* on $\mathcal{R}_{V}(G)$. The column to the right contains the sum of the squares of the multiplicities, which at level *k* is the Catalan number \mathcal{C}_{k} and equals the dimension of the centralizer algebra $Z_{k}(SU_{2})$.

occur in some $V^{\otimes k}$, and thus $\mathcal{R}_V(G)$ is connected. The representation graphs $\mathcal{R}_V(G)$ corresponding to $G = C_n, D_n, T, O, I$, are displayed in Figure 2. McKay observed that these graphs correspond exactly to the affine Dynkin diagrams of type \hat{A}_{n-1} , \hat{D}_{n+2} , \hat{E}_6 \hat{E}_7 , \hat{E}_8 , respectively. The trivial module $G^{(0)}$ corresponds to the affine node in those cases.

For $k \geq 1$, the k-fold tensor power $V^{\otimes k}$ is 2^k -dimensional and has a basis of simple tensors $V^{\otimes k} = \operatorname{span}_{\mathbb{C}} \{ \mathsf{v}_{r_1} \otimes \mathsf{v}_{r_2} \otimes \cdots \otimes \mathsf{v}_{r_k} \mid r_j \in \{-1, 1\} \}$. Group elements $g \in \mathsf{G}$ act on simple tensors by the diagonal action $g(\mathsf{v}_{r_1} \otimes \mathsf{v}_{r_2} \otimes \cdots \otimes \mathsf{v}_{r_k}) = g\mathsf{v}_{r_1} \otimes g\mathsf{v}_{r_2} \otimes \cdots \otimes g\mathsf{v}_{r_k}$. Let

$$\Lambda_k(\mathsf{G}) = \{ \lambda \in \Lambda(\mathsf{G}) \mid \mathsf{G}^\lambda \text{ appears as a summand in the decomposition of } \mathsf{V}^{\otimes k} \}.$$
(3)

Then, $\Lambda_k(G)$ is the set of vertices in $\mathcal{R}_V(G)$ that can be reached by paths of length k starting from 0. Furthermore, $\Lambda_k(G) \subseteq \Lambda_{k+2}(G)$, for all $k \ge 0$, since if a node can be reached in k steps, then it can also be reached in k + 2 steps. The *Bratteli diagram* $\mathcal{B}_V(G)$ is the infinite graph with vertices labeled by $\Lambda_k(G)$ on level k and $a_{\lambda,\mu}$ edges from vertex $\lambda \in \Lambda_k(G)$ to vertex $\mu \in \Lambda_{k+1}(G)$. The Bratteli diagram for $G = SU_2$ is shown in Figure 1, and the Bratteli diagrams for $G = C_n, D_n, T, O, I$ are shown in Figure 3.

A walk of length k on the representation graph $\mathcal{R}_{V}(G)$ from 0 to $\lambda \in \Lambda(G)$, is a sequence $(0, \lambda^{1}, \lambda^{2}, ..., \lambda^{k} = \lambda)$ starting at $\lambda^{0} = 0$, such that $\lambda^{j} \in \Lambda(G)$ for each $1 \leq j \leq k$, and λ^{j-1} is connected to λ^{j} by an edge in $\mathcal{R}_{V}(G)$. Such a walk is equivalent to a unique *path* of length k on the Bratteli diagram $\mathcal{B}_{V}(G)$ from $0 \in \Lambda_{0}(G)$ to $\lambda \in \Lambda_{k}(G)$. Let $\mathcal{W}_{k}^{\lambda}(G)$ denote the set of walks on $\mathcal{R}_{V}(G)$ of length k from $0 \in \Lambda(G)$

Fig. 2: The representation graphs $\mathcal{R}_V(G)$ for the finite subgroups $G = C_n, D_n, T, O, I$ correspond to the affine Dynkin diagrams of type $\hat{A}_{n-1}, \hat{D}_{n+1}, \hat{E}_6, \hat{E}_7, \hat{E}_8$. The label on the node is the index of the G-module, and the label above the node is its dimension. The trivial module (affine node) is blue and the defining module V is red.

to $\lambda \in \Lambda(\mathsf{G})$, and let $\mathcal{P}_k^{\lambda}(\mathsf{G})$ denote the set of paths on $\mathcal{B}_{\mathsf{V}}(\mathsf{G})$ of length k from $0 \in \Lambda_0(\mathsf{G})$ to $\lambda \in \Lambda_k(\mathsf{G})$. Let m_k^{λ} denote the multiplicity of G^{λ} in $\mathsf{V}^{\otimes k}$. Then, by induction on (2) we have

$$\begin{aligned} m_k^\lambda &= |\mathcal{W}_k^\lambda(\mathsf{G})| &= \#(\text{walks on } \mathcal{R}_\mathsf{V}(\mathsf{G}) \text{ of length } k \text{ from at } 0 \text{ to } \lambda) \\ &= |\mathcal{P}_k^\lambda(\mathsf{G})| &= \#(\text{paths in } \mathcal{B}_\mathsf{V}(\mathsf{G}) \text{ of length } k \text{ from } 0 \in \Lambda_0(\mathsf{G}) \text{ to } \lambda \in \Lambda_k(\mathsf{G})). \end{aligned}$$
(4)

The *centralizer of* G on $V^{\otimes k}$ is the algebra

$$\mathsf{Z}_{k}(\mathsf{G}) = \mathsf{End}_{\mathsf{G}}(\mathsf{V}^{\otimes k}) = \left\{ a \in \mathsf{End}(\mathsf{V}^{\otimes k}) \mid a(gw) = ga(w) \text{ for all } g \in \mathsf{G}, w \in \mathsf{V}^{\otimes k} \right\}.$$
(5)

If the group G is apparent from the context, we will simply write Z_k for $Z_k(G)$. Since $V^{\otimes 0} = G^{(0)}$, we have $Z_0(G) = \mathbb{C}1$. There is a natural embedding $Z_k(G) \hookrightarrow Z_{k+1}(G)$ given by $a \mapsto a \otimes 1$, where $a \otimes 1$ acts as *a* on the first *k* tensor factors and 1 acts as the identity in the (k + 1)st tensor position. Iterating this embedding gives an infinite tower of algebras $Z_0(G) \subseteq Z_1(G) \subseteq Z_2(G) \subseteq \cdots$.

By classical double-centralizer theory (see for example [6, 3B,68]), we have:

• $Z_k(G)$ is a semisimple \mathbb{C} -algebra with irreducible modules $\{Z_k^{\lambda} | \lambda \in \Lambda_k(G)\}$ labeled by $\Lambda_k(G)$.

McKay Centralizer Algebras

- dim $Z_k^{\lambda} = m_k^{\lambda} = |\mathcal{W}_k^{\lambda}(G)| = |\mathcal{P}_k^{\lambda}(G)|.$
- Edges from level k to k−1 in B_V(G) represent restriction and induction rules for Z_{k−1}(G) ⊆ Z_k(G).
 If d^λ = dim G^λ, then the tensor space V^{⊗k} has the following decomposition

$$\mathsf{V}^{\otimes k} \cong \underbrace{\bigoplus_{\lambda \in \Lambda_k(\mathsf{G})} m_k^{\lambda} \mathsf{G}^{\lambda}}_{\text{as a G-module}} \cong \underbrace{\bigoplus_{\lambda \in \Lambda_k(\mathsf{G})} d^{\lambda} \mathsf{Z}_k^{\lambda}}_{\text{as a Z}_k(\mathsf{G})\text{-module}} \cong \underbrace{\bigoplus_{\lambda \in \Lambda_k(\mathsf{G})} \left(\mathsf{G}^{\lambda} \otimes \mathsf{Z}_k^{\lambda}\right)}_{\text{as a (G, Z_k(\mathsf{G}))\text{-bimodule}}}.$$
(6)

• By general Wedderburn theory, the dimension of $Z_k(G)$ is

$$\dim \mathsf{Z}_k(\mathsf{G}) = \sum_{\lambda \in \Lambda_k(\mathsf{G})} (m_k^{\lambda})^2 = \sum_{\lambda \in \Lambda_k(\mathsf{G})} |\mathcal{W}_k^{\lambda}(\mathsf{G})|^2 = \left|\mathcal{W}_{2k}^0(\mathsf{G})\right| = \dim \mathsf{Z}_{2k}^{(0)},\tag{7}$$

which equals the number of walks of length 2k that begin and end at 0 on $\mathcal{R}_V(G)$. The third equality follows from the property that a pair of walks of length k from 0 to λ corresponds uniquely (by reversing the second walk) to a walk of length 2k beginning and ending at 0.

3 Paths and Dimensions

Using an inductive argument on the structure of the Bratteli diagram, we compute the dimensions of the irreducible $Z_k(G)$ -modules Z_k^{λ} for $\lambda \in \Lambda_k(G)$. They are given explicitly in [1]. This dimension also equals the multiplicity of G^{λ} in $V^{\otimes k}$. The dimension of the centralizer algebra $Z_k(G)$ is then the sum of the squares of these dimensions: dim $Z_k(G) = \sum_{\lambda} \dim (Z_k^{\lambda})^2$.

Theorem 8 ([1] Dimension Formulas) For $k \ge 1$, the following formulas give the dimension dim $Z_k(G)$ of the McKay centralizer algebra, which also equals the number of 2k-walks on the representation graph $\mathcal{R}_{V}(\mathsf{G})$ from 0 to 0.

(a) dim
$$Z_k(\mathbf{C}_n) = 2 \dim Z_k(\mathbf{D}_n) = \sum_{\substack{0 \le a, b \le k \\ a \equiv b \mod n}} \binom{k}{a} \binom{k}{b} = coefficient \text{ of } z^k \text{ in } (1+z)^{2k} \big|_{z^{\tilde{n}}=1} \text{ which}$$

equals the the 2k-k coefficient in Pascal's triangle on a cylinder of "diameter" \tilde{n} (Fig. 3), where $\tilde{n} = n$, if n is odd, and $\tilde{n} = \frac{1}{2}n$, if n is even.

- (b) dim $Z_k(\mathbf{T}) = \frac{4^k + 8}{12}$ ([14] OEIS sequence A047849).
- (c) dim $Z_k(\mathbf{O}) = \frac{4^k + 6 \cdot 2^k + 8}{24}$ ([14] OEIS sequence A007581).
- (d) dim $Z_k(I) = \frac{4^k + 12L_{2k} + 20}{60}$, where L_n is the Lucas number defined by $L_0 = 2, L_1 = 1$, and $L_{n+2} = L_{n+1} + L_n$.

Fig. 3: The first several rows of the Bratteli diagrams $\mathcal{B}_{V}(G)$ for $G = C_5$, C_{10} , D_6 , T, O, I. The representation graph $\mathcal{R}_{V}(G)$ is embedded as the shaded edges. The unshaded edges are reflections from the row above and correspond to the Jones basic construction ideal $Z_k e_k Z_k$ (see Sec. 4). The Bratteli diagrams for C_5 and C_{10} are isomorphic. The label below vertex r on level k gives the number of k-paths from the top of the diagram to r, which is also multiplicity of $G^{(r)}$ in $V^{\otimes k}$. These numbers also give the number of k-walks from 0 to r on the representation graph $\mathcal{R}_{V}(G)$. The column to the right contains the sum of the squares of the multiplicities which equals dim $Z_k(G)$.

4 Basic Construction

In this section we define two kinds of (essential) idempotents $\{e_i \mid 1 \le i \le k-1\}$ and $\{f_{\nu} \mid \nu \in \Lambda(G)\}$ which together with 1 generate $Z_k(G)$. For $1 \le i \le k-1$, define an endomorphism e_i on $V^{\otimes k}$ by

$$\mathsf{e}_i = \mathbf{1} \otimes \cdots \otimes \mathbf{1} \otimes \mathsf{e} \otimes \mathbf{1} \otimes \cdots \otimes \mathbf{1},\tag{9}$$

where 1 is the 2 × 2 identity matrix, and $e : V \otimes V \rightarrow V \otimes V$ acts in tensor positions *i* and *i* + 1 by $e(v_j \otimes v_\ell) = v_j \otimes v_\ell - v_\ell \otimes v_j$, for $j, \ell \in \{-1, 1\}$. Thus, $e : V^{\otimes 2} \rightarrow V^{\otimes 2}$ projects onto the antisymmetric tensors in $V^{\otimes 2}$, and it is easy to confirm that $e_i \in Z_k(G)$.

For $\nu \in \Lambda(G)$, we let $|\nu|$ equal the distance from 0 to ν in the representation graph $\Re_V(G)$. Thus by the way we have chosen our labels in Figure 3, $|(\ell)| = |(\ell')| = \ell$. Correspondingly, the module G^{ν} first appears as a constituent of $V^{\otimes k}$, when $k = |\nu|$, and it appears in that tensor product with multiplicity exactly 1. Define

 $f_{\nu} :=$ the G-module homomorphism projecting onto the unique copy of G^{ν} in $V^{\otimes |\nu|}$.

In [1] we show how to explicitly construct f_{ν} for each $\nu \in \Lambda(G)$. In particular, we show that

$$f_{\nu} - \frac{d^{\nu-1}}{d^{\nu}} f_{\nu} \mathbf{e}_{|\nu|} f_{\nu} = \sum_{\mu=\nu+1} f_{\mu}, \tag{10}$$

where $\nu - 1 \in \Lambda(G)$ is the unique neighbor of ν in $\Re_V(G)$ that is closer to 0 (i.e., $|\nu - 1| = |\nu| - 1$), where the sum is over the neighbors $\mu = \nu + 1$ of ν in $\Re_V(G)$ that are farther from 0 (i.e., $|\mu| = |\nu| + 1$), and where $d^{\lambda} = \dim G^{\lambda}$. In most cases, ν has degree 2, and there is a unique node of the form $\mu = \nu + 1$, and thus (10) defines f_{μ} uniquely. If ν has degree greater than 2, then we use other methods [1, Sec. 1.8] to decompose the sum into the constituent f_{μ} . This recursive construction is a generalization of the construction of the Jones-Wenzl idempotent for SU₂.

A branch node in the representation graph $\Re_V(G)$ is any vertex of degree greater than 2. Let br(G) denote the set of branch nodes in $\Re_V(G)$. In the special case of $\Re_V(\mathbf{C}_n)$ for $n \leq \infty$, we consider the affine node to be the branch node. Let the *diameter* of $\Re_V(G)$, denoted by diam(G), be the maximum distance between any vertex $\lambda \in \Lambda(G)$ and $0 \in \Lambda(G)$. For $G = \mathbf{C}_n$, we let $diam(G) = \tilde{n}$ as in (11).

The *Jones basic construction* (see [8], [16], [9]) uses the ideal $Z_k e_k Z_k \subseteq Z_{k+1}$ to recursively study the structure of Z_{k+1} . We use it to prove the following theorem.

Theorem 12 ([1] Basic Construction) Let $Z_k = Z_k(G)$ and let $Z_0 = \mathbb{C}1$. Then for $k \ge 1$, except for the two special cases in part (d), we have

- (a) $Z_{k+1} = Z_k e_k Z_k \oplus N_{k+1}$, where $Z_k e_k Z_k$ is a two-sided basic construction ideal, and N_{k+1} is a commutative subalgebra spanned by $\{f_{\nu} \mid |\nu| = k+1\}$. In particular, $N_{k+1} = 0$ if $k \ge \text{diam}(G)$.
- (b) $\mathsf{Z}_{k+1} = \langle \mathsf{Z}_k, \mathsf{e}_k \rangle$ if $k \notin \mathsf{br}(\mathsf{G})$, and $\mathsf{Z}_{k+1} = \langle \mathsf{Z}_k, \mathsf{e}_k, \mathsf{f}_{(k+1)} \rangle$ if $k \in \mathsf{br}(\mathsf{G})$.

- (c) Z_{k+1} is generated by $\{1, e_1, ..., e_k\} \cup \{f_{(\ell+1)} \mid \ell \in br(G), \ell \le k\}$.
- (d) $\mathsf{TL}_k(2) \subseteq \mathsf{Z}_k$ for all $k \ge 0$, and $\mathsf{TL}_k(2) = \mathsf{Z}_k$ for $0 \le k \le \min(\mathsf{br}(\mathsf{G}))$.
- (e) Two special cases: (i) if $G = C_n$, then $Z_{\tilde{n}} = \langle Z_{\tilde{n}-1}, e_{\tilde{n}-1}, E_{p,q}$, for $p, q \in \{-\underline{1}, \underline{1}\}\rangle$, where $E_{p,q}$ are matrix units. (ii) if $G = D_2$, then $Z_2 = \langle Z_1, e_1, f_{\mu_1}, f_{\mu_2} \rangle$ where $\mu_1, \mu_2 \in \{(0'), (2), (2')\}$, $\mu_1 \neq \mu_2$.

Example 13 Compare these examples with their representation graphs $\mathcal{R}_V(G)$ in Figure 2.

(a) If G = O, then $br(O) = \{3\}$, diam(O) = 6, and

$$\begin{array}{ll} \mathsf{Z}_1 = \mathbb{C} \mathbf{1} = \mathbb{C} \mathsf{f}_{(1)} = \mathsf{Z}_0 \cong \mathsf{T} \mathsf{L}_1(2) & \mathsf{Z}_5 = \mathsf{Z}_4 \mathsf{e}_4 \mathsf{Z}_4 \oplus \mathbb{C} \mathsf{f}_{(5)} = \langle \mathsf{Z}_4, \mathsf{e}_4 \rangle \\ \mathsf{Z}_2 = \mathsf{Z}_1 \mathsf{e}_1 \mathsf{Z}_1 \oplus \mathbb{C} \mathsf{f}_{(2)} = \langle \mathsf{Z}_1, \mathsf{e}_1 \rangle \cong \mathsf{T} \mathsf{L}_2(2) & \mathsf{Z}_6 = \mathsf{Z}_5 \mathsf{e}_5 \mathsf{Z}_5 \oplus \mathbb{C} \mathsf{f}_{(6)} = \langle \mathsf{Z}_5, \mathsf{e}_5 \rangle \\ \mathsf{Z}_3 = \mathsf{Z}_2 \mathsf{e}_2 \mathsf{Z}_2 \oplus \mathbb{C} \mathsf{f}_{(3)} = \langle \mathsf{Z}_2, \mathsf{e}_2 \rangle \cong \mathsf{T} \mathsf{L}_3(2) & \mathsf{Z}_7 = \mathsf{Z}_6 \mathsf{e}_6 \mathsf{Z}_6 = \langle \mathsf{Z}_6, \mathsf{e}_6 \rangle \\ \mathsf{Z}_4 = \mathsf{Z}_3 \mathsf{e}_3 \mathsf{Z}_3 \oplus \mathbb{C} \mathsf{f}_{(4)} \oplus \mathbb{C} \mathsf{f}_{(4')} = \langle \mathsf{Z}_3, \mathsf{e}_3, \mathsf{f}_{(4)} \rangle & \mathsf{Z}_{k+1} = \mathsf{Z}_k \mathsf{e}_k \mathsf{Z}_k = \langle \mathsf{Z}_k, \mathsf{e}_k \rangle, k \ge 6. \end{array}$$

(b) If $G = D_6$, then $br(D_6) = \{1, 5\}$, $diam(D_6) = 6$, and

$$\begin{array}{ll} \mathsf{Z}_1 = \mathbb{C} \mathbf{1} = \mathbb{C} \mathsf{f}_{(1)} = \mathsf{Z}_0 \cong \mathsf{TL}_1(2) & \mathsf{Z}_5 = \mathsf{Z}_4 \mathsf{e}_4 \mathsf{Z}_4 \oplus \mathbb{C} \mathsf{f}_{(5)} = \langle \mathsf{Z}_4, \mathsf{e}_4 \rangle \\ \mathsf{Z}_2 = \mathsf{Z}_1 \mathsf{e}_1 \mathsf{Z}_1 \oplus \mathbb{C} \mathsf{f}_{(0')} \oplus \mathbb{C} \mathsf{f}_{(2)} = \langle \mathsf{Z}_1, \mathsf{e}_1, \mathsf{f}_{(2)} \rangle & \mathsf{Z}_6 = \mathsf{Z}_5 \mathsf{e}_5 \mathsf{Z}_5 \oplus \mathbb{C} \mathsf{f}_{(6')} \oplus \mathbb{C} \mathsf{f}_{(6)} = \langle \mathsf{Z}_5, \mathsf{e}_5, \mathsf{f}_{(6)} \rangle \\ \mathsf{Z}_3 = \mathsf{Z}_2 \mathsf{e}_2 \mathsf{Z}_2 \oplus \mathbb{C} \mathsf{f}_{(3)} = \langle \mathsf{Z}_2, \mathsf{e}_2 \rangle & \mathsf{Z}_7 = \mathsf{Z}_6 \mathsf{e}_6 \mathsf{Z}_6 = \langle \mathsf{Z}_6, \mathsf{e}_6 \rangle \\ \mathsf{Z}_4 = \mathsf{Z}_3 \mathsf{e}_3 \mathsf{Z}_3 \oplus \mathbb{C} \mathsf{f}_{(4)} = \langle \mathsf{Z}_3, \mathsf{e}_3 \rangle & \mathsf{Z}_{k+1} = \mathsf{Z}_k \mathsf{e}_k \mathsf{Z}_k = \langle \mathsf{Z}_k, \mathsf{e}_k \rangle, k \ge 6. \end{array}$$

5 Linear Bases

Let $\mathcal{P}_{2k}^0(\mathsf{G})$ denote the set of paths on $\mathcal{B}_{\mathsf{V}}(\mathsf{G})$ of length 2k from 0 at level 0 to 0 at level 2k. Then dim $\mathsf{Z}_k(\mathsf{G}) = |\mathcal{P}_{2k}^0(\mathsf{G})|$, and so it is natural to seek a basis $\{w_p \mid p \in \mathcal{P}_{2k}^0(\mathsf{G})\}$ of $\mathsf{Z}_k(\mathsf{G})$ where each w_p is a word in the generators $\{1, \mathsf{e}_1, \ldots, \mathsf{e}_{k-1}\} \cup \{\mathsf{f}_{(\ell+1)} \mid \ell \in \mathsf{br}(\mathsf{G}), \ell < k\}$. For example, when $\mathsf{G} = \mathsf{SU}_2$, the centralizer is the Temperley-Lieb algebra $\mathsf{Z}_k(\mathsf{SU}_2) \cong \mathsf{TL}_k(2)$, the dimension is the Catalan number \mathcal{C}_k , the paths are Dyck paths, and the bijection to a basis of words in $\mathsf{e}_1, \ldots, \mathsf{e}_{k-1}$ is given in [8, 2.8]. Here we generalize this result uniformly to the finite subgroups $\mathsf{G} \subseteq \mathsf{SU}_2$.

For $\ell = \min(br(G))$, i.e., the first branch point, define

$$\mathsf{b}_i = \underbrace{\mathbf{1} \otimes \cdots \otimes \mathbf{1}}_{(i-1) \text{ factors}} \otimes \mathsf{f}_{(\ell+1)} \otimes \underbrace{\mathbf{1} \otimes \cdots \otimes \mathbf{1}}_{(k-i-\ell) \text{ factors}}, \qquad 1 \leq i \leq k-\ell, \qquad \text{ for each }\mathsf{G},$$

and define

$$\mathsf{c}_i = \underbrace{\mathbf{1} \otimes \cdots \otimes \mathbf{1}}_{(i-1) \text{ factors}} \otimes \mathsf{f}_{(n)} \otimes \underbrace{\mathbf{1} \otimes \cdots \otimes \mathbf{1}}_{(k-i-n+1) \text{ factors}}, \qquad 1 \leq i \leq k-n+1, \quad \text{for } \mathsf{G} = \mathbf{D}_n.$$

A path $p \in \mathcal{P}_{2k}^0$ is a sequence $p = (0 = p_0, p_1, \dots, p_{2k-1}, p_{2k} = 0)$, where each $p_i \in \Lambda_i(\mathsf{G})$ is a label of an irreducible G-module that appears in $\mathsf{V}^{\otimes i}$. A *peak* in a path p is a label p_i such that $|p_{i-1}| < |p_i|$ and $|p_i| > |p_{i+1}|$. If a peak p_i is marked with the prime symbol (e.g., $0'_i$ or $4'_i$, etc), then p_i is a *nonstandard* peak. Otherwise it is said to be *standard*. To each peak p_i we associate a product of generators called *block* as follows

$$\mathcal{B}(p_i) = \mathbf{e}_{\alpha} \mathbf{e}_{\alpha-1} \mathbf{e}_{\alpha-2} \cdots \mathbf{e}_{\beta}, \text{ with } \alpha = \frac{i+|p_i|-2}{2} \text{ and } \beta = \frac{i-|p_i|+2}{2}, \tag{14}$$

$$\mathcal{B}(p_i') = \mathsf{b}_\beta, \text{ with } \beta = \frac{i - |p_i| + 2}{2}, \tag{15}$$

174

McKay Centralizer Algebras

$$(\mathbf{G} = \mathbf{T}) \qquad \qquad \mathcal{B}(4'_i) = \begin{cases} \mathbf{b}_{\alpha-2}e_{\alpha}\mathbf{e}_{\alpha-1}\mathbf{e}_{\alpha-2}, \text{ with } \alpha = \frac{i+2}{2}, & \text{if } p_{i-2} = 2, \\ \mathbf{e}_{\alpha}\mathbf{e}_{\alpha-1}\mathbf{e}_{\alpha-2}, \text{ with } \alpha = \frac{i+2}{2}, & \text{if } p_{i-2} = 4. \end{cases}$$
(16)

If $G = C_n$ with $n \leq \infty$ then there are further special cases for $\mathcal{B}(p'_i)$ and $\mathcal{B}(\tilde{n}_i^{\pm})$ described in [7].

If $p \in \mathcal{P}^{0}_{2k}(\mathsf{G})$ is a path in the Bratteli diagram, then we define the *word* w_p of p as the product blocks for each peak in p (see Example 19):

$$w_p = \mathcal{B}(p_{i_1})\mathcal{B}(p_{i_2})\cdots\mathcal{B}(p_{i_\ell}), \qquad \text{where } p_{i_1}, p_{i_2}, \dots, p_{i_\ell} \text{ are the peaks in } p.$$
(17)

Theorem 18 ([7] Basis Theorem) For $G = SU_2, C_n, D_n, C_\infty, D_\infty, T, O, or I, and <math>k \ge 0$, the set $\{w_p \mid p \in \mathcal{P}_{2k}^0(G)\}$ is a basis for $Z_k(G)$.

Example 19 (Paths and their Corresponding Words) The following are examples of paths p in the Bratteli diagram $\mathcal{B}_V(G)$ with their peaks circled and the corresponding words w_p .

$$\begin{aligned} \text{(a) In } \mathsf{Z}_{10}(\mathbf{O}) \\ p &= (0_0, 1_1, 2_2, 3_3, 4_4, \overbrace{5_5}^{-}), 4_6, 3_7, 4_8, 5_9, \overbrace{6_{10}}^{-}), 5_{11}, 4_{12}, 3_{13}, 2_{14}, 1_{15}, 2_{16}, \overbrace{3_{17}}^{-}), 2_{18}, 1_{19}, 0_{20}) \\ w_p &= (\mathsf{e}_4 \mathsf{e}_3 \mathsf{e}_2 \mathsf{e}_1) \left(\mathsf{e}_7 \mathsf{e}_6 \mathsf{e}_5 \mathsf{e}_3 \mathsf{e}_3\right) \left(\mathsf{e}_9 \mathsf{e}_8\right) \\ p &= (0_0, 1_1, 2_2, 3_3, \overbrace{4_4}^{-}), 3_5, 4_6, 5_7, \overbrace{6_8}^{-}), 5_9, 4_{10}, 3_{11}, \overbrace{4_{12}}^{-}), 3_{13}, 2_{14}, 1_{15}, 0_{16}, 1_{17}, \overbrace{2_{18}}^{-}), 1_{19}, 0_{20}) \\ w_p &= (\mathsf{e}_3 \mathsf{e}_2 \mathsf{e}_1) \left(\mathsf{e}_6 \mathsf{e}_5 \mathsf{e}_4 \mathsf{e}_3 \mathsf{e}_2\right) \left(\mathsf{b}_3\right) \left(\mathsf{e}_9\right) \end{aligned}$$

(*b*) In $Z_{10}(\mathbf{T})$

$$p = (0_0, 1_1, 2_2, \underbrace{3_3}, 2_4, \underbrace{3_5}, 2_6, 1_7, 0_8, 1_9, 2_{10}, 3'_{11}, \underbrace{4'_{12}}, 3'_{13}, 2_{14}, 3_{15}, \underbrace{4_{16}}, 3_{17}, 2_{18}, 1_{19}, 0_{20})$$

$$w_p = (e_2e_1) (e_3e_2) (b_5e_7e_6e_5) (e_9e_8e_7)$$

$$p = (0_0, 1_1, 2_2, 3_3, \underbrace{4_4}, 3_5, \underbrace{4_6}, 3_7, \underbrace{4_8}, 3_9, 2_{10}, 1_{11}, 0_{12}, 1_{13}, 2_{14}, 3'_{15}, \underbrace{4'_{16}}, 3'_{17}, 2_{18}, 1_{19}, 0_{20})$$

$$w_p = (e_3e_2e_1) (e_4e_3e_2) (e_5e_4e_3) (b_7e_9e_8e_7)$$

(c) In $Z_{10}(\mathbf{D}_5)$

$$\begin{split} p &= (0_1, 1_1, \underbrace{2'_2}, 1_3, 2_4, 3_5, 4_6, \underbrace{5_7}, 4_8, \underbrace{5'_9}, 4_{10}, 3_{11}, 2_{12}, 1_{13}, 0_{14}, 1_{15}, \underbrace{2_{16}}, 1_{17}, \underbrace{2'_{18}}, 1_{19}, 0_{20}) \\ w_p &= (\mathsf{b}_1) \left(\mathsf{e}_5 \mathsf{e}_4 \mathsf{e}_3 \mathsf{e}_2\right) \left(\mathsf{c}_3\right) \left(\mathsf{e}_8\right) \left(\mathsf{b}_9\right) \\ p &= (0_0, 1_1, 2_2, 3_3, \underbrace{4_4}, 3_5, 4_6, \underbrace{5_7}, 4_8, 3_9, 2_{10}, 3_{11}, \underbrace{4_{12}}, 3_{13}, 2_{14}, 1_{15}, 2_{16}, \underbrace{3_{17}}, 2_{18}, 1_{19}, 0_{20}\right) \\ w_p &= (\mathsf{e}_3 \mathsf{e}_2 \mathsf{e}_1) \left(\mathsf{e}_5 \mathsf{e}_4 \mathsf{e}_3 \mathsf{e}_2\right) \left(\mathsf{e}_7 \mathsf{e}_6 \mathsf{e}_5\right) \left(\mathsf{e}_9 \mathsf{e}_8\right) \end{split}$$

As above, if $\nu \in \Lambda(G)$, then $|\nu|$ equals the distance from 0 to ν in $\Re_V(G)$. Let $\mathbf{e}_{\nu} := \mathbf{e}_{|\nu|}$, and let $d^{\nu} = \dim \mathbf{G}^{\nu}$. For $\nu \neq 0$, $\nu - 1 \in \Lambda(G)$ is the unique node that is connected to ν by an edge with $|\nu - 1| = |\nu| - 1$. We say that $\mu = \nu + 1$ if $\mu \in \Lambda(G)$ is connected to ν by an edge and $|\mu| = |\nu| + 1$. Finally we say that $\mu \prec \nu$ if μ is on the shortest path from 0 to ν .

Theorem 20 (Presentation on Generators and Relations) For $k \ge 1$ and $k < \tilde{n}$ if $G = C_n$, the algebra $Z_k(G)$ is generated by $\{1, e_1, \dots, e_{k-1}\} \cup \{f_{\nu} \mid \nu \in \Lambda(G), |\nu| \le k\}$ subject to the following relations:

(1) $\mathbf{e}_{i}^{2} = 2\mathbf{e}_{i}; \quad \mathbf{e}_{i}\mathbf{e}_{i\pm 1}\mathbf{e}_{i} = \mathbf{e}_{i}; \quad \mathbf{e}_{i}\mathbf{e}_{j} = \mathbf{e}_{j}\mathbf{e}_{i}, |i-j| > 1;$

- (2) $f_{\nu}^2 = f_{\nu}$; $f_{\nu} e_i = e_i f_{\nu} = 0$ for $i < |\nu|$; $f_{\nu} e_i = e_i f_{\nu}$ for $i > |\nu|$; $e_{\nu} f_{\nu} e_{\nu} = \frac{d^{\nu}}{d^{\nu-1}} f_{\nu-1} e_{\nu}$;
- (3) $\sum_{\nu=\nu+1} \mathbf{f}_{\mu} = \mathbf{f}_{\nu} \frac{d^{\nu-1}}{d^{\nu}} \mathbf{f}_{\nu} \mathbf{e}_{\nu-1} \mathbf{f}_{\nu} \text{ (and this equals 0 if no such } \mu \text{ exists);}$
- (4) If $|\mu| \leq |\nu|$, then $f_{\mu}f_{\nu} = f_{\nu}f_{\mu} = f_{\mu}$, if $\mu \prec \nu$, and $f_{\mu}f_{\nu} = f_{\nu}f_{\mu} = 0$, if $\mu \not\prec \nu$.

The case of $k \geq \tilde{n}$, for $G = C_n$ requires some further notation and is handled in [7].

Exceptional McKay Centralizers and Partition Algebras 6

The exceptional groups are referred to as the binary tetrahedral, binary octahedral, and binary icosahedral groups because modulo their centers $\mathcal{Z}(\mathsf{G}) = \{1, -1\}$, we have the following isomorphisms:

 $\mathbf{T}/\{1,-1\} \cong \mathbf{A}_4$, the alternating group on 4 letters (rotation group of a tetrahedron),

 $\mathbf{O}/\{1,-1\} \cong \mathbf{S}_4$, the symmetric group on 4 letters (rotation group of an octahedron),

 $I/\{1, -1\} \cong A_5$, the alternating group on 5 letters (rotation group of an icosahedron).

Group elements act on $V^{\otimes 2} = V \otimes V$ diagonally: $g \cdot (v_i \otimes v_j) = gv_i \otimes gv_j$. If $g \in \mathcal{Z}(G) = \{1, -1\}$ then g acts on V as multiplication by 1 and -1, so it acts trivially on V^{$\otimes 2$}. Thus, $\mathcal{Z}(G)$ is in the kernel of the action on tensor powers $V^{\otimes k}$, with k even, and T, O, and I act the same as A_4 , S_4 , and A_5 , respectively Furthermore, $\dim(V^{\otimes 2}) = 4$, and as a module for A_4, S_4 , and A_5 it decomposes in the following way:

$$\begin{split} \mathsf{V}^{\otimes 2} &\cong \mathbf{A}_4^{(4)} \oplus \mathbf{A}_4^{(3,1)} \cong \mathsf{M}, \text{ the permutation module for } \mathbf{A}_4, \\ \mathsf{V}^{\otimes 2} &\cong \mathbf{S}_4^{(4)} \oplus \mathbf{S}_4^{(2,1,1)} \cong \widetilde{\mathsf{M}}, \text{ a "twisted" permutation module for } \mathbf{S}_4, \\ \mathsf{V}^{\otimes 2} &\cong \mathbf{A}_5^{(5)} \oplus \mathbf{A}_5^{(3,1,1)^+} \cong \widetilde{\widetilde{\mathsf{M}}}, \text{ which is not a permutation module for } \mathbf{A}_5, \end{split}$$

where here we are using usual integer partition notation to label the irreducible modules for S_n and A_n . This means that

$$\mathsf{Z}_{2k}(\mathbf{T}) \cong \mathsf{End}_{\mathbf{A}_4}(\mathsf{M}^{\otimes k}), \qquad \mathsf{Z}_{2k}(\mathbf{O}) \cong \mathsf{End}_{\mathbf{S}_4}(\widetilde{\mathsf{M}}^{\otimes k}), \qquad \mathsf{Z}_{2k}(\mathbf{I}) \cong \mathsf{End}_{\mathbf{A}_5}(\widetilde{\check{\mathsf{M}}}^{\otimes k}). \tag{21}$$

The Martin-Jones partition algebras $P_k(n)$ maps surjectively onto $End_{S_n}(M^{\otimes k})$ for all n and isomorphically for $n \ge 2k$, where M is the *n*-dimensional permutation representation of \mathbf{S}_n (see [11], [12], [10]). When M is restricted from \mathbf{S}_n to \mathbf{A}_n the corresponding partition algebra $\tilde{\mathsf{P}}_k(n)$ is studied by Bloss [5]. The partition algebra $P_k(n)$ has a basis indexed by set partitions of $\{1, 2, \ldots, 2k\}$ and a multiplication given by set partition diagram concatenation. See [9] for a survey on partition algebras.

In [3, 4] we study the partition algebras $\operatorname{End}_{\mathbf{S}_n}(\mathsf{M}^{\otimes k})$ and $\operatorname{End}_{\mathbf{A}_n}(\mathsf{M}^{\otimes k})$ for n < 2k ("low rank") and for both the permutation module $M = \mathbf{S}_n^{(n)} \oplus \mathbf{S}_n^{(n-1,1)}$ and its twisted counterpart $\widetilde{M} = \mathbf{S}_n^{(n)} \oplus \mathbf{S}_n^{(2,1^{n-1})}$. This work gives us alternative precise descriptions of the centralizer algebras $Z_{2k}(\mathbf{T})$ and $Z_{2k}(\mathbf{O})$. In [3] we do the following:

Fig. 4: Restriction-induction graphs for $A_3 \subseteq A_4$ and $S_3 \subseteq S_4$. These graphs are isomorphic to the representation graphs $\mathcal{R}_V(\mathbf{T})$ and $\mathcal{R}_V(\mathbf{O})$, respectively, which in turn equal the Dynkin diagrams of type \hat{E}_6 and \hat{E}_7 . See Figure 2.

- Explicitly describe the kernel of P_k(n) → End_G(M^{⊗k}), when n < 2k, for G = S_n, A_n and for either the permutation module M = S⁽ⁿ⁾ ⊕ S^(n-1,1) or its twist S⁽ⁿ⁾ ⊕ S^(2,1ⁿ⁻¹).
- Give two linear bases for the image End_G(M^{⊗k}) in terms of a restricted collection of set partitions. Combinatorially describe multiplication in both bases and give the change of basis matrix between them in terms of the refinement ordering in the partition lattice Π_n.

Furthermore, these partition algebras can be realized in terms of restriction and induction (this perspective is emphasized in [9]) in the following way. If U is any \mathbf{S}_n module, then upon restriction from \mathbf{S}_n to \mathbf{S}_{n-1} followed by induction back to \mathbf{S}_n we get $\operatorname{Ind}_{\mathbf{S}_{n-1}}^{\mathbf{S}_n} \operatorname{Res}_{\mathbf{S}_{n-1}}^{\mathbf{S}_n}(U) \cong U \otimes M$. This is an application of the "tensor identity" (see [9, 3.18]). It follows that the module $M^{\otimes k}$ is isomorphic to k iterations of restriction and induction (starting with the trivial module). This process works both for $\mathbf{S}_{n-1} \subseteq \mathbf{S}_n$ and $\mathbf{A}_{n-1} \subseteq \mathbf{A}_n$. In Figure 6 we see this amazing correspondence: the restriction and induction graphs for $\mathbf{A}_3 \subseteq \mathbf{A}_4$ and $\mathbf{S}_3 \subseteq \mathbf{S}_4$ correspond exactly to the representation graphs $\mathcal{R}_V(\mathbf{T})$ and $\mathcal{R}_V(\mathbf{O})$ and thus also to the affine Dynkin diagrams $\hat{\mathsf{E}}_6$ and $\hat{\mathsf{E}}_7$. In particular, this reveals why the partition algebras also work to describe the centralizer algebras $\mathsf{Z}_k(\mathbf{T})$ and $\mathsf{Z}_k(\mathbf{O})$ for k odd as well as k even. It remains an open question to fully understand the connections between $\mathsf{Z}_k(\mathbf{I})$ and the generalized partition algebra $\mathsf{End}_{A_5}(\widetilde{\mathsf{M}}^{\otimes k})$, where $\widetilde{\mathsf{M}}$ is the \mathbf{A}_5 module $\mathbf{A}_5^{(5)} \oplus \mathbf{A}_5^{(3,1,1)^+}$.

The irreducible representations of $\mathsf{P}_k(n)$ are labeled by integer partitions $\lambda \vdash n$ with $|\lambda^{\#}| \leq k$, where if $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_{\ell})$ then $\lambda^{\#} = (\lambda_2, \ldots, \lambda_{\ell})$. Using an inductive argument in [4], we give formulas for these dimensions which to our knowledge are new:

$$\dim \mathsf{P}_{k}^{\lambda}(n) = \sum_{r=1}^{\ell} (-1)^{r-1} F_{r}^{\lambda} \left(\sum_{t=n-\lambda_{r}+r-1}^{n-2} \binom{t}{n-\lambda_{r}+r-1} \binom{k}{t} \right) + f^{\lambda} \left(\binom{k}{n-1} + \binom{k}{n} \right),$$
(22)

where f^{λ} is the number of standard tableaux of shape λ , $\left\{\begin{smallmatrix}k\\j\right\}$ is the Stirling number of the 2nd kind, and F_r^{λ} is defined by: (1) $F_1^{\lambda} = f^{\lambda^{\#}}$, (2) $F_r^{\lambda} = 0$, if $r > \lambda_r$, and (3) $F_r^{\lambda} = \sum_{\mu \subseteq \lambda, \ \mu_{r-1} = \mu_r = \lambda_r} F_{r-1}^{\mu} \cdot f^{\lambda/\mu}$, if r > 1. We have analogous formulas in [4] for the partition algebras corresponding to \mathbf{A}_n .

References

- J. M. Barnes, G. Benkart, and T. Halverson. McKay centralizer algebras. Proc. London Math. Soc., 112(2):373–414, 2016.
- [2] G. Benkart and T. Halverson. Exceptional McKay centralizer algebras. In preparation.
- [3] G. Benkart and T. Halverson. Partition algebras $P_k(n)$ with n < 2k. In preparation.
- [4] G. Benkart and T. Halverson. Tensor power multiplicities for symmetric and alternating groups and dimensions of irreducible modules for partition algebras. *In preparation*.
- [5] M. Bloss. The partition algebra as a centralizer algebra of the alternating group. *Comm. Algebra*, 33(7):2219–2229, 2005.
- [6] C. W. Curtis and I. Reiner. Methods of representation theory. Vol. I and Vol. II. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York, 1987.
- [7] L. Gagnon and T. Halverson. Bases for McKay centralizer algebras. In preparation.
- [8] F. M. Goodman, P. de la Harpe, and V. F. R. Jones. *Coxeter graphs and towers of algebras*, volume 14 of *Mathematical Sciences Research Institute Publications*. Springer-Verlag, New York, 1989.
- [9] T. Halverson and A. Ram. Partition algebras. European J. Combin., 26(6):869–921, 2005.
- [10] V. F. R. Jones. The Potts model and the symmetric group. In Subfactors (Kyuzeso, 1993), pages 259–267. World Sci. Publ., River Edge, NJ, 1994.
- [11] P. Martin. Potts models and related problems in statistical mechanics, volume 5 of Series on Advances in Statistical Mechanics. World Scientific Publishing Co., Inc., Teaneck, NJ, 1991.
- [12] P. Martin. The structure of the partition algebras. J. Algebra, 183(2):319-358, 1996.
- [13] J. McKay. Graphs, singularities, and finite groups. In *The Santa Cruz Conference on Finite Groups* (Univ. California, Santa Cruz, Calif., 1979), volume 37 of Proc. Sympos. Pure Math., pages 183– 186. Amer. Math. Soc., Providence, R.I., 1980.
- [14] N. J. A. Sloane. The on-line encyclopedia of integer sequences (OEIS).
- [15] R. Steinberg. Finite subgroups of SU₂, Dynkin diagrams and affine Coxeter elements. *Pacific J. Math.*, 118(2):587–598, 1985.
- [16] H. Wenzl. On tensor categories of Lie type E_N , $N \neq 9$. Adv. Math., 177(1):66–104, 2003.