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Abstract. For a finite subgroup G of the special unitary group SU2, we study the centralizer algebra Zk(G) =
EndG(V

⊗k) of G acting on the k-fold tensor product of its defining representation V = C2. The McKay corre-
spondence relates the representation theory of these groups to an associated affine Dynkin diagram, and we use this
connection to study the structure and representation theory of Zk(G) via the combinatorics of the Dynkin diagram.
When G equals the binary tetrahedral, octahedral, or icosahedral group, we exhibit remarkable connections between
Zk(G) and the Martin-Jones set partition algebras.

Résumé. Pour un sous-groupe fini G du groupe unitaire spéciale SU2, nous étudions la centralisateur algébre Zk(G) =
EndG(V

⊗k) de G agissant sur le produit k-fold de tenseur de sa représentation définissant V = C2. La correspondance
de McKay concerne la théorie des représentations de ces groupes á une associé Dynkin diagramme, et nous utiliser
cette connexion pour étudier la structure et la théorie des représentations de Zk(G) par l’intermédiaire de la combina-
toire du diagramme de Dynkin. Quand G est égale à la groupe tétraédrique binaire, octaédre binaire, ou icosaédrique
binaire, nous exhibons connexions remarquables entre Zk(G) et les algébres de partitions de Martin-Jones.
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1 Introduction
In 1980, John McKay [13] discovered that there is a natural one-to-one correspondence between the finite
subgroups of the special unitary group SU2 and the simply-laced affine Dynkin diagrams. Let V = C2

be the defining representation of SU2, and let G be a finite subgroup of SU2 with irreducible modules
Gλ, λ ∈ Λ(G). The representation graph RV(G) (also known as the McKay graph or McKay quiver) has
vertices indexed by the λ ∈ Λ(G) and aλ,µ edges from λ to µ if Gµ occurs in Gλ ⊗ V with multiplicity
aλ,µ. Almost a century earlier, Felix Klein had determined that a finite subgroup of SU2 must be one of
the following: (a) a cyclic group Cn of order n, (b) a binary dihedral group Dn of order 4n, or (c) one
of the 3 exceptional groups: the binary tetrahedral group T of order 24, the binary octahedral group O of
order 48, or the binary icosahedral group I of order 120. McKay’s observation was that the representation
graph of Cn,Dn,T,O, I corresponds exactly to the affine Dynkin diagram Ân−1, D̂n+2, Ê6, Ê7, Ê8.
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In the papers [1], [2], [7], we examine the McKay correspondence from the point of view of Schur-Weyl
duality. Since the McKay graph provides a way to encode the rules for tensoring by V, it is natural to con-
sider the k-fold tensor product module V⊗k and to study the centralizer algebra Zk(G) = EndG(V⊗k)
of endomorphisms that commute with the action of G on V⊗k. The algebra Zk(G) provides essential
information about the structure of V⊗k as a G-module, as the projection maps from V⊗k onto its irre-
ducible G-summands are idempotents in Zk(G), and the multiplicity of Gλ in V⊗k is the dimension of the
Zk(G)-irreducible module corresponding to λ.

The main points of this article are:

• The irreducible Zk(G)-modules are labeled by vertices of the representation graph RV(G).
• The dimension of the Zk(G)-module labeled by λ is the number of k-walks from 0 to λ on RV(G).
• The dimension of Zk(G) equals the number of 2k-walks on RV(G) starting and ending at 0.
• Zk(G) has generators corresponding to the nodes in RV(G), as well as generators corresponding to

each embedding Zi(G) ⊆ Zi+1(G), and the relations are determined by the RV(G) edge structure.
• Zk(G) has a basis of words in these generators that correspond to 2k-walks on RV(G).
• When G is one of the exceptional groups T,O, I, the centralizer Zk(G) can be described using the

Martin-Jones partition algebras and their analogs.
• New formulas for the dimensions of the irreducible representations of partition algebras are given.

When G is a subgroup of SU2, the centralizer algebras satisfy the reverse inclusion Zk(SU2) ⊆ Zk(G).
It is well known that Zk(SU2) is isomorphic to the Temperley-Lieb algebra TLk(2). Thus, the centralizer
algebras constructed here all contain a Temperley-Lieb subalgebra. The dimension of TLk(2) is the Cata-
lan number Ck = 1

k+1

(
2k
k

)
, which counts walks of 2k steps that begin and end at 0 on the representation

graph of SU2, i.e. the Dynkin diagram A+∞. In this case, the walks correspond to Dyck paths.

2 McKay Centralizer Algebras
The special unitary group SU2 is the group of 2× 2 complex matrices

(
α β
−β̄ ᾱ

)
satisfying αᾱ+ ββ̄ = 1.

For each r ≥ 0, SU2 has an irreducible module V(r) of dimension r + 1. The module V = V(1) = C2

with basis v−1 = (1, 0)t, v1 = (0, 1)t corresponds to the natural two-dimensional representation on
which SU2 acts by matrix multiplication. These modules satisfy the Clebsch-Gordan formula,

V(r)⊗ V = V(r − 1)⊕ V(r + 1), (1)

where V(−1) = 0. The representation graph RV(SU2) is the infinite graph shown in Figure 1.
Now let G be a subgroup of SU2. Then G acts on the natural two-dimensional representation V = C2

by restriction. Let {Gλ | λ ∈ Λ(G) } denote a complete set of pairwise non-isomorphic irreducible finite-
dimensional G-modules occurring in some V⊗k for k = 0, 1, . . . . By convention V⊗0 = G(0) is the trivial
G-module. The representation graph RV(G) is the graph with vertices labeled by elements of Λ(G) with
aλ,µ edges between λ and µ if the decomposition of Gλ ⊗ V into irreducible G-modules is given by

Gλ ⊗ V =
⊕

µ∈Λ(G)

aλ,µ G
µ. (2)

For finite subgroups G ⊆ SU2, the representation graph RV(G) is an undirected, simple graph (see
[15]). Since V is faithful (being the defining module for G) and G is finite, all irreducible G-modules
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RV(SU2) = 0 1 2 3 4

1 2 3 4 5

(A+∞)

BV(SU2) =

k = 0 0 1

k = 1 1 1

k = 2 0 2 2

k = 3 1 3 5

k = 4 0 2 4 14

k = 5 1 3 5 42

k = 6 0 2 4 6 132

1

1

1 1

2 1

2 3 1

5 4 1

5 9 5 1

Fig. 1: The representation graph RV(SU2), which is the Dynkin diagram A+∞, and the first 6 levels of the corre-
sponding Bratteli diagram BV(SU2). In RV(SU2), the label on the node is the index of the SU2-module, and the label
above the node is its dimension. The trivial module is shown in blue and the defining module V in red. In BV(SU2)
the label below vertex r on level k gives the number of paths (Dyck paths in this case) from the top of the diagram to
r, which is multiplicity of V(r) in V⊗k. These numbers also count the walks of length k from 0 to r on RV(G). The
column to the right contains the sum of the squares of the multiplicities, which at level k is the Catalan number Ck

and equals the dimension of the centralizer algebra Zk(SU2).

occur in some V⊗k, and thus RV(G) is connected. The representation graphs RV(G) corresponding to
G = Cn,Dn,T,O, I, are displayed in Figure 2. McKay observed that these graphs correspond exactly
to the affine Dynkin diagrams of type Ân−1, D̂n+2, Ê6 Ê7, Ê8, respectively. The trivial module G(0)

corresponds to the affine node in those cases.
For k ≥ 1, the k-fold tensor power V⊗k is 2k-dimensional and has a basis of simple tensors V⊗k =

spanC { vr1 ⊗ vr2 ⊗ · · · ⊗ vrk | rj ∈ {−1, 1} } . Group elements g ∈ G act on simple tensors by the
diagonal action g(vr1 ⊗ vr2 ⊗ · · · ⊗ vrk) = gvr1 ⊗ gvr2 ⊗ · · · ⊗ gvrk . Let

Λk(G) = { λ ∈ Λ(G) | Gλ appears as a summand in the decomposition of V⊗k}. (3)

Then, Λk(G) is the set of vertices in RV(G) that can be reached by paths of length k starting from 0.
Furthermore, Λk(G) ⊆ Λk+2(G), for all k ≥ 0, since if a node can be reached in k steps, then it can
also be reached in k + 2 steps. The Bratteli diagram BV(G) is the infinite graph with vertices labeled by
Λk(G) on level k and aλ,µ edges from vertex λ ∈ Λk(G) to vertex µ ∈ Λk+1(G). The Bratteli diagram for
G = SU2 is shown in Figure 1, and the Bratteli diagrams for G = Cn,Dn,T,O, I are shown in Figure 3.

A walk of length k on the representation graph RV(G) from 0 to λ ∈ Λ(G), is a sequence (0, λ1, λ2, . . . ,
λk = λ) starting at λ0 = 0, such that λj ∈ Λ(G) for each 1 ≤ j ≤ k, and λj−1 is connected to λj by
an edge in RV(G). Such a walk is equivalent to a unique path of length k on the Bratteli diagram BV(G)
from 0 ∈ Λ0(G) to λ ∈ Λk(G). Let Wλ

k(G) denote the set of walks on RV(G) of length k from 0 ∈ Λ(G)
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(Cn, Ân−1) (Dn, D̂n+2)
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0 1 2 · · · n-2 n-1 n

0′ n′
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1 1

(T, Ê6) (O, Ê7)

0 1 2 3 4

3′

4′

1 2 3 2 1

2

1

0 1 2 3 4 5 6

4′

1 2 3 4 3 2 1

2

(I, Ê8)

0 1 2 3 4 5 6 7

6′

1 2 3 4 5 6 4 2

3

Fig. 2: The representation graphs RV(G) for the finite subgroups G = Cn,Dn,T,O, I correspond to the affine
Dynkin diagrams of type Ân−1, D̂n+1, Ê6, Ê7, Ê8. The label on the node is the index of the G-module, and the label
above the node is its dimension. The trivial module (affine node) is blue and the defining module V is red.

to λ ∈ Λ(G), and let Pλk(G) denote the set of paths on BV(G) of length k from 0 ∈ Λ0(G) to λ ∈ Λk(G).
Let mλ

k denote the multiplicity of Gλ in V⊗k. Then, by induction on (2) we have

mλ
k = |Wλ

k(G)| = #(walks on RV(G) of length k from at 0 to λ)
= |Pλk(G)| = #(paths in BV(G) of length k from 0 ∈ Λ0(G) to λ ∈ Λk(G)).

(4)

The centralizer of G on V⊗k is the algebra

Zk(G) = EndG(V⊗k) =
{
a ∈ End(V⊗k)

∣∣ a(gw) = ga(w) for all g ∈ G, w ∈ V⊗k
}
. (5)

If the group G is apparent from the context, we will simply write Zk for Zk(G). Since V⊗0 = G(0), we
have Z0(G) = C1. There is a natural embedding Zk(G) ↪→ Zk+1(G) given by a 7→ a ⊗ 1, where a ⊗ 1
acts as a on the first k tensor factors and 1 acts as the identity in the (k + 1)st tensor position. Iterating
this embedding gives an infinite tower of algebras Z0(G) ⊆ Z1(G) ⊆ Z2(G) ⊆ · · · .

By classical double-centralizer theory (see for example [6, 3B,68]), we have:

• Zk(G) is a semisimple C-algebra with irreducible modules
{
Zλk
∣∣λ ∈ Λk(G)

}
labeled by Λk(G).
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• dimZλk = mλ
k = |Wλ

k(G)| = |Pλk(G)|.
• Edges from level k to k−1 in BV(G) represent restriction and induction rules for Zk−1(G) ⊆ Zk(G).
• If dλ = dimGλ, then the tensor space V⊗k has the following decomposition

V⊗k ∼=
⊕

λ∈Λk(G)

mλ
k G

λ

︸ ︷︷ ︸
as a G-module

∼=
⊕

λ∈Λk(G)

dλ Zλk︸ ︷︷ ︸
as a Zk(G)-module

∼=
⊕

λ∈Λk(G)

(
Gλ ⊗ Zλk

)
︸ ︷︷ ︸

as a (G,Zk(G))-bimodule

. (6)

• By general Wedderburn theory, the dimension of Zk(G) is

dimZk(G) =
∑

λ∈Λk(G)

(mλ
k)2 =

∑
λ∈Λk(G)

|Wλ
k(G)|2 =

∣∣W0
2k(G)

∣∣ = dimZ
(0)
2k , (7)

which equals the number of walks of length 2k that begin and end at 0 on RV(G). The third
equality follows from the property that a pair of walks of length k from 0 to λ corresponds uniquely
(by reversing the second walk) to a walk of length 2k beginning and ending at 0.

3 Paths and Dimensions
Using an inductive argument on the structure of the Bratteli diagram, we compute the dimensions of the
irreducible Zk(G)-modules Zλk for λ ∈ Λk(G). They are given explicitly in [1]. This dimension also
equals the multiplicity of Gλ in V⊗k. The dimension of the centralizer algebra Zk(G) is then the sum of
the squares of these dimensions: dimZk(G) =

∑
λ dim (Zλk)2.

Theorem 8 ([1] Dimension Formulas) For k ≥ 1, the following formulas give the dimension dimZk(G)
of the McKay centralizer algebra, which also equals the number of 2k-walks on the representation graph
RV(G) from 0 to 0.

(a) dimZk(Cn) = 2 dimZk(Dn) =
∑

0≤a,b≤k
a≡bmodñ

(
k

a

)(
k

b

)
= coefficient of zk in (1 + z)2k

∣∣
zñ=1

which

equals the the 2k-k coefficient in Pascal’s triangle on a cylinder of “diameter” ñ (Fig. 3), where
ñ = n, if n is odd, and ñ = 1

2n, if n is even.

(b) dimZk(T) =
4k + 8

12
([14] OEIS sequence A047849).

(c) dimZk(O) =
4k + 6 · 2k + 8

24
([14] OEIS sequence A007581).

(d) dimZk(I) =
4k + 12L2k + 20

60
, where Ln is the Lucas number defined by L0 = 2, L1 = 1, and

Ln+2 = Ln+1 + Ln.

http://oeis.org/A047849
http://oeis.org/A007581
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C5 : C10 :

k = 0 0 1

k = 1 4 1 2

k = 2 3 0 2 6

k = 3 2 4 1 3 20

k = 4 1 3 0 2 4 70

k = 5 0 2 4 1 3 254

k = 6 1 3 0 2 4 948

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

2 5 10 10 5

7 15 20 15 7

0

9 1

8 0 2

7 9 1 3

6 8 0 2 4

5 7 9 1 3

6 8 0 2 4

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

2 5 10 10 5

7 15 20 15 7

D6 : T :

k = 0 0 1

k = 1 1 1

k = 2 0 0′ 2 3

k = 3 1 3 10

k = 4 0 0′ 2 4 35

k = 5 1 3 5 126

k = 6 0 0′ 2 4 6′ 6 463

k = 7 1 3 5 1730

1

1

1 1 1

3 1

3 3 4 1

10 5 1

10 10 15 6 1 1

35 21 8

k = 0 0 1

k = 1 1 1

k = 2 0 2 2

k = 3 1 3′ 3 6

k = 4 0 2 4′ 4 22

k = 5 1 3′ 3 86

k = 6 0 2 4′ 4 342

k = 7 1 3′ 3 1366

1

1

1 1

2 11

2 4 11

6 5
5

6 16 55

22 21
21

O : I :

k = 0 0 1

k = 1 1 1

k = 2 0 2 2

k = 3 1 3 5

k = 4 0 2 4′ 4 15

k = 5 1 3 5 51

k = 6 0 2 4′ 4 6 187

k = 7 1 3 5 715

k = 8 0 2 4′ 4 6 2795

1

1

1 1

2 1

2 3 11

5 5 1

5 10 65 1

15 21 7

15 36 2821 7

k = 0 0 1

k = 1 1 1

k = 2 0 2 2

k = 3 1 3 5

k = 4 0 2 4 14

k = 5 1 3 5 42

k = 6 0 2 4 6′ 6 133

k = 7 1 3 5 7 442

k = 8 0 2 4 6′ 6 1534

1

1

1 1

2 1

2 3 1

5 4 1

5 9 5 11

14 14 7 1

14 28 21 7 8

Fig. 3: The first several rows of the Bratteli diagrams BV(G) for G = C5,C10,D6,T,O, I. The representation graph
RV(G) is embedded as the shaded edges. The unshaded edges are reflections from the row above and correspond to
the Jones basic construction ideal ZkekZk (see Sec. 4). The Bratteli diagrams for C5 and C10 are isomorphic. The
label below vertex r on level k gives the number of k-paths from the top of the diagram to r, which is also multiplicity
of G(r) in V⊗k. These numbers also give the number of k-walks from 0 to r on the representation graph RV(G). The
column to the right contains the sum of the squares of the multiplicities which equals dimZk(G).
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4 Basic Construction
In this section we define two kinds of (essential) idempotents {ei | 1 ≤ i ≤ k − 1} and {fν | ν ∈ Λ(G)}
which together with 1 generate Zk(G). For 1 ≤ i ≤ k − 1, define an endomorphism ei on V⊗k by

ei = 1⊗ · · · ⊗ 1 ⊗ e⊗1⊗ · · · ⊗ 1, (9)

where 1 is the 2 × 2 identity matrix, and e : V ⊗ V → V ⊗ V acts in tensor positions i and i + 1 by
e(vj ⊗ v`) = vj ⊗ v`− v`⊗ vj , for j, ` ∈ {−1, 1}. Thus, e : V⊗2 → V⊗2 projects onto the antisymmetric
tensors in V⊗2, and it is easy to confirm that ei ∈ Zk(G).

For ν ∈ Λ(G), we let |ν| equal the distance from 0 to ν in the representation graph RV(G). Thus by
the way we have chosen our labels in Figure 3, |(`)| = |(`′)| = `. Correspondingly, the module Gν first
appears as a constituent of V⊗k, when k = |ν|, and it appears in that tensor product with multiplicity
exactly 1. Define

fν := the G-module homomorphism projecting onto the unique copy of Gν in V⊗|ν|.

In [1] we show how to explicitly construct fν for each ν ∈ Λ(G). In particular, we show that

fν −
dν−1

dν
fνe|ν|fν =

∑
µ=ν+1

fµ, (10)

where ν − 1 ∈ Λ(G) is the unique neighbor of ν in RV(G) that is closer to 0 (i.e., |ν − 1| = |ν| − 1),
where the sum is over the neighbors µ = ν + 1 of ν in RV(G) that are farther from 0 (i.e., |µ| = |ν|+ 1),
and where dλ = dimGλ. In most cases, ν has degree 2, and there is a unique node of the form µ =
ν + 1, and thus (10) defines fµ uniquely. If ν has degree greater than 2, then we use other methods [1,
Sec. 1.8] to decompose the sum into the constituent fµ. This recursive construction is a generalization of
the construction of the Jones-Wenzl idempotent for SU2.

A branch node in the representation graph RV(G) is any vertex of degree greater than 2. Let br(G)
denote the set of branch nodes in RV(G). In the special case of RV(Cn) for n ≤ ∞, we consider the
affine node to be the branch node. Let the diameter of RV(G), denoted by diam(G), be the maximum
distance between any vertex λ ∈ Λ(G) and 0 ∈ Λ(G). For G = Cn, we let diam(G) = ñ as in (11).

G SU2 Cn Dn T O I C∞ D∞
diam(G) ∞ ñ n 4 6 7 ∞ ∞
br(G) ∅ {0} {1, n} {2} {3} {5} {0} {1}

ñ =

{
1
2n, if n is even,
n, if n is odd.

(11)

The Jones basic construction (see [8], [16], [9]) uses the ideal ZkekZk ⊆ Zk+1 to recursively study the
structure of Zk+1. We use it to prove the following theorem.

Theorem 12 ([1] Basic Construction) Let Zk = Zk(G) and let Z0 = C1. Then for k ≥ 1, except for the
two special cases in part (d), we have

(a) Zk+1 = ZkekZk ⊕ Nk+1, where ZkekZk is a two-sided basic construction ideal, and Nk+1 is a
commutative subalgebra spanned by { fν | |ν| = k + 1}. In particular, Nk+1 = 0 if k ≥ diam(G).

(b) Zk+1 = 〈Zk, ek〉 if k 6∈ br(G), and Zk+1 = 〈Zk, ek, f(k+1)〉 if k ∈ br(G).
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(c) Zk+1 is generated by {1, e1, . . . , ek} ∪ {f(`+1) | ` ∈ br(G), ` ≤ k}.
(d) TLk(2) ⊆ Zk for all k ≥ 0, and TLk(2) = Zk for 0 ≤ k ≤ min(br(G)).

(e) Two special cases: (i) if G = Cn, then Zñ = 〈Zñ−1, eñ−1,Ep,q, for p, q ∈ {−1, 1}〉, where Ep,q are
matrix units. (ii) if G = D2, then Z2 = 〈Z1, e1, fµ1

, fµ2
〉 where µ1, µ2 ∈ {(0′), (2), (2′)}, µ1 6= µ2.

Example 13 Compare these examples with their representation graphs RV(G) in Figure 2.

(a) If G = O, then br(O) = {3}, diam(O) = 6, and

Z1 = C1 = Cf(1) = Z0
∼= TL1(2) Z5 = Z4e4Z4 ⊕ Cf(5) = 〈Z4, e4〉

Z2 = Z1e1Z1 ⊕ Cf(2) = 〈Z1, e1〉 ∼= TL2(2) Z6 = Z5e5Z5 ⊕ Cf(6) = 〈Z5, e5〉
Z3 = Z2e2Z2 ⊕ Cf(3) = 〈Z2, e2〉 ∼= TL3(2) Z7 = Z6e6Z6 = 〈Z6, e6〉
Z4 = Z3e3Z3 ⊕ Cf(4) ⊕ Cf(4′) = 〈Z3, e3, f(4)〉 Zk+1 = ZkekZk = 〈Zk, ek〉, k ≥ 6.

(b) If G = D6, then br(D6) = {1, 5}, diam(D6) = 6, and

Z1 = C1 = Cf(1) = Z0
∼= TL1(2) Z5 = Z4e4Z4 ⊕ Cf(5) = 〈Z4, e4〉

Z2 = Z1e1Z1 ⊕ Cf(0′) ⊕ Cf(2) = 〈Z1, e1, f(2)〉 Z6 = Z5e5Z5 ⊕ Cf(6′) ⊕ Cf(6) = 〈Z5, e5, f(6)〉
Z3 = Z2e2Z2 ⊕ Cf(3) = 〈Z2, e2〉 Z7 = Z6e6Z6 = 〈Z6, e6〉
Z4 = Z3e3Z3 ⊕ Cf(4) = 〈Z3, e3〉 Zk+1 = ZkekZk = 〈Zk, ek〉, k ≥ 6.

5 Linear Bases
Let P0

2k(G) denote the set of paths on BV(G) of length 2k from 0 at level 0 to 0 at level 2k. Then
dimZk(G) = |P0

2k(G)|, and so it is natural to seek a basis {wp | p ∈ P0
2k(G)} of Zk(G) where each wp is

a word in the generators {1, e1, . . . , ek−1} ∪ { f(`+1) | ` ∈ br(G), ` < k}. For example, when G = SU2,
the centralizer is the Temperley-Lieb algebra Zk(SU2) ∼= TLk(2), the dimension is the Catalan number
Ck, the paths are Dyck paths, and the bijection to a basis of words in e1, . . . , ek−1 is given in [8, 2.8].
Here we generalize this result uniformly to the finite subgroups G ⊆ SU2.

For ` = min(br(G)), i.e., the first branch point, define

bi = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
(i−1) factors

⊗ f(`+1) ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
(k−i−`) factors

, 1 ≤ i ≤ k − `, for each G,

and define

ci = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
(i−1) factors

⊗ f(n) ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
(k−i−n+1) factors

, 1 ≤ i ≤ k − n+ 1, for G = Dn.

A path p ∈ P0
2k is a sequence p = (0 = p0, p1, . . . , p2k−1, p2k = 0), where each pi ∈ Λi(G) is a label

of an irreducible G-module that appears in V⊗i. A peak in a path p is a label pi such that |pi−1| < |pi| and
|pi| > |pi+1|. If a peak pi is marked with the prime symbol (e.g., 0′i or 4′i , etc), then pi is a nonstandard
peak. Otherwise it is said to be standard. To each peak pi we associate a product of generators called
block as follows

B(pi) = eαeα−1eα−2 · · · eβ , with α =
i+ |pi| − 2

2
and β =

i− |pi|+ 2

2
, (14)

B(p′i) = bβ , with β =
i− |pi|+ 2

2
, (15)
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where the bβ is replaced by a cβ in Dn if p′i = n′i. When G = T, we have the following special case,

(G = T) B(4′i) =

{
bα−2eαeα−1eα−2, with α = i+2

2 , if pi−2 = 2,

eαeα−1eα−2, with α = i+2
2 , if pi−2 = 4.

(16)

If G = Cn with n ≤ ∞ then there are further special cases for B(p′i) and B(ñ±i ) described in [7].
If p ∈ P0

2k(G) is a path in the Bratteli diagram, then we define the word wp of p as the product blocks
for each peak in p (see Example 19):

wp = B(pi1)B(pi2) · · ·B(pi`), where pi1 , pi2 , . . . , pi` are the peaks in p. (17)

Theorem 18 ([7] Basis Theorem) For G = SU2,Cn,Dn,C∞,D∞,T,O, or I, and k ≥ 0, the set
{ wp | p ∈ P0

2k(G) } is a basis for Zk(G).

Example 19 (Paths and their Corresponding Words) The following are examples of paths p in the Brat-
teli diagram BV(G) with their peaks circled and the corresponding words wp.

(a) In Z10(O)

p = (00, 11, 22, 33, 44, 55 , 46, 37, 48, 59, 610 , 511, 412, 313, 214, 115, 216, 317 , 218, 119, 020)

wp = (e4e3e2e1) (e7e6e5e3e3) (e9e8)

p = (00, 11, 22, 33, 44 , 35, 46, 57, 68 , 59, 410, 311, 4′12 , 313, 214, 115, 016, 117, 218 , 119, 020)

wp = (e3e2e1) (e6e5e4e3e2) (b3) (e9)

(b) In Z10(T)

p = (00, 11, 22, 33 , 24, 35 , 26, 17, 08, 19, 210, 3
′
11, 4′12 , 3

′
13, 214, 315, 416 , 317, 218, 119, 020)

wp = (e2e1) (e3e2) (b5e7e6e5) (e9e8e7)

p = (00, 11, 22, 33, 44 , 35, 46 , 37, 48 , 39, 210, 111, 012, 113, 214, 3
′
15, 4′16 , 3

′
17, 218, 119, 020)

wp = (e3e2e1) (e4e3e2) (e5e4e3) (b7e9e8e7)

(c) In Z10(D5)

p = (01, 11, 2′2 , 13, 24, 35, 46, 57 , 48, 5′9 , 410, 311, 212, 113, 014, 115, 216 , 117, 2′18 , 119, 020)

wp = (b1) (e5e4e3e2) (c3) (e8) (b9)

p = (00, 11, 22, 33, 44 , 35, 46, 57 , 48, 39, 210, 311, 412 , 313, 214, 115, 216, 317 , 218, 119, 020)

wp = (e3e2e1) (e5e4e3e2) (e7e6e5) (e9e8)

As above, if ν ∈ Λ(G), then |ν| equals the distance from 0 to ν in RV(G). Let eν := e|ν|, and let
dν = dimGν . For ν 6= 0, ν − 1 ∈ Λ(G) is the unique node that is connected to ν by an edge with
|ν − 1| = |ν| − 1. We say that µ = ν + 1 if µ ∈ Λ(G) is connected to ν by an edge and |µ| = |ν| + 1.
Finally we say that µ ≺ ν if µ is on the shortest path from 0 to ν.
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Theorem 20 (Presentation on Generators and Relations) For k ≥ 1 and k < ñ if G = Cn, the alge-
bra Zk(G) is generated by {1, e1, . . . , ek−1}∪{ fν | ν ∈ Λ(G), |ν| ≤ k} subject to the following relations:

(1) e2
i = 2ei; eiei±1ei = ei; eiej = ejei, |i− j| > 1;

(2) f2ν = fν; fνei = eifν = 0 for i < |ν|; fνei = eifν for i > |ν|; eν fνeν = dν

dν−1 fν−1eν;

(3)
∑

µ=ν+1

fµ = fν −
dν−1

dν
fνeν−1fν (and this equals 0 if no such µ exists);

(4) If |µ| ≤ |ν|, then fµfν = fνfµ = fµ, if µ ≺ ν, and fµfν = fνfµ = 0, if µ 6≺ ν.

The case of k ≥ ñ, for G = Cn requires some further notation and is handled in [7].

6 Exceptional McKay Centralizers and Partition Algebras
The exceptional groups are referred to as the binary tetrahedral, binary octahedral, and binary icosahedral
groups because modulo their centers Z(G) = {1,−1}, we have the following isomorphisms:

T/{1,−1} ∼= A4, the alternating group on 4 letters (rotation group of a tetrahedron),
O/{1,−1} ∼= S4, the symmetric group on 4 letters (rotation group of an octahedron),
I/{1,−1} ∼= A5, the alternating group on 5 letters (rotation group of an icosahedron).

Group elements act on V⊗2 = V ⊗ V diagonally: g · (vi ⊗ vj) = gvi ⊗ gvj . If g ∈ Z(G) = {1,−1} then
g acts on V as multiplication by 1 and −1, so it acts trivially on V⊗2. Thus, Z(G) is in the kernel of the
action on tensor powers V⊗k, with k even, and T, O, and I act the same as A4,S4, and A5, respectively

Furthermore, dim(V⊗2) = 4, and as a module for A4,S4, and A5 it decomposes in the following way:

V⊗2 ∼= A
(4)
4 ⊕A

(3,1)
4
∼= M, the permutation module for A4,

V⊗2 ∼= S
(4)
4 ⊕ S

(2,1,1)
4

∼= M̃, a “twisted” permutation module for S4,

V⊗2 ∼= A
(5)
5 ⊕A

(3,1,1)+

5
∼= ˜̃

M, which is not a permutation module for A5,

where here we are using usual integer partition notation to label the irreducible modules for Sn and An.
This means that

Z2k(T) ∼= EndA4
(M⊗k), Z2k(O) ∼= EndS4

(M̃⊗k), Z2k(I) ∼= EndA5
(
˜̃
M⊗k). (21)

The Martin-Jones partition algebras Pk(n) maps surjectively onto EndSn(M⊗k) for all n and isomorphi-
cally for n ≥ 2k, where M is the n-dimensional permutation representation of Sn (see [11], [12], [10]).
When M is restricted from Sn to An the corresponding partition algebra P̃k(n) is studied by Bloss [5].
The partition algebra Pk(n) has a basis indexed by set partitions of {1, 2, . . . , 2k} and a multiplication
given by set partition diagram concatenation. See [9] for a survey on partition algebras.

In [3, 4] we study the partition algebras EndSn(M⊗k) and EndAn(M⊗k) for n < 2k (“low rank”) and
for both the permutation module M = S

(n)
n ⊕S

(n−1,1)
n and its twisted counterpart M̃ = S

(n)
n ⊕S

(2,1n−1)
n .

This work gives us alternative precise descriptions of the centralizer algebras Z2k(T) and Z2k(O). In [3]
we do the following:
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′

′

1 2 3 2 1

2

1

A3 ⊆ A4

1 2 3 4 3 2 1

2

S3 ⊆ S4

Fig. 4: Restriction-induction graphs for A3 ⊆ A4 and S3 ⊆ S4. These graphs are isomorphic to the representation
graphs RV(T) and RV(O), respectively, which in turn equal the Dynkin diagrams of type Ê6 and Ê7. See Figure 2.

• Explicitly describe the kernel of Pk(n) → EndG(M⊗k), when n < 2k, for G = Sn,An and for
either the permutation module M = S(n) ⊕ S(n−1,1) or its twist S(n) ⊕ S(2,1n−1).
• Give two linear bases for the image EndG(M⊗k) in terms of a restricted collection of set partitions.

Combinatorially describe multiplication in both bases and give the change of basis matrix between
them in terms of the refinement ordering in the partition lattice Πn.

Furthermore, these partition algebras can be realized in terms of restriction and induction (this perspec-
tive is emphasized in [9]) in the following way. If U is any Sn module, then upon restriction from Sn
to Sn−1 followed by induction back to Sn we get IndSnSn−1

ResSnSn−1
(U) ∼= U ⊗M. This is an application

of the “tensor identity” (see [9, 3.18]). It follows that the module M⊗k is isomorphic to k iterations of
restriction and induction (starting with the trivial module). This process works both for Sn−1 ⊆ Sn and
An−1 ⊆ An. In Figure 6 we see this amazing correspondence: the restriction and induction graphs for
A3 ⊆ A4 and S3 ⊆ S4 correspond exactly to the representation graphs RV(T) and RV(O) and thus
also to the affine Dynkin diagrams Ê6 and Ê7. In particular, this reveals why the partition algebras also
work to describe the centralizer algebras Zk(T) and Zk(O) for k odd as well as k even. It remains an
open question to fully understand the connections between Zk(I) and the generalized partition algebra

EndA5(
˜̃
M⊗k), where ˜̃M is the A5 module A

(5)
5 ⊕A

(3,1,1)+

5 .
The irreducible representations of Pk(n) are labeled by integer partitions λ ` n with |λ#| ≤ k, where

if λ = (λ1, λ2, . . . , λ`) then λ# = (λ2, . . . , λ`). Using an inductive argument in [4], we give formulas
for these dimensions which to our knowledge are new:

dimPλk(n) =
∑̀
r=1

(−1)r−1Fλr

(
n−2∑

t=n−λr+r−1

(
t

n− λr + r − 1

){
k

t

})
+ fλ

({
k

n− 1

}
+

{
k

n

})
,

(22)
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where fλ is the number of standard tableaux of shape λ,
{
k
j

}
is the Stirling number of the 2nd kind, and

Fλr is defined by: (1) Fλ1 = fλ
#

, (2) Fλr = 0, if r > λr, and (3) Fλr =
∑
µ⊆λ, µr−1=µr=λr

Fµr−1 · fλ/µ, if
r > 1. We have analogous formulas in [4] for the partition algebras corresponding to An.
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