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Compatibility fans realizing
graphical nested complexes
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Abstact. Graph associahedra are polytopes realizing the nested complexN (G) on connected subgraphs of a graph G.
While all known explicit constructions produce polytopes with the same normal fan, the great variety of fan realiza-
tions of classical associahedra and the analogy between finite type cluster complexes and nested complexes incited
us to transpose S. Fomin and A. Zelevinsky’s construction of compatibility fans for generalized associahedra (2003)
to graph associahedra. Using a compatibility degree, we construct one fan realization of N (G) for each of its facets.
Specifying G to paths and cycles, we recover a construction by F. Santos for classical associahedra (2011) and extend
F. Chapoton, S. Fomin and A. Zelevinsky’s construction (2002) for type B and C generalized associahedra.

Résumé. Les associaèdres de graphe sont des réalisations polytopales du complexe emboı̂té N (G) des sous-graphes
connexes d’un graphe G. Si toutes les constructions explicites connues produisent des polytopes avec le même éventail
normal, la pléthore de réalisations de l’associaèdre classique et l’analogie entre complexes amassés de type fini et
complexes emboı̂tés nous ont incités à transposer la construction des associaèdres généralisés comme éventails de
compatibilité par S. Fomin et A. Zelewinsky (2003) aux associaèdres de graphe. Grâce à un degré de compatibilité,
nous construisons un éventail simplicial réalisantN (G) pour chacune de ses facettes. Quand G est un chemin ou un
cycle, nous retrouvons une construction de F. Santos de l’associaèdre classique (2011) et étendons celle de F. Chapo-
ton, S. Fomin et A. Zelewinsky (2002) pour les associaèdres généralisés de type B et C.

Keywords. Graph associahedra, finite type cluster algebras, compatibility degrees, compatibility fans

Many associahedra. The n-dimensional associahedron is a simple polytope whose vertices correspond to
Catalan objects (triangulations, binary trees, ...) and whose edges correspond to mutations between them
(diagonal flips, edge rotations, ...). It was first realized as a convex polytope by M. Haiman (unpublished)
and C. Lee [Lee89]. Since then many other polytopal constructions were found. J.-L. Loday [Lod04] gave
a combinatorial construction based on binary trees, later extended by C. Hohlweg and C. Lange [HL07]
to produce Θ(2n) geometrically nonequivalent realizations of the n-dimensional associahedron (meaning
that their normal fans are not linearly equivalent). Another combinatorial construction by F. Santos,
published in a paper of C. Ceballos, F. Santos and G. Ziegler [CSZ15, Section 5], produces asymptotically
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Fig. 1: All nonequivalent realizations of the 3-dimensional associahedra by F. Santos, including that of F. Chapoton,
S. Fomin and A. Zelevinsky (left). Figure from [CSZ15], with permission.

Catalan many geometrically nonequivalent constructions (see Figure 1). Both families intersect only in
one realization, due to F. Chapoton, S. Fomin and A. Zelevinsky [CFZ02].

This extended abstract reports on our paper [MP15] on two generalizations of classical associahedra,
namely graph associahedra realizing graphical nested complexes [CD06] and generalized associahedra
realizing finite cluster complexes [FZ02, FZ03]. We extend F. Santos’ construction to obtain many sim-
plicial fan realizations for graphical nested complexes. As byproducts, we get new constructions of typeB
and C generalized associahedra, including that of F. Chapoton, S. Fomin and A. Zelevinsky [CFZ02].

Graph associahedra. Given a simple graph G, the G-associahedron Asso(G) is a simple polytope whose
polar has a face lattice isomorphic to the nested complex Nest(G) on G. The latter is the simplicial com-
plex whose vertices, called tubes, are connected induced subgraphs of G, and whose facets, called tub-
ings, are sets of pairwise compatible (i.e. nested or disjoint and nonadjacent) tubes. Figure 2 shows that
the graph associahedra of certain special families of graphs coincide with well-known families of poly-
topes. Graph associahedra were realized as convex polytopes by successive truncations of faces of a
simplex [CD06], as Minkowski sums of faces of a simplex [Pos09, FS05], or from their normal fans by
exhibiting explicit inequality descriptions [Zel06]. For a given graph G, the resulting polytopes all have
the same normal fan which coarsens the type A Coxeter arrangement. Alternative realizations with differ-
ent normal fans were obtained by successive truncations of a cube in [Vol10, DFRS15]. Yet the resulting
normal fans are not explicitly described, nor compared. We provide a new unrelated family of complete
simplicial fans realizing the nested complex Nest(G) for any graph G.

Cluster algebras and cluster fans. Our construction is directly inspired from properties of finite type
cluster algebras introduced by S. Fomin and A. Zelevinsky in [FZ02, FZ03]. It follows the connection
between nested complexes and cluster complexes already pointed out by A. Zelevinsky in [Zel06].

A cluster algebra A is a commutative algebra generated by cluster variables grouped into clusters,
obtained from an initial cluster by successive mutations. A mutation exchanges a single variable in a
cluster according to a polynomial equality [FZ02]. Two cluster variables are compatible if they belong
to a same cluster and exchangeable if they are exchanged in a mutation. The cluster complex of A is
the simplicial complex on cluster variables of A whose facets are the clusters of A. Finite type cluster
algebras (i.e. with a finite cluster complex) are classified by crystallographic root systems [FZ03].

The Laurent Phenomenon [FZ02] asserts that each cluster variable x can be expressed as a Laurent
polynomial in terms of the cluster variables x◦1, . . . , x

◦
n of the initial cluster X◦. The d-vector of x

with respect to X◦ is the vector d(X◦, x) whose ith coordinate is the exponent of the initial variable x◦i
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Fig. 2: Some classical polytopes are graph associahedra: the classical associahedron is the path associahedron (left),
the cyclohedron is the cycle associahedron (right) and the permutahedron is the complete graph associahedron.

in the denominator of x. In finite type, this value was interpreted in [FZ03, CP15] as the compatibility
degree (x◦i ‖x) between the cluster variables x◦i and x. It only depends on x◦i and x and has the following
properties: for any distinct cluster variables x and x′, we have (x ‖x′) ≥ 0 with equality if and only if x
and x′ are compatible, and (x ‖x′) = 1 = (x′ ‖x) if and only if x and x′ are exchangeable. The d-vectors
can be used to construct a simplicial fan realization of the cluster complex, called d-vector fan: for certain
initial clusters in finite type cluster algebras, the cones generated by the d-vectors of all collections of
compatible cluster variables form a complete simplicial fan realizing the cluster complex. S. Fomin and
A. Zelevinsky [FZ03] show it for the bipartite initial cluster, S. Stella [Ste13] for all acyclic initial clusters,
and F. Santos [CSZ15, Section 5] for any initial cluster in type A. We expect this property to hold for any
initial cluster of any finite type cluster algebra. A consequence of our results is the following statement.

Theorem 1 Let A be any cluster algebra of finite type A,B or C. For any initial cluster X◦ of A,
the d-vectors with respect to X◦ support a complete simplicial fan realizing the cluster complex of A.

This statement is a corollary of our main result which concerns all graph associahedra (see Theorem 3).
In all papers mentioned above, the polytopality was also shown for all constructed fans. Even if we could
not show polytopality for all graph associahedra, we however prove it for finite cluster complexes.

Theorem 2 All fans constructed in Theorem 1 are polytopal. More precisely, any d-vector fan in typeA,B
or C is the normal fan of a simple polytope, realizing the corresponding generalized associahedron.

Overview. Our construction is an analogue of the d-vector fan for any graph associahedron Asso(G).
We define an asymmetric notion of compatibility degree on the tubes of G, with similar properties as the
compatibility degree in cluster complexes. Given an initial maximal tubing T◦ on G and a tube t of G,
we use our compatibility degree to define the primal (resp. dual) compatibility vector of t with respect
to T◦. Duality arises from the degree’s asymmetry. We will often abbreviate “primal compatibility” to
“compatibility”.

Although no denominator is involved anymore, we keep the letter d for compatibility degree vector,
and to match with the cluster algebra notations. Indeed, our compatibility degrees coincide with these
of [FZ03] in types A, B, and C: compatibility degrees on type A cluster variables correspond to compat-
ibility (and dual compatibility) degrees on tubes of paths while compatibility degrees on type C (resp. B)
cluster variables correspond to compatibility (resp. dual compatibility) degrees on tubes of cycles.
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In Section 1, we define precisely the previous notions on graph associahedra and state our main result.

Theorem 3 For any graph G, the primal (resp. dual) compatibility vectors of the tubes of G with respect
to any initial maximal tubing on G support a complete simplicial fan realizing the nested complexN (G).

In Section 2, we detail how type A,B and C cluster complexes arise as path and cycle associahedra
and thus how Theorem 3 implies Theorem 1. We moreover explain there how we derive Theorem 2.
We sketch in Section 3 the proof of Theorem 3. We finally discuss in Section 4 the number of different
realizations we get, with graph-analog results of F. Santos’ Catalan many realizations [CSZ15, Section 5].

1 Graph associahedra and compatibility fans
Fix a graph G with vertex set V, let κ(G) be its set of connected components, and set n := |V| − |κ(G)|.
A tube of G is a nonempty subset t of vertices of G inducing a connected subgraph G[t] of G. The
inclusion maximal tubes of G induce its connected components κ(G); all other tubes are called proper.
Two tubes t, t′ of G are compatible if they are either nested (t ⊆ t′ or t′ ⊆ t), or disjoint and nonadjacent
(t ∪ t′ is not a tube of G). A tubing on G is a set T of pairwise compatible proper tubes of G. The
collection of all tubings on G is a simplicial complex, called nested complex of G and denoted by N (G).

For a tubing T on G and a tube t of T∪κ(G), we define λ(t,T) := tr
⋃

t′∈T,t′(t t
′. It follows from the

definitions that the sets λ(t,T) for t ∈ T∪κ(G) form a partition of the vertex set of G. When moreover T
is maximal, one can see that each set λ(t,T) contains a unique vertex of G, that we call the root of t in T.

We call flip a pair of distinct maximal tubings T,T′ on G such that Tr {t} = T′ r {t′} for some
tubes t ∈ T and t′ ∈ T′. As mentioned before, the nested complex N (G) of G can be realized as the
boundary complex of a convex polytope [FS05, CD06, Zel06, Pos09, Vol10, DFRS15]. Therefore this
complex is an (n− 1)-dimensional simplicial sphere so that any tube of a maximal tubing can be flipped
into another tube, described in the following proposition.

Proposition 4 Let t be a tube in a maximal tubing T on G, and let t be the inclusion minimal tube
of T ∪ κ(G) which strictly contains t. Then the unique tube t′ such that T′ = T4{t, t′} is again a
maximal tubing on G is the connected component of G[tr λ(t,T)] containing λ(t,T).

We say that two distinct tubes t and t′ of G are exchangeable if there exists two adjacent maximal
tubings T,T′ on G such that T r {t} = T′ r {t′}. There might be several pairs {T,T′} satisfying this
condition, but in all cases the tubing T ∩ T′ has to contain some tubes depending only on t and t′, that
we call the forced tubes of the exchangeable pair {t, t′}. One can observe that the root λ(t,T) of t in T
and the root λ(t′,T′) of t′ in T′ do not depend on T nor on T′. The forced tubes are then precisely the
tube t := t∪ t′ and the connected components of G[tr (λ(t,T)∪λ(t′,T′))]. Figure 3 gathers illustrations
for all notions we just described on a graph Gex on 15 vertices.

Now for two tubes t, t′ of G, we define the compatibility degree of t with t′ to be the following quantity:

(t ‖ t′) :=


−1 if t = t′,

|{neighbors of t in t′ r t}| if t 6⊆ t′,

0 otherwise.
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Fig. 3: A tube t◦ex = {a, b, d, f, g, h, i, k, l} of Gex (top-left), a maximal tubing T◦ex on Gex (top-right)
and two maximal tubings related by a flip (bottom): the two exchanged tubes t◦ex = {a, b, c, d, f, g, h, k, l,m}
and t′ex = {c, d, e, h, i,m} are in dotted green while the six forced tubes are in red, and the seven others are in blue.

Example 5 On the graph Gex of Figure 3, the compatibility degrees of the green tubes t◦ex, t′ex (bottom left
and right respectively) and of the red tube t

◦
ex = t◦ex ∪ t′ex (bottom) with the tube t◦ex (top left) are given by

(t◦ex ‖ t◦ex) = |{i}| = 1, (t′ex ‖ t◦ex) = |{g}| = 1, (t
◦
ex ‖ t◦ex) = 0,

(t◦ex ‖ t◦ex) = |{c,m}| = 2, (t◦ex ‖ t′ex) = |{c, e,m}| = 3, (t◦ex ‖ t
◦
ex) = 0.

As the compatibility degree on cluster variables defined in [FZ03], our compatibility degree on tubes
encodes compatibility and exchangeability between cluster variables. In particular, it has the following
analogous key properties.

Proposition 6 For any two tubes t, t′ of G,
• (t ‖ t′) only depends on t and t′,
• (t ‖ t′) < 0 ⇐⇒ (t′ ‖ t) < 0 ⇐⇒ t = t′,
• (t ‖ t′) = 0 ⇐⇒ (t′ ‖ t) = 0 ⇐⇒ t and t′ are compatible,
• (t ‖ t′) = 1 = (t′ ‖ t) ⇐⇒ t and t′ are exchangeable.

Fix an initial maximal tubing T◦ := {t◦1, . . . , t◦n} on G. The primal (resp. dual) compatibility vector of
a tube t with respect to T◦ is d(T◦, t) := [(t◦1 ‖ t), . . . , (t◦n ‖ t)] (resp. d∗(t,T◦) := [(t ‖ t◦1), . . . , (t ‖ t◦n)]).
The primal (resp. dual) compatibility matrix of a maximal tubing T := {t1, . . . , tn} with respect to T◦

is d(T◦,T) := [(t◦i ‖ tj)]i,j∈[n] (resp. d∗(T,T◦) := [(ti ‖ t◦j )]i,j∈[n]). Our main result is given in the fol-
lowing statement, where R≥0M denotes the positive span of the column vectors of a matrix M.



832 Thibault Manneville and Vincent Pilaud

Fig. 4: Compatibility fans of the 3-path (left) and of the triangle (right).

Theorem 7 For any graph G, the compatibility vectors (resp. dual compatibility vectors) of all tubes of G
with respect to any initial maximal tubing T◦ on G support a complete simplicial fan realizing the nested
complex N (G) on G. More precisely, the two collections of cones,

D(G,T◦) :=
{
R≥0 d(T◦,T) | T tubing on G

}
and D∗(G,T◦) :=

{
R≥0 d

∗(T,T◦) | T tubing on G
}

are complete simplicial fans. We respectively call them the compatibility fan and the dual compatibility
fan of G with respect to T◦.

Figure 4 shows the compatibility fans of the 3-path and of the triangle (only connected graphs with
3 vertices). Any other choice of initial tubing would produce the same fans: it is clear for the triangle
as all maximal tubings are equivalent under graph isomorphisms and it is easy to check for the path.
The first interesting compatibility fans appear in dimension 3 for connected graphs on 4 vertices. All
possibilities up to linear transformations are represented in Figure 5 for the path, the cycle, the complete
graph and the star on 4 vertices. All other compatibility fans on connected graphs with 4 vertices can be
found in [MP15]. Instead of representing cones in the 3-dimensional space, we intersect the compatibility
vectors with the unit sphere, make a stereographic projection of the resulting points on the sphere (the
pole of the projection is the point of the sphere in direction −e1 − e2 − e3), and draw the cones on
the resulting planar points. Under this projection, the three external vertices correspond to the tubes of
the initial tubing, and the external face corresponds to the initial tubing. For the sake of readability, we
only gave the labels of the remaining vertices of the top pictures of Figure 5 while we only labeled the
initial tubes for the others. All labels can indeed be reconstructed from the initial tubes by flips. The
pictures become more complicated in dimension 4. Figure 6 represents the stereographic projection of
one compatibility fan for the path, the cycle, the complete graph, and the star on 5 vertices.

The next step would be to find convex polytopes with our fans as normal fans. This question remains
open for now, except for some particular graphs. We checked it computationally for all graphs with at
most 4 vertices, for complete graphs with at most 7 vertices, and we settled the case of paths and cycle in
Theorem 2, which follows a similar proof as [CSZ15]. We conjecture a positive answer in full generality.

Conjecture 8 All primal and dual compatibility fans of any graph G are normal fans of convex polytopes.
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Fig. 5: All possible compatibility fans up to linear isomorphism, for the path, the cycle, the complete graph and the
star on 4 vertices . Instead of representing the cones in the 3-dimensional space, we intersect the compatibility vectors
with the unit sphere, make a stereographic projection of the resulting points on the sphere (the pole of the projection
is the point of the sphere in direction −e1 − e2 − e3), and draw the cones on the resulting points in the plane.
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Fig. 6: Stereographic projection of one compatibility fan for the path, cycle, complete graph and star on 5 vertices.

2 Link with type A,B and C cluster complexes
We now show that our compatibility degree in path and cycle nested complexes matches the compatibility
degree in the type A,B and C cluster complexes of S. Fomin and A. Zelevinsky [FZ03, CP15].

2.1 Type A and paths
The n-dimensional cluster complex of type A is the classical simplicial associahedron. Its combinatorial
model is the simplicial complex of sets of pairwise noncrossing diagonals of an (n+3)-gon. It can be seen
as the nested complex of an (n+ 1)-path Pn+1: consider an (n+ 3)-gon Qn+3 with vertices labeled from
left to right by 0, 1, . . . , n+2 and such that 1, . . . , n+1 are located below the edge [0, n+2] (see Figure 7).
We identify Pn+1 with the path 1, . . . , n + 1 on the boundary of Qn+3, and associate to a diagonal δ
of Qn+3 the tube tδ of Pn+1 whose vertices are located strictly below δ (see Figure 7). We associate
to a set ∆ of pairwise noncrossing internal diagonals of Qn+3 the set of tubes T∆ := {tδ | δ ∈ ∆}. The
map ∆ 7→ T∆ is an isomorphism between the simplicial associahedron and the nested complexN (Pn+1).
The behavior of this isomorphism with respect to the compatibility degrees is described as follows.

Proposition 9 For any two internal diagonals δ and δ′ of Qn+3, the compatibility degree between the
corresponding tubes tδ and tδ′ of Pn+1 is given by the following formula.

(tδ ‖ tδ′) =


−1 if δ = δ′,
0 if δ 6= δ′ do not cross,
1 if δ 6= δ′ cross.
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Fig. 7: Isomorphism between the simplicial associahedron and the nested complex of a path: it sends the diagonals
of the polygon to tubes (left), and preserves both compatibility (middle) and incompatibility (right).

In other words, our compatibility degree between tubes of Pn+1 coincides with the compatibility degree
of S. Fomin and A. Zelevinsky in [FZ03] between type A cluster variables. Our compatibility fans for
paths are thus typeA denominator fans, and we obtain a new proof of F. Santos’ result [CSZ15, Section 5].

2.2 Types B and C, and cycles
The n-dimensional cluster complex of type B is the classical simplicial cyclohedron. Its combinatorial
model is the simplicial complex of sets of pairwise noncrossing pairs of centrally symmetric diagonals
(and duplicated long diagonals) of a regular (2n+ 2)-gon R2n+2. It can be seen as the nested complex of
an (n+ 1)-cycle On+1: we label the vertices of R2n+2 cyclically with two copies of [n+ 1] and associate
• to a duplicated long diagonal δ with vertices labeled by i the tube tδ := [n+ 1] r {i} of On+1,
• to a pair of centrally symmetric diagonals {δ, δ̄} the tube tδ of On+1 which consists in the labels of

the vertices of R2n+2 that are strictly separated from the center of R2n+2 by δ and δ̄ (see Figure 8).
As we did in type A, we finally associate to a set ∆ of pairwise noncrossing pairs of centrally symmetric
diagonals of R2n+2 the set of tubes T∆ := {tδ | δ ∈ ∆}. The map ∆ 7→ T∆ defines an isomorphism
between the simplicial cyclohedron and the nested complex N (On+1). This isomorphism behaves as
follows with respect to the compatibility degrees.

Proposition 10 For any two pairs of centrally symmetric diagonals (or duplicated long diagonals) {δ, δ̄}
and {δ′, δ̄′} of the (2n + 2)-gon R2n+2, the compatibility degree (tδ ‖ tδ′) of the corresponding tubes tδ
and tδ′ of On+1 is the number of crossings between the two diagonals δ and δ̄ and the diagonal δ′.

Our compatibility (resp. dual compatibility) degree between tubes of On+1 thus coincides with the
compatibility degree of S. Fomin and A. Zelevinsky in [FZ03] between type C (resp. B) cluster vari-
ables. Our graphical compatibility (resp. dual compatibility) fans for cycles are thus type C (resp. B)
denominator fans.

Finally, as we have a good control on the geometry of the compatibility fans for paths and cycles (in
particular, a sufficient understanding of the linear dependencies among the compatibility vectors of tubes
involved in a flip), we can give explicit height functions showing that all the paths and cycles compatibility
fans are polytopal. The following statement summarizes the results of this section.

Theorem 11 In types A,B and C, the denominator vectors (or compatibility vectors) of cluster vari-
ables with respect to any initial cluster support a complete simplicial fan realizing the cluster complex.
Moreover, this fan is the normal fan of a simple convex polytope.
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Fig. 8: Isomorphism between the simplicial cyclohedron and the nested complex of a cycle: it sends centrally sym-
metric pairs of diagonals of the polygon (left) to tubes (right), and preserves both compatibility and incompatibility.

3 A sketch of proof for the main statement
Our proof for Theorem 7 relies on the following classical result of polyhedral geometry. We follow the
presentation of [DRS10, Corollary 4.5.20].

Proposition 12 For a simplicial sphere ∆ with vertex set X and a set of vectors V := (vx)x∈X of Rn,
the collection of cones

{
R≥0V4 | 4 ∈ ∆

}
, where R≥0V4 denotes the positive span of the set of

vectors V4 := {vx | x ∈ 4}, forms a complete simplicial fan if and only if
1. there exists a facet 4 of ∆ such that V4 is a basis of Rn and such that the open cones R>0V4

and R>0V4′ have an empty intersection for any facet4′ of ∆ distinct from4;
2. for any two adjacent facets4,4′ of ∆ with4r {x} = 4′ r {x′}, the coefficients α, α′ have the

same sign (and different from 0) in the unique (up to rescaling) linear dependence on V4∪4′

αvx + α′ vx′ +
∑

y∈4∩4′

βy vy = 0.

The properties of our degree (see Proposition 6) imply that the initial tubing T◦ := {t◦1, . . . , t◦n} satisfies
the first condition of Proposition 12. So we just need to check the second condition, which in our setting
rephrases as follows. For any two adjacent maximal tubings T,T′ on G, with Tr {t} = T′ r {t′}, the
coefficients of d(T◦, t) and d(T◦, t′) (resp. of d∗(t,T◦) and d∗(t′,T◦)) in the linear dependence on the
primal (resp. dual) compatibility vectors of the tubes of T ∪ T′ have the same sign.

A first trick allows us to restrict the proof only to primal compatibility fans: the previous condi-
tion can be reformulated as a constraint on the determinants of the compatibility matrices of T and T′,
namely det(d(T◦,T)) · det(d(T◦,T′)) < 0. Using the straightforward equality d∗(T,T◦) = d(T,T◦)t,
we obtain that the products det(d∗(T,T◦)) · det(d∗(T′,T◦)) have the same signs for all initial maximal
tubings T◦. This concludes since det(d∗(T,T)) · det(d∗(T′,T)) < 0 by Proposition 6.

Consider now two adjacent maximal tubings T,T′ with Tr{t} = T′r{t′}. As mentioned in Section 1,
the tubings T and T′ both have to contain the tube t := t ∪ t′ and the connected components t1, . . . tk
of G[t∩ t′]. Suppose that an initial tube t◦i is not contained in t, then its degree with any tube t′′ contained
in t is given by (t◦i ‖ t′′) = |{neighbors of t◦i in t′′r t◦i }|. Writing (t◦i ‖ t) for

∑
1≤`≤k(t◦i ‖ t`), we derive

by inclusion-exclusion that (t◦i ‖ t) + (t◦i ‖ t′) = (t◦i ‖ t) + (t◦i ‖ t).
If now no initial tube is contained in t, then this formula is fulfilled coordinatewise by the compatibility

vectors of t, t′, t and the components of t. So it is the linear dependence that we are looking for, and it
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has the property we expect. The problem is that the compatibility degree sometimes equals zero without
reflecting any cardinality. In this case it means that an initial tube is contained in t. We solve this problem
by showing something more precise, and thus stronger, than the second condition of Proposition 12.

Theorem 13 Let G be a simple graph and T◦ an initial maximal tubing on G. Let T,T′ be two adjacent
maximal tubings on G with Tr {t} = T′r {t′}. In the linear dependence on compatibility vectors of the
tubes in T ∪ T′ with respect to T◦, the coefficients of d(T◦, t) and d(T◦, t′) have the same sign, and the
support of the dependence is contained in compatibility vectors of tubes of T∪T′ contained in t := t∪ t′.

Theorem 13 is obtained by induction on the size of t. To do this, we need additional technical results,
in particular a method to find a first suitable linear dependence for a pair of exchangeable tubes t and t′

of G. For this we suppose that the previous inclusion-exclusion formula do not hold, so that some initial
tubes are contained in t. We then define adjacent maximal tubings T,T′ on G with Tr {t} = T′ r {t′}
in which some tubes contained in t control the contribution of such initial tubes. See [MP15] for details.

4 Many nonequivalent fan realizations
We conclude this extended abstract with some considerations on the number of distinct compatibility
fans obtained in Theorem 7 up to geometrical equivalence. Following [CSZ15], we consider that two
compatibility fans of two graphs G and G′ are equivalent if they differ by a linear isomorphism. Such a
linear isomorphism induces an isomorphism between the nested complexes N (G) and N (G′), which is
in turn induced by a graph isomorphism between G and G′, except maybe for graphs that we call spiders
(consisting of disjoint paths one of whose endpoints belong to a single clique, see Figure 9).

Theorem 14 The nested complex isomorphisms N (G) → N (G′) are exactly those induced by graph
isomorphisms G→ G′, unless G and G′ are isomorphic and have a connected component being a spider.

Corollary 15 If no connected component of G is a spider, then equivalence classes of compatibility fans
of G are in bijection with orbits of the action of the automorphism group of G on maximal tubings on G.

When G is a spider, the automorphism group of N (G) is generated by automorphisms induced by
graph isomorphisms together with an additional nested complex automorphism Ω with the property that
(t ‖ t′) = (Ω(t′) ‖Ω(t)) for any two tubes t, t′ of G. The action of Ω on tubes is illustrated in the example
of Figure 9. Details can be found in [MP15].

Fig. 9: A spider with a tubing T (left) and its image Ω(T) (right) by the nested complex automorphism Ω of the spider.
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