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Let Sa,b denote the sequence of leading digits of an in base b. It is well known that if a is not a rational power of
b, then the sequence Sa,b satisfies Benford’s Law; that is, digit d occurs in Sa,b with frequency logb(1 + 1/d), for
d = 1, 2, . . . , b− 1.

In this paper, we investigate the complexity of such sequences. We focus mainly on the block complexity, pa,b(n),
defined as the number of distinct blocks of length n appearing in Sa,b. In our main result we determine pa,b(n) for all
squarefree bases b ≥ 5 and all rational numbers a > 0 that are not integral powers of b. In particular, we show that,
for all such pairs (a, b), the complexity function pa,b(n) is an affine function, i.e., of the form pa,b(n) = ca,bn+da,b
for all n ≥ 1, with coefficients ca,b ≥ 1 and da,b ≥ 0, given explicitly in terms of a and b. We also show that the
requirement that b be squarefree cannot be dropped: If b is not squarefree, then there exist integers a with 1 < a < b
for which pa,b(n) is not of the above form.

We use this result to obtain sharp upper and lower bounds for pa,b(n) and to determine the asymptotic behavior of this
function as b → ∞ through squarefree values. We also consider the question which affine functions p(n) = cn+ d
arise as the complexity function pa,b(n) of some leading digit sequence Sa,b.

We conclude with a discussion of other complexity measures for the sequences Sa,b and some open problems.
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1 Introduction
1.1 Benford’s Law
The celebrated Benford’s Law, named after Frank Benford [Ben38], states that leading digits in many data
sets tend to follow the Benford distribution, given by

P (d) = log10

(
1 +

1

d

)
, d = 1, 2, . . . , 9. (1.1)

Thus, in a data set following this distribution, approximately log10 2 ≈ 30.1% of the numbers begin with
digit 1, approximately log10(3/2) ≈ 17.6% begin with digit 2, while only around log10(10/9) ≈ 4.6%
begin with digit 9.

Benford’s Law has been found to be a good match for a wide range of real world data ranging from
street addresses to populations of cities and accounting data, and it has become an important tool in

ISSN 1365–8050 c© 2020 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

ar
X

iv
:1

80
4.

00
22

1v
5 

 [
m

at
h.

N
T

] 
 2

6 
A

pr
 2

02
0

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/4430


2 Xinwei He, A.J. Hildebrand, Yuchen Li, Yunyi Zhang

detecting tax and accounting fraud. Several books on the topic have appeared in recent years (see, e.g.,
[BH15], [Mil15], [Nig12]), and nearly one thousand articles have been published (see [BHR17]).

In recent decades, there has been a growing body of literature investigating Benford’s Law for math-
ematical sequences. Benford’s Law has been shown to hold (in the sense of asymptotic density) for
large classes of sequences, including exponentially growing sequences such as the powers of 2 and the Fi-
bonacci numbers, factorials, and the partition function; see, for example, Raimi [Rai76], Diaconis [Dia77],
Hill [Hil95], Anderson et al. [ARS11], and Massé and Schneider [MS15].

While the global distribution and the global fit to Benford’s Law have been extensively investigated for
large classes of arithmetic sequences and are now well understood, the local distribution of such sequences
remains to a large extent unexplored, and more mysterious. Recent work (see [CFH+] and [CHL19])
revealed that most (but not all) of the classes of sequences that are known to satisfy Benford’s Law have
poor local distribution properties, in the sense that k-tuples of leading digits of consecutive terms in
the sequence do not behave like k independent Benford-distributed random variables. This is illustrated
in Table 1, which shows the leading digits (in base 10) of the first 50 terms of the sequences {an},
a = 2, . . . , 9. While the global distribution of digits in this table is roughly as predicted by Benford’s Law
(for example, 30% of the 400 digits in the table are 1), the local distribution is completely different: In
some cases (e.g., for the sequence {2n}) the leading digits seem to follow a near-periodic pattern, while
in other cases (e.g., for the sequence {9n}) they show excessive repetition in leading digits. In either case,
there is a strong dependence of leading digits of consecutive terms of the sequence.

Sequence Leading digits of first 50 terms (concatenated)
{2n} 2481361251 2481361251 2481361251 2481361251 2481371251
{3n} 3928272615 1514141313 1392827262 6151514141 3139282727
{4n} 4162141621 4162141621 4172141721 4172141731 4173141731
{5n} 5216317319 4216317319 4215217319 4215217319 4215217318
{6n} 6321742116 3217421163 2174211632 1742116321 8421163218
{7n} 7432118542 1196432117 5321196432 1175321196 4321175321
{8n} 8654322111 8654322111 9754332111 9765432211 1865432211
{9n} 9876554433 3222211111 1987765544 3332222111 1119877655

Tab. 1: Leading digits (in base 10) of the first 50 terms of the sequences {an}, a = 2, . . . , 9.

Similar behavior can be found in more general sequences. For example, in [CHL19] it is shown that
sequences of the form {2p(n)}, where p(n) is a polynomial, have excellent global, but poor local distri-
bution properties with respect to Benford’s Law. On the other hand, numerical data obtained in [CFH+]
suggests that the leading digits of the sequence {2pn}, where pn is the n-th prime, satisfy Benford’s Law
on both the global and the local scale.

1.2 Complexity of sequences
In this paper we investigate leading digit sequences from the point of view of complexity. The “com-
plexity” of a sequence S = {an} over a finite set of symbols (for example, the digits 1, 2, . . . , 9) can
be measured in a variety of ways; see the surveys of Allouche [All12], Ferenczi [Fer99], and Kamae
[Kam12] for an overview of different complexity measures. Here we will use as our primary complexity
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measure the block complexity(i) defined as the function p(n) = pS(n) that counts the number of distinct
“blocks” of length n (i.e., n-tuples of consecutive terms) occurring in a sequence S.

The block complexity function pS(n) is the most commonly used complexity measure for arithmetical
sequences S and has been extensively studied. It is easy to see that the function pS(n) is bounded if
and only if the sequence S is eventually periodic. On the other hand, for random sequences, the block
complexity function pS(n) grows at an exponential rate; more precisely, it satisfies pS(n) = kn, where k
is the number of distinct symbols in the sequence. In between these two extremes there is a rich spectrum
of sequences with intermediate levels of complexity and corresponding rates of growth of pS(n). We refer
to the papers cited above—in particular, Ferenczi [Fer99]—for further details, examples, and references.

1.3 The leading digit sequences Sa,b

Our main focus in this paper will be on leading digit sequences for geometrically growing sequences such
as those shown in Table 1. More precisely, given an integer b ≥ 3 and a real number a > 0, we consider
the sequence Sa,b of leading digits of an in base b; that is, Sa,b is defined as

Sa,b = {Db(a
n)}∞n=1, (1.2)

where Db(x) denotes the leading digit of x in base b, defined by

Db(x) = d⇐⇒ d · bk ≤ x < (d+ 1)bk for some k ∈ Z (d = 1, 2, . . . , b− 1). (1.3)

We denote by pa,b(n) the associated (block) complexity function, i.e., the number of distinct blocks of
length n occurring in the sequence Sa,b. More formally, pa,b(n) is given by

pa,b(n) = pSa,b
(n) = #{(Db(a

m), . . . , Db(a
m+n−1)) : m = 1, 2, . . . }. (1.4)

The data in Table 1 suggests that the sequences Sa,b, while not being periodic, have low complexity.
More extended computations confirm this: Figure 1 shows the behavior of the “empirical” complexity
functions pa,10(n) for selected values of a and n ≤ 100, based on the first 100, 000 terms of the se-
quence.(ii)

(i) Equivalent terms for “block complexity” are subword complexity and factor complexity, with an infinite sequence being con-
sidered an infinite word over a given alphabet. The terminology we are using here—block complexity—is the one found in the
mathematical literature on the subject, e.g., the surveys by Allouche [All12] and Ferenczi [Fer99].

(ii) We use the term “empirical” here to emphasize the fact that the data were obtained by counting the number of distinct blocks of
length n observed in a finite (though very large) initial segment of the sequence and thus are not necessarily equal to the actual
complexity function. However, the theoretical results we will prove here confirm the data presented in Figure 1.
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Fig. 1: Empirical complexity functions for the leading digit sequences of {2n}, {3n}, {5n}, {9n} in base 10, based
on the first 100, 000 terms of these sequences.

The figure suggests that the functions pa,10(n) grow at a linear rate, with slopes depending on the value
of a, though the precise nature of this dependence is unclear. Motivated by questions such as these, we
seek to develop a complete understanding of the complexity of the sequences Sa,b.

1.4 Coding sequences of rotations
Given real numbers α > 0 and x and a partition of the unit interval 0 = β0 < β1 < · · · < βp = 1,
the associated “coding sequence” S = {sn} is a sequence on {1, 2, . . . , p} defined by letting sn = k
if and only if {nα + x} ∈ [βk−1, βk) (where {t} = t − btc denotes denotes the fractional part of t).
Such sequences have been extensively studied in the literature; see, e.g., Alessandri and Berthé [AB98],
and Berstel and Vuillon [BV02]. In particular, it is known (see, e.g., [AB98, Theorem 10]) that the
complexity function of a coding sequence with irrational rotation α is ultimately affine, i.e., is of the form
p(n) = cn+ d for sufficiently large n (though in general not for all n ≥ 1).

The leading digit sequences Sa,b defined above can be viewed as a special type of coding sequence.
To see this, note that (cf. Lemma 3.1 below) an has leading digit d in base b if and only if {n logb a} ∈



Complexity of Leading Digit Sequences 5

[logb d, logb(d + 1)), for d = 1, 2, . . . , b − 1. Thus, Sa,b is the coding sequence associated with the
numbers α = logb a and x = 0, and the partition 0 = logb 1 < logb 2 < · · · < logb (b− 1) < logb b = 1.
It follows from the general result mentioned above that, if logb a is irrational, then the complexity function
pa,b(n) of Sa,b is ultimately affine, i.e., of the form cn+ d for all sufficiently large n.

In this paper we will show that, when a is rational, then, under some mild additional assumptions, the
complexity function pa,b(n) is affine in the full sense, i.e., of the form cn+ d for all n ≥ 1.

1.5 Summary of results and outline of paper
In Section 2 we state our main result, Theorem 2.2, which completely determines the complexity function
pa,b(n) of the leading digit sequence Sa,b, for any squarefree base b ≥ 5 and any positive rational number
a that is not an integral power of b. We show that, under these assumptions, pa,b(n) is an affine function,
i.e., satisfies

pa,b(n) = ca,bn+ da,b, n = 1, 2, 3, . . . , (1.5)

we give explicit formulas for the coefficients ca,b and da,b in (1.5), and we derive several corollaries from
this result.

To complement Theorem 2.2, we show in Theorem 2.3 and Corollary 2.4 that the requirement that b
be squarefree cannot be dropped: For any non-squarefree integer b ≥ 5 there exists an integer a with
1 < a < b such that the complexity function pa,b(n) is not of the form (1.5) with ca,b ≥ 1.

In Section 3 we prove Theorems 2.2 and 2.3. Our approach uses results and techniques from the theory
of dynamical systems generated by irrational “shifts” on the torus T, along with some number-theoretic
arguments.

In Section 4 we consider extreme values of the complexity function pa,b(n). We show that, under the
above assumptions on a and b, the complexity function pa,b(n) satisfies⌊

b− 1

2

⌋
n+

⌈
b− 1

2

⌉
≤ pa,b(n) ≤ (b− 1)n, n = 1, 2, . . . ,

and that the upper and lower bounds are both sharp.
In Section 5 we determine the asymptotic behavior of the “slope” ca,b in (1.5) as b → ∞ while a is

fixed. In particular, we show that if a is an integer ≥ 2, then the slope ca,b satisfies

ca,b ∼
(

1− 1

a

)
b

as b→∞ through squarefree values.
In Section 6 we consider the question which complexity functions p(n) can be realized as the com-

plexity function pa,b(n) of a leading digit sequence Sa,b of the above type. By (1.5) such a complexity
function is necessarily affine. However, not all affine functions cn+ d arise in this manner, and the ques-
tion of which pairs (c, d) of coefficients correspond to leading digit complexity functions leads to some
interesting number-theoretic problems.

In Section 7 we consider another complexity measure, the “cyclomatic” complexity, which has been
originally developed as a measure for the complexity of a graph and was adapted to the context of leading
digit sequences by Iyengar et al. [IRU83] and Kak [Kak83]. We will determine the cyclomatic complexity
for sequences of the form Sa,b.

In the final section, Section 8, we discuss some related work and present some open problems.
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2 The complexity of Sa,b: Main results
2.1 Notations and conventions
We let (n,m) denote the greatest common divisor of two integers n and m. We denote by bxc and dxe
the floor and ceiling functions, defined as the largest integer ≤ x, resp. the smallest integer ≥ x. We let
{x} = x− bxc denote the fractional part of x.

Throughout this paper we assume that b is an integer ≥ 3 and a is a positive real number. For our main
results we will restrict b and a further as follows:

Definition 2.1 (Admissible pairs). A pair(iii) (a, b) is called admissible if

(i) b is a squarefree integer ≥ 5; and

(ii) a is a positive rational number that is not an integral power of b.

Given an admissible pair (a, b), we can represent the (rational) number a uniquely in the form

a =
r

s
bk, k ∈ Z, r, s ∈ N, (r, s) = 1, 1 <

r

s
< b. (2.1)

In particular, if 1 < a < b, then the integer k in (2.1) is 0, so the representation (2.1) reduces to a = r/s,
the standard representation of a as a reduced rational number.

2.2 Main result
We are now ready to state our main result, which completely describes the complexity function of Sa,b,
for any admissible pair (a, b).

Theorem 2.2 (Complexity of Sa,b: Main Result). Let (a, b) be an admissible pair and let r and s be
defined by (2.1). Then the complexity function pa,b(n) of Sa,b satisfies

pa,b(n) = ca,bn+ da,b, n = 1, 2, . . . , (2.2)

where

ca,b = b− 1−
⌊
b− 1

r

⌋
−
⌊

(b, r)− 1

s

⌋
, (2.3)

da,b = b− 1− ca,b =

⌊
b− 1

r

⌋
+

⌊
(b, r)− 1

s

⌋
. (2.4)

In particular, this result shows that pa,b(n) is an affine function for n ≥ 1, with ca,b and da,b represent-
ing, respectively, the slope and intercept of this function. Note that, by (2.4), ca,b and da,b are related by
the constraint ca,b + da,b = b − 1. Thus, the complexity function pa,b(n) is completely determined by
either of the quantities ca,b and da,b and the base b.

Table 2 gives a numerical illustration of the formulas of Theorem 2.2, showing the complexity functions
for the leading digit sequences Sa,b for a = 2, 3, . . . , 9 and selected squarefree bases. In particular, the
results for b = 10 confirm the empirical observations made in Figure 1.
(iii) The tuple notation, (a, b), used in this definition is also the notation for the greatest common divisor. However, this will not

cause any confusion as the meaning will always be clear from the context.
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Sequence {an} {2n} {3n} {4n} {5n} {6n} {7n} {8n} {9n}
b = 5 2n+ 2 3n+ 1 3n+ 1 4n 4n 4n 4n
b = 6 2n+ 3 2n+ 3 3n+ 2 4n+ 1 5n 4n+ 1 3n+ 2
b = 7 3n+ 3 4n+ 2 5n+ 1 5n+ 1 5n+ 1 6n 6n
b = 10 4n+ 5 6n+ 3 6n+ 3 4n+ 5 7n+ 2 8n+ 1 7n+ 2 8n+ 1

Tab. 2: The complexity functions pa,b(n) for selected values of a and b, computed using the formulas of Theorem
2.2. Blank entries correspond to pairs (a, b) that are not admissible, i.e., cases where a is an integral power of b.

It is natural to ask to what extent the restrictions imposed by the admissibility requirement can be
relaxed. The following remarks address this question:

(1) The requirement that a is not an integral power of b serves to exclude trivial situations such as the
sequence {10n} in base 10. Indeed, it is not hard to see that whenever a is a rational power of b,
the sequence Sa,b is periodic, and hence has a bounded complexity function. We remark that, under
the additional assumptions (which are part of the admissibility condition) that b is squarefree and a
is rational, the two conditions “a is not an integral power of b” and “a is not a rational power of b”
are equivalent (cf. the proof of Corollary 3.3 below).

(2) We have stated our result only for rational values of a as this is the most interesting, and most
challenging, case. The result could be extended to irrational values of a, but complications arise in
certain special cases, such as the sequence {(

√
2)n}. One can show that for all but countably many

irrational numbers a one has

pa,b(n) = (b− 1)n, n = 1, 2, . . . .

In particular, pa,b(n) is of this form whenever a is a transcendental number and b an arbitrary
integer ≥ 4, not necessarily squarefree.

(3) The purpose of the restriction b ≥ 5 is to avoid technical complications that arise in the case b = 3
and which would require a separate treatment of this case. (These complications are due to the fact
that, when b = 3, the interval [logb 1, logb 2) has length > 1/2, whereas for b ≥ 4 all intervals
[logb d, logb(d + 1)), d = 1, . . . , b − 1, have length ≤ 1/2; cf. the footnote at the end of the proof
of Lemma 3.4.)

(4) The most significant restriction in Theorem 2.2 is the requirement that the base b be squarefree. The
results below show that this restriction is, in a sense, best-possible. The restriction could, however,
be replaced by other restrictions involving both a and b. For example, we have pa,b(n) = (b− 1)n
for n ≥ 1 whenever a and b are positive integers satisfying a > b ≥ 4 and (a, b) = 1.

Theorem 2.3 (Complexity of Sa,b: A counter-example). Let b ≥ 5 and a ≥ 2 be integers such that a2 is
a divisor of b, and b is not a rational power of a. Then

pa,b(3)− pa,b(2) 6= pa,b(2)− pa,b(1). (2.5)

In particular, under the above assumptions on a and b, the complexity function pa,b(n) is not affine for
n ≥ 1.
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Corollary 2.4 (Failure of Theorem 2.2 for non-squarefree bases). Given any non-squarefree integer b ≥ 5,
there exists an integer a with 1 < a < b such that pa,b(n) is not of the form

pa,b(n) = cn+ d, n = 1, 2, . . . (2.6)

for some integers c ≥ 1 and d.

Proof: Given a non-squarefree integer b ≥ 5, let q be a prime such that q2 divides b, and take a = q. If
b is not a power of q, then Theorem 2.3 yields the desired conclusion. If b is a power of q, say b = qk

with k ≥ 2, then the sequence Sa,b of leading digits of an(= qn) in base b = qk is the periodic sequence
q, q2, . . . , qk−1, 1, q, q2, . . . , qk−1, 1, q, q2, . . . , and hence has bounded complexity function pa,b(n). In
particular, (2.6) cannot hold with a positive coefficient c.

We remark that, while for non-squarefree bases b ≥ 5 and values of a that are not rational powers of
b, the complexity function pa,b(n) in general is not affine for all n ≥ 1, the general results about codings
of irrational rotations mentioned above (e.g., [AB98, Theorem 10]) imply that pa,b(n) is ultimately affine,
i.e., is of the form pa,b(n) = cn+ d for n ≥ n0, for suitable integers n0, c and d. However, determining
explicit values of the coefficients c and d and thus obtaining a result analogous to Theorem 2.2 for non-
squarefree values of b, seems to be a highly nontrivial task. (In particular, the formulas (2.3) and (2.4) are,
in general, not valid when b is not squarefree.)

2.3 Corollaries and special cases
Corollary 2.5 (Special Case: Integer Values a). Let b ≥ 5 be squarefree and let a be a positive integer
that is not an integral power of b. Then we have:

(i) If 1 < a < b, then

pa,b(n) =

(
b−

⌊
b− 1

a

⌋
− (a, b)

)
n+

⌊
b− 1

a

⌋
+ (a, b)− 1, n = 1, 2, . . . (2.7)

(ii) If a > b and (a, b) = 1, then

pa,b(n) = (b− 1)n, n = 1, 2, . . . . (2.8)

Proof: The assumptions on a and b ensure that the pair (a, b) is admissible, so we can apply the formulas
of Theorem 2.2. Since pa,b(n) = ca,bn+ da,b and da,b = b− 1− ca,b (see (2.4)), it suffices to show that

da,b =

{⌊
b−1
a

⌋
+ (a, b)− 1 if 1 < a < b,

0 if a > b and (a, b) = 1.
(2.9)

Suppose first that a is an integer satisfying 1 < a < b. Then in (2.1) we have r = a and s = 1. Hence
the last term in (2.4) reduces to (b, r)− 1 = (b, a)− 1, and (2.9) follows.

Now suppose that a is an integer satisfying a > b and (a, b) = 1. Then in the representation (2.1) we
have r = a and s = bk, where k is such that bk < a < bk+1. Therefore (b, r) = (b, a) = 1, and hence
b((b, r) − 1)/sc = 0. Moreover, the assumption a > b implies b(b − 1)/rc = b(b − 1)/ac = 0. Hence
both terms on the right of (2.4) are 0, and we obtain da,b = 0, as claimed.
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Example. In base b = 10, formula (2.7) gives ca,10 = 10−b9/ac− (a, 10) as the slope of the complexity
function of Sa,10, Substituting a = 2, 3, . . . , 9 in this formula yields the slopes 4, 6, 6, 4, 7, 8, 7, 8, respec-
tively. By (2.4), the corresponding intercepts are given by da,10 = 9− ca,10, so the associated complexity
functions are 4n+ 5, 6n+ 3, 6n+ 3, 4n+ 5, 7n+ 2, 8n+ 1, 7n+ 2, 8n+ 1, respectively. These are the
functions shown in the last row of Table 2.

Corollary 2.6 (Special Case: a = 2). Let b be a squarefree integer ≥ 5. Then the complexity function of
the leading digit sequence of 2n in base b is given by

p2,b(n) =

⌊
b− 1

2

⌋
n+

⌈
b− 1

2

⌉
, n = 1, 2, . . . (2.10)

Proof: The requirement that b is squarefree and ≥ 5 ensures that (2, b) is admissible. We can therefore
apply Corollary 2.5 to get

c2,b = b−
⌊
b− 1

2

⌋
− (2, b).

If b is even, this reduces to

c2,b = b− b− 2

2
− 2 =

b− 2

2
=

⌊
b− 1

2

⌋
,

while for b odd we get

c2,b = b− b− 1

2
− 1 =

b− 1

2
=

⌊
b− 1

2

⌋
,

so in either case we have

c2,b =

⌊
b− 1

2

⌋
.

By the formulas (2.4) and (2.2), it follows that

d2,b = b− 1− c2,b = b− 1−
⌊
b− 1

2

⌋
=

⌈
b− 1

2

⌉
and

p2,b(n) = c2,bn+ d2,b =

⌊
b− 1

2

⌋
n+

⌈
b− 1

2

⌉
,

as claimed.

Corollary 2.7 (Symmetry Property). Let (a, b) be an admissible pair. Then (b/a, b) is admissible and the
sequences Sa,b and Sb/a,b have the same complexity function, i.e., we have

pa,b(n) = pb/a,b(n), n = 1, 2, . . . (2.11)

Example. The symmetry property can be used to explain some (but not all) of the coincidences of com-
plexity functions shown in Table 2. For example, in base 10 the leading digit sequences of {2n} and {5n}
both have complexity function 4n+ 5. In base 6, the leading digit sequences of {2n} and {3n} both have
complexity function 2n + 3. Since 5 = 10/2 and 3 = 6/2, these relations follow from the symmetry
property.
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Proof: First note that a is an integral power of b if and only if b/a is an integral power of b. Thus (a, b) is
admissible if and only if (b/a, b) is admissible. This proves the first assertion of the theorem.

Let (a, b) be an admissible pair. To prove (2.11), it suffices to show that da,b = db/a,b, since this implies
ca,b = cb/a,b by the first identity in (2.4), and hence pa,b(n) = ca,bn+ da,b = pb/a,b(n).

Replacing a by ab−k with a suitable integer k if necessary, we may assume that a lies in the range
1 < a < b. Let r/s be the representation of a as a reduced rational number, as given by (2.1). Then (2.4)
gives

da,b =

⌊
b− 1

r

⌋
+

⌊
(b, r)− 1

s

⌋
. (2.12)

Now consider a′ = b/a, and let r′/s′ be the representation of a′ as a reduced rational number. Since
1 < a < b we have 1 < a′ < b, so formula (2.4) applies again with r and s replaced by r′ and s′,
respectively, to give

da′,b =

⌊
b− 1

r′

⌋
+

⌊
(b, r′)− 1

s′

⌋
. (2.13)

To prove the result, it suffices to show that the expressions on the right of (2.12) and (2.13) are equal.
Substituting a = r/s into the definition of a′ gives

a′ =
b

a
=
bs

r
=
sb/(b, r)

r/(b, r)
=
sb1
r1
, (2.14)

where

b1 =
b

(b, r)
, r1 =

r

(b, r)
. (2.15)

Since (b1, r1) = 1 and (r, s) = 1, the numerator and denominator in the fraction on the right of (2.14) are
coprime and hence must be equal to the quantities r′ and s′ in (2.13); that is, we have

r′ = sb1, s′ = r1. (2.16)

It follows that
(b, r′) = (b, sb1) = b1((b, r), s) = b1, (2.17)

since (r, s) = 1. Substituting (2.16) and (2.17) into (2.13), we get

da′,b =

⌊
b− 1

sb1

⌋
+

⌊
b1 − 1

r1

⌋
=

⌊
(b, r)− 1/b1

s

⌋
+

⌊
b1 − 1

r1

⌋
. (2.18)

On the other hand, (2.12) can be written as

da,b =

⌊
b1 − 1/(b, r)

r1

⌋
+

⌊
(b, r)− 1

s

⌋
. (2.19)

Comparing (2.18) and (2.19), we see that the equality of these expressions will follow if we show that⌊
(b, r)− 1/b1

s

⌋
=

⌊
(b, r)− 1

s

⌋
and

⌊
b1 − 1/(b, r)

r1

⌋
=

⌊
b1 − 1

r1

⌋
.
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But this follows from the identity⌊
h− x
k

⌋
=

⌊
h− 1

k

⌋
(0 < x ≤ 1, h, k ∈ N),

which holds since the open interval ((h− 1)/k, h/k) does not contain an integer.

3 Proof of Theorems 2.2 and 2.3
We begin with two known results that we will need in the course of the proof. We recall that Db(x)
denotes the leading digit of x in base b, as defined in (1.3), and that {t} denotes the fractional part of
t, defined as {t} = t − btc. The following lemma relates Db(x) to the fractional part {logb x}. This
connection is well-known in the literature on Benford’s Law (see, e.g., [Ben38] or [Dia77]).

Lemma 3.1 (Leading digit criterion). Let x be a positive real number and b an integer ≥ 3. Then for any
digit d ∈ {1, 2, . . . , b− 1} we have

Db(x) = d⇐⇒ {logb x} ∈ [logb d, logb(d+ 1)). (3.1)

Proof: By the definition of Db(x), we have

Db(x) = d⇐⇒ d · bk ≤ x < (d+ 1)bk for some k ∈ Z
⇐⇒ logb d+ k ≤ logb x < logb(d+ 1) + k for some k ∈ Z
⇐⇒ logb d ≤ {logb x} < logb(d+ 1)

⇐⇒ {logb x} ∈ [logb d, logb(d+ 1)),

where we used the fact that 0 ≤ logb d < logb(d+ 1) ≤ 1 for 1 ≤ d ≤ b− 1.

The following result is well-known; see, e.g., [HW79, Theorem 439].

Lemma 3.2. Let α be an irrational number. Then the sequence {nα} is dense in the interval [0, 1).

Corollary 3.3. If (a, b) is an admissible pair, then the sequence {n logb a} is dense in the interval [0, 1).

Proof: Assume (a, b) is an admissible pair. By Lemma 3.2 it suffices to show that, if (a, b) is admissible,
then logb a is irrational, i.e., a is not a rational power of b.

We argue by contradiction. Suppose (a, b) is admissible and a is a rational power of b, say a = bp/q ,
where p and q are coprime positive integers. The admissibility condition implies that a is a positive rational
number, i.e., of the form a = m/n, where m and n are coprime positive integers, and that b is squarefree,
i.e., of the form b = p1 . . . pk, where the pi are distinct primes. Substituting these representations into the
relation a = bp/q , we obtain m/n = (p1 . . . pk)p/q , or equivalently mq = nqpp1 . . . p

p
k.

Since m and n are coprime, this can only hold if n = 1. Hence we must have mq = pp1 . . . p
p
k. By the

Fundamental Theorem of Arithmetic it follows thatmmust of the formm = pα1
1 . . . pαk

k with nonnegative
integer exponents αi, and that qαi = p for all i. This is only possible if p/q = h is a positive integer and
αi = h for all i, i.e., if m = (p1 . . . pk)h = bh. But then a = m/n = m = bh is an integral power of b,
contradicting the admissibility condition. This completes the proof.
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For the remainder of this section we fix an admissible pair (a, b). Thus b ≥ 5 is squarefree and a is
not an integral power of b. We remark that the assumption that b is squarefree will only be needed in the
latter part of the proof of Theorem 2.2 (beginning with Lemma 3.6); Lemmas 3.4 and 3.5 hold without
this assumption.

Dividing a by a power of b if necessary, we may assume without loss of generality that 1 < a < b, so
that a = r/s, where r and s are as in Theorem 2.2 (see (2.1)). The assumption 1 < a < b then implies

1 <
r

s
< b. (3.2)

We introduce the following notations:

α = logb a = logb
r

s
, (3.3)

D = {1, 2, . . . , b− 1}, (3.4)
L = logbD = {logb 1, logb 2, . . . , logb(b− 1)}, (3.5)

Lk =

k−1⋃
i=0

(L− iα) = {logb d− i logb a : d ∈ D, i = 0, 1, . . . , k − 1}. (3.6)

We regard the sets Lk as subsets of the one-dimensional torus T = R/Z by identifying elements that
differ by an integer. The following key result relates the sets Lk to the complexity functions that we seek
to evaluate. More general results of this type are known in the context of codings of irrational rotations
(see, e.g., [AB98, Theorem 10]). For the sake of completeness, we provide a self-contained proof here.

Lemma 3.4. Let p(k) = pa,b(k) be the complexity function of the leading digit sequence Sa,b. Then

p(k) = |Lk| (k = 1, 2, . . . ), (3.7)

where |Lk| denotes the cardinality of Lk.

Proof: Recall that p(k) denotes the number of blocks of length k in the sequence Sa,b, i.e., the number of
distinct tuples (d0, . . . , dk−1) of digits di ∈ D such that, for some n ∈ N,

Db(a
n+i) = di, i = 0, 1, . . . , k − 1. (3.8)

Using Lemma 3.1 we see that (recall that, by (3.3), α = logb a)

Db(a
n+i) = di ⇐⇒ {logb(a

n+i)} ∈ [logb di, logb(di + 1))

⇐⇒ {(n+ i) logb a} ∈ [logb di, logb(di + 1))

⇐⇒ {(n+ i)α} ∈ [logb di, logb(di + 1))

⇐⇒ nα ∈ [logb di − iα, logb(di + 1)− iα) +mi for some mi ∈ Z.

It follows that (3.8) holds if and only if

nα ∈
k−1⋂
i=0

[
logb di − iα+mi, logb(di + 1)− iα+mi

)
(3.9)
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for some m0, . . . ,mk−1 ∈ Z. Interpreting both sides of (3.9) as elements of T = R/Z, we can rewrite
this relation as

nα ∈
k−1⋂
i=0

[
logb di − iα, logb(di + 1)− iα

)
in T. (3.10)

Now, note that, by Corollary 3.3, the sequence {nα} is dense in the unit interval [0, 1). Thus, if the
interval on the right of (3.10) is non-empty, it must contain an element of this sequence. Hence, given
any k-tuple (d0, . . . , dk−1) of digits in D for which the interval on the right of (3.10) is non-empty, there
exists an n ∈ N such that (3.8) holds for this tuple, i.e., the tuple (d0, . . . , dk−1) occurs as a block of
length k in the sequence Sa,b. Conversely, if (d0, . . . , dk−1) is a block of length k occurring in Sa,b, then
there exists an n such that relation (3.10) holds, so the interval on the right of (3.10) must be non-empty.

It follows(iv) that the number of blocks of length k in the sequence Sa,b (and hence the value of the
complexity function p(k)) is equal to the number of non-empty intervals in T generated on the right of
(3.10) as each di runs through the digits in D = {1, 2, . . . , b − 1}. But these intervals are exactly the
intervals obtained by splitting up T at the points

logb d− iα ∈ T, d ∈ D, i = 0, 1, . . . , k − 1, (3.11)

so the number of such intervals is equal to the number of distinct elements in (3.11). The latter elements
form the elements of the set Lk, so the desired number is |Lk|. This completes the proof of Lemma
3.4.

To complete the proof of Theorem 2.2, it remains to evaluate the numbers |Lk|. As mentioned, we
consider the sets Lk as subsets of T. Thus, in what follows relations involving the elements of these sets
are to be interpreted as relations among elements in T, i.e., as relations that hold modulo 1.

Lemma 3.5. We have

|L1| = b− 1, (3.12)

|L2| = 2(b− 1)−
⌊
b− 1

r

⌋
−
⌊

(b, r)− 1

s

⌋
. (3.13)

Proof: By definition, L1 is the set L = {logb 1, . . . , logb(b− 1)}, which has b− 1 distinct elements in T.
Thus, |L1| = |L| = b− 1, proving (3.12).

Now consider L2. By definition, L2 = L ∪ (L− α). Thus,

|L2| = |L|+ |L− α| − |L ∩ (L− α)| = 2(b− 1)− |L ∩ (L− α)|.

To prove (3.13), it therefore suffices to show

|L ∩ (L− α)| =
⌊
b− 1

r

⌋
+

⌊
(b, r)− 1

s

⌋
. (3.14)

(iv) Our assumption b ≥ 5 ensures that each of the intervals [logb d, logb(d+ 1)), d = 1, 2, . . . , b− 1, has length ≤ 1/2. Hence
the intersection of such an interval with translates of other intervals of this type is either empty or consists of a single interval in
T. This is not necessarily true for intervals of length > 1/2: for example, the intersection of the interval [0, 2/3] with its translate
by 1/2 consists of the two disjoint intervals [0, 1/6] and [1/2, 2/3].
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For the proof of (3.14), consider an element x ∈ L ∩ (L− α). Since x ∈ L, x must be of the form

x = logb d

for some d ∈ D, and since 0 ≤ logb 1 ≤ logb d ≤ logb(b− 1) < 1, the digit d is uniquely determined by
x.

Similarly, since x ∈ L− α, x must also be of the form

x = logb d
′ − logb a+m

for some d ′ ∈ D and m ∈ Z. We therefore have

logb d = logb d
′ − logb a+m,

or equivalently,
d = d ′a−1bm.

Since a = r/s, the latter relation can be written as

dr = d ′sbm. (3.15)

We next show that the integer m in (3.15) (and hence also d ′) is uniquely determined by d (and hence
by x), and that m must be either 0 or 1. Since 1/(b − 1) ≤ d/d ′ ≤ b − 1 and 1 < r/s < b (see (3.2)),
(3.15) implies

bm = (d/d ′)(r/s) < (b− 1)b < b2

and
bm = (d/d ′)(r/s) >

1

b− 1
>

1

b
,

so we have −1 < m < 2 and hence either m = 0 or m = 1. Moreover, for each given element d ∈ D
at most one of these cases can occur. Indeed, rewriting (3.15) as d ′ = d(r/s)b−m, we see that the integer
m (if it exists) is uniquely determined by the requirement that 1 ≤ d ′ ≤ b− 1.

Therefore we have
|L ∩ (L− α)| = N0 +N1, (3.16)

where N0 (resp. N1) is the number of elements d ∈ D satisfying (3.15) for some d ′ ∈ D with m = 0
(resp. m = 1). We will show that N0 and N1 are equal to the two terms on the right of (3.14).

Consider first the case m = 0. Then (3.15) reduces to

dr = d ′s. (3.17)

Since r and s are relatively prime, (3.17) can only hold if d is a multiple of s and d ′ is the same multiple
of r, i.e., if d = d0s and d ′ = d0r for some positive integer d0. Furthermore, since d ′ ≤ b− 1, we have

d0 =
d ′

r
≤ b− 1

r
. (3.18)

We claim that each positive integer d0 satisfying (3.18) yields a pair (d, d ′) of digits in D for which
(3.17) holds. Indeed, setting d = d0s and d ′ = d0r, we have dr = d ′s, and the bound d0 ≤ (b − 1)/r,
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along with our assumption r/s > 1 (see (3.2)) imply that both d and d ′ are positive integers bounded by
≤ b− 1 and hence are elements in D. Thus, the number of elements in the set L ∩ (L− α) arising from
case m = 0 is equal to the number of positive integers d0 satisfying (3.18), i.e., we have

N0 =

⌊
b− 1

r

⌋
. (3.19)

Now suppose that m = 1. Then (3.15) reduces to

dr = d ′sb. (3.20)

Set
b ′ =

b

(b, r)
, r ′ =

r

(b, r)
.

Dividing through by (r, b), (3.20) becomes dr ′ = d ′sb ′. Since r ′ is coprime with both s and b ′, this can
only hold if

d ′ = d0
′r ′ and d = d0

′sb ′

for some positive integer d0′. Since d ≤ b− 1, the integer d0′ must satisfy

d0
′ ≤ b− 1

sb ′
. (3.21)

Conversely, every positive integer d0′ satisfying (3.21) yields a pair (d, d ′) of digits inD satisfying (3.20).
Indeed, setting d = d0

′sb ′ and d ′ = d0
′r ′, we have

dr = d(r, b)r ′ = d0
′sb ′(r, b)r ′ = d0

′r ′sb = d ′sb,

so (3.20) holds. Moreover, d and d ′ are both positive integers and the bound (3.21) ensures that

d = d0
′sb ′ ≤ b− 1

and

d ′ = d0
′r ′ ≤ (b− 1)

sb ′
r ′ =

(b− 1)(r/s)

b
< b− 1,

where in the last step we used the bound r/s < b. Thus the contribution of the case m = 1 to the set
L ∩ (L− α) is equal to the number of positive integers d0′ satisfying (3.21), i.e., we have

N1 =

⌊
b− 1

sb ′

⌋
=

⌊
b

sb ′
− 1

sb ′

⌋
=

⌊
(b, r)− 1/b ′

s

⌋
=

⌊
(b, r)− 1

s

⌋
. (3.22)

Substituting (3.19) and (3.22) into (3.16) yields the desired relation (3.14).

Up to this point, our argument did not make use of the assumption that b be squarefree. The following
lemma, however, depends on this assumption in a crucial manner.

Lemma 3.6. For any positive integer k we have

|Lk+1| − |Lk| = |L2| − |L1|. (3.23)
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Proof: By the definition of the sets Lk we have

|Lk+1| =

∣∣∣∣∣
k⋃
i=0

(L− iα)

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
i=1

(L− iα)

∣∣∣∣∣+ |L| −

∣∣∣∣∣L ∩
(

k⋃
i=1

(L− iα)

)∣∣∣∣∣ .
Since ∣∣∣∣∣

k⋃
i=1

(L− iα)

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
i=1

(L− iα) + α

∣∣∣∣∣ =

∣∣∣∣∣
k−1⋃
i=0

(L− iα)

∣∣∣∣∣ = |Lk|,

it follows that

|Lk+1| − |Lk| = |L| −

∣∣∣∣∣L ∩
(

k⋃
i=1

(L− iα)

)∣∣∣∣∣ . (3.24)

Now note that for k = 1 the right-hand side of (3.24) reduces to |L|− |L∩ (L−α)|, whereas the left-hand
side becomes |L2| − |L1|. Thus, to prove the desired relation (3.23), it suffices to show that∣∣∣∣∣L ∩

(
k⋃
i=1

(L− iα)

)∣∣∣∣∣ = |L ∩ (L− α)| .

This in turn will follow if we can show that, for any positive integer i ≥ 2,

L ∩ (L− iα) ⊂ L ∩ (L− α). (3.25)

It remains to prove (3.25). Fix i ≥ 2, and consider an element x ∈ L ∩ (L− iα). Since x ∈ L, x must
be of the form

x = logb d (3.26)

for some d ∈ D. Since x ∈ L− iα, x must also be of the form

x = logb d
′ − i logb a+m (3.27)

for some d ′ ∈ D and m ∈ Z. We need to show that x ∈ L− α, i.e., that

x = logb d
′′ − logb a+m ′′ (3.28)

for some d ′′ ∈ D and m ′′ ∈ Z.
From (3.26) and (3.27) we get

logb d = logb d
′ − i logb a+m

and hence
d = d ′a−ibm.

Using a = r/s, this can be written as
dri = d ′bmsi. (3.29)
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On the other hand, by (3.26) the desired relation (3.28) is equivalent to

logb d = logb d
′′ − logb a+m ′′,

i.e.,
dr = d ′′bm

′′
s, (3.30)

where d ′′ ∈ D and m ′′ ∈ Z. Thus, we seek to show that if (3.29) holds for some d ′ ∈ D and m ∈ Z,
then (3.30) holds for some d ′′ ∈ D and m ′′ ∈ Z.

Let

b0 = (b, r), b ′ =
b

b0
, r ′ =

r

b0
. (3.31)

By our assumption that b is squarefree we have (b ′, b0) = 1 and since also (b ′, r ′) = 1, it follows that

(b ′, r) = (b ′, r ′b0) = 1. (3.32)

Substituting b = b0b
′ in (3.29), we obtain

d ′bm0 b
′ msi = dri. (3.33)

Now note that since r/s > 1, (3.29) implies bm > (d/d ′) ≥ 1/(b − 1), so the integer m in (3.33) must
satisfy m ≥ 0. We consider the cases m = 0 and m ≥ 1 separately.

Suppose first that m = 0. Then (3.33) reduces to

d ′si = dri. (3.34)

Since (s, r) = 1, it follows that si divides d, i.e., we have

d = d0s
i (3.35)

for some positive integer d0. Now let
d ′′ = d(r/s).

Then d ′′s = dr, so (3.30) holds with m ′′ = 0. Moreover, by (3.35) we have

d ′′ = d(r/s) = d0s
i(r/s) = d0rs

i−1,

so d ′′ is a positive integer. In addition, d ′′ satisfies the upper bound

d ′′ = d(r/s) ≤ d(r/s)i = d ′ ≤ b− 1,

where we have used the inequality r/s > 1 along with the relation (3.34). Thus, d ′′ is an element in D
satisfying (3.30) with m ′′ = 0. Thus we have reached the desired conclusion in the case m = 0.

Now suppose that m ≥ 1 in (3.33). Then b ′s divides the left-hand side of (3.33), and hence also the
right-hand side, i.e., dri. Since (s, r) = 1 and (b ′, r) = 1 (see (3.32)), it follows that b ′s divides d. Thus,
we have

d = d0
′b ′s (3.36)
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for some positive integer d0′. Let
d ′′ = d0

′r ′. (3.37)

Then, by (3.36),
d ′′bs = d0

′r ′bs = d0
′(r/b0)(b ′b0)s = (d0

′b ′s)r = dr, (3.38)

so (3.30) holds with m ′′ = 1. Moreover, (3.37) shows that d ′′ is a positive integer, and by (3.38) and the
bound r/s < b (see (3.2)), d ′′ is bounded above by

d ′′ ≤ dr

bs
< d ≤ b− 1.

Thus, d ′′ ∈ D, and the proof of the lemma is complete.

Proof of Theorem 2.2: We need to show that

p(k) = ca,bk + da,b, k = 1, 2, . . . , (3.39)

where

ca,b = b− 1−
⌊
b− 1

r

⌋
−
⌊

(b, r)− 1

s

⌋
,

da,b = b− 1− ca,b =

⌊
b− 1

r

⌋
+

⌊
(b, r)− 1

s

⌋
.

By Lemma 3.4 we have p(k) = |Lk| for any positive integer k, so it suffices to show that (3.39) holds
with |Lk| in place of p(k).

By the first part of Lemma 3.5 we have

|L1| = b− 1 = ca,b · 1 + da,b, (3.40)

so (3.39) holds for k = 1. By the second part of Lemma 3.5 and Lemma 3.6 we have, for any k ≥ 2,

|Lk| = |L1|+
k−1∑
i=1

(|Li+1| − |Li|)

= |L1|+ (k − 1) (|L2| − |L1|)
= ca,b + da,b + (k − 1)ca,b = ca,bk + da,b,

which, combined with the relation |Lk| = p(k), proves the desired formula (3.39). This completes the
proof of Theorem 2.2.

Proof of Theorem 2.3: Assume that b ≥ 5 and a ≥ 2 are integers such that a2 divides b and b is not
a rational power of a. We will show that in this case the complexity function p(n) = pa,b(n) satisfies
p(3)− p(2) 6= p(2)− p(1), and hence is not affine.

Since a2 divides b and b is not a rational power of a, we have

b = a2b1 (3.41)
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for some integer b1 ≥ 2.
By Lemmas 3.4 and 3.5 (which, as noted above, do not depend on the assumption that b is squarefree)

it suffices to show
|L3| − |L2| 6= |L2| − |L1|. (3.42)

Now, as in the proof of Lemma 3.6 (see (3.25)) we see that (3.42) is equivalent to

L ∩ (L− 2α) 6⊂ L ∩ (L− α). (3.43)

Thus, it suffices to construct an element x ∈ L such that x ∈ L− 2α, but x 6∈ L−α. (Recall that the sets
L are to be understood as subsets in T = R/Z, so all relations are to be interpreted as relations that hold
modulo 1.).

We take

x = logb((a
2 − 1)b1) = logb

(
a2 − 1

a2
b

)
. (3.44)

Then x = logb d, where d = (a2 − 1)b1 = b− b1 ∈ D, so x ∈ L. Moreover, since α = logb a, we have

x+ 2α = logb

(
a2 − 1

a2
b

)
+ 2 logb a = logb(a

2 − 1) + 1,

so x = logb d
′ − 2α+ 1 with d ′ = a2 − 1 ∈ D. Thus, x ∈ L− 2α and hence x ∈ L ∩ (L− 2α).

On the other hand, we have

x+ α = logb

(
a2 − 1

a2
b

)
+ logb a = logb

(
a2 − 1

a

)
+ 1,

and since (a2 − 1)/a is not an integer, but falls into the interval 1 < (a2 − 1)/a < b, it follows that
x 6∈ L− α. Thus, (3.43) holds, and the proof of Theorem 2.3 is complete.

4 Extreme values of the complexity function pa,b(n)
Theorem 4.1 (Extreme values of the complexity of Sa,b). Let (a, b) be an admissible pair. Then we have⌊

b− 1

2

⌋
≤ ca,b ≤ b− 1, (4.1)⌊

b− 1

2

⌋
n+

⌈
b− 1

2

⌉
≤ pa,b(n) ≤ (b− 1)n. (4.2)

Moreover, the bounds in (4.1) and (4.2) are sharp: The upper bounds are attained for a = b + 1, while
the lower bounds are attained for a = 2.

Proof: First note that, by (2.4), we can write

pa,b(n) = ca,bn+ (b− 1)− ca,b = (b− 1) + ca,b(n− 1).

Thus, the maximal and minimal values of pa,b(n) are achieved when ca,b is maximal and minimal, re-
spectively, and it therefore suffices to prove the bounds (4.1) for ca,b.
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The upper bound ca,b ≤ b − 1 in (4.1) follows immediately from formula (2.3) of Theorem 2.2, and
Corollary 2.5 shows that this bound is attained for a = b+ 1.

Now consider the lower bound in (4.1). When a = 2, this bound follows from Corollary 2.6, which
also shows that the bound is attained in this case. By the symmetry property (Corollary 2.7), the same
conclusion holds for a = b/2.

We now consider the case when a 6= 2 and a 6= b/2. Without loss of generality we may assume
1 < a < b, so that we have a = r/s in the representation (2.1). Since, by the symmetry property,
pa,b(n) = pb/a,b(n), we may further restrict the range for a to 1 < a <

√
b. (Note that we do not need to

consider the case a =
√
b since then the pair (a, b) is not admissible.) Thus we have a = r/s, were r and

s are positive integers satisfying

1 <
r

s
<
√
b, (r, s) = 1. (4.3)

Note that, since r/s > 1, we necessarily have r ≥ 2. Moreover, the case r = 2 can only occur when
s = 1, but this reduces to the case a = r/s = 2 we considered above. Thus we may assume that r ≥ 3.
In this case, the bounds (4.3) imply

3 ≤ r < s
√
b. (4.4)

By Theorem 2.2 we have

ca,b = b− 1−
⌊
b− 1

r

⌋
−
⌊

(b, r)− 1

s

⌋
.

Setting

f(r, s) =

⌊
b− 1

r

⌋
+

⌊
(b, r)− 1

s

⌋
, (4.5)

the desired bound ca,b ≥ b(b− 1)/2c is seen to be equivalent to

f(r, s) ≤
⌈
b− 1

2

⌉
. (4.6)

To complete the proof of Theorem 4.1, it then remains to show that the inequality (4.6) holds whenever
r, s are positive integers satisfying (4.3) and (4.4).

We break the argument into several cases.

Case I: r ≥ b. By (4.4), we have in this case s > r/
√
b ≥
√
b and hence s > 2. Therefore,

f(r, s) =

⌊
b− 1

r

⌋
+

⌊
(b, r)− 1

s

⌋
≤
⌊
b− 1

b

⌋
+

⌊
b− 1

2

⌋
<

⌈
b− 1

2

⌉
, (4.7)

so the inequality (4.6) holds.

Case II: b/3 ≤ r < b, b ≥ 16. First note that since r < b we have (b, r) ≤ b/3 unless b is even
and r = b/2. In the latter case, we may assume s ≥ 2 since s = 1 would reduce to the special case
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a = r/s = b/2 we considered earlier. Thus we have

⌊
(b, r)− 1

s

⌋
≤


⌊
b

4
− 1

2

⌋
if b is even, r = b/2, s ≥ 2,⌊

b

3
− 1

⌋
otherwise

≤ b

3
− 1

2
=
b− 1

2
− b

6
≤ b− 1

2
− 8

3
,

where in the last step we used the assumption b ≥ 16. Taking into account the lower bound r ≥ b/3, we
obtain

f(r, s) ≤
⌊
b− 1

b/3

⌋
+
b− 1

2
− 8

3

= 2 +
b− 1

2
− 8

3
<

⌈
b− 1

2

⌉
.

Thus (4.6) holds in this case.

Case III: 3 ≤ r < b/3, b ≥ 16. We have

f(r, s) ≤
⌊
b− 1

r

⌋
+ (b, r)− 1 ≤

⌊
b− 1

r
+ r − 1

⌋
= bg(r)c , (4.8)

say, where

g(r) =
b− 1

r
+ r − 1.

Since g′(r) = −(b−1)r−2+1, the function g(r) is decreasing in the range 3 ≤ r <
√
b− 1 and increasing

in the range r >
√
b− 1. Hence, the maximal value of this function on the interval 3 ≤ r ≤ b/3 occurs

at one of the endpoints, r = 3 and r = b/3. Now, since b ≥ 16, we have

g(b/3) =
b− 1

b/3
+
b

3
− 1 ≤ 3 +

b

3
− 1 =

b− 1

2
− b− 15

6
<
b− 1

2
,

g(3) =
b− 1

3
+ 2 =

b− 1

2
− b− 1

6
+ 2 <

b− 1

2
,

since b ≥ 16. Thus we have the bound

f(r, s) ≤ max(g(b/3), g(3)) <
b− 1

2
≤
⌈
b− 1

2

⌉
, (4.9)

which proves (4.6) for Case III.

Case IV: 3 ≤ r < b, 5 ≤ b ≤ 15. This case can be handled by direct computation of f(r, s) for all
pairs (r, s) of positive integers satisfying (4.4) and comparing these values with d(b− 1)/2e.
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5 Asymptotic and average behavior of the complexity function
pa,b(n)

In this section we consider two natural questions about the complexity of leading digit sequences Sa,b:

(1) Given a sequence {an}, how does the complexity of the associated leading digit sequence Sa,b
behave as the base b tends to infinity?

(2) Given a base b, what can we say about the “average” complexity of the leading digit sequences
Sa,b?

We will focus mainly on the case when a is an integer. Figure 2 provides numerical data on these
questions.

Fig. 2: The figure on the left shows the slope c = ca,b of the complexity function of the leading digit sequence Sa,b,
as a function of the base b (restricted to squarefree values), for each of the values a = 2, 3, 5. The figure on the right
shows the set of all slopes ca,b, as a runs through integer values 2, 3, . . . , b−1. The values ca,b were computed using
formula (2.3) of Theorem 2.2.

Figure 2 suggests that, as b → ∞, the slope ca,b is asymptotically proportional to b, with the propor-
tionality constant depending on the value a. In the following theorem we show that this is indeed the case
and we determine the proportionality constant involved.

Theorem 5.1 (Asymptotic behavior of the complexity as b → ∞). Let a be a fixed integer ≥ 2, and
suppose b tends to infinity through squarefree values. Then we have

ca,b =

(
1− 1

a

)
b+O(1), (5.1)

and, for any fixed integer n ≥ 1,

pa,b(n) =

(
1− 1

a

)
nb+

b

a
+O(1). (5.2)
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Proof: By part (i) of Corollary 2.5 we have

ca,b = b−
⌊
b− 1

a

⌋
− (a, b),

provided b > a and b is squarefree. Using the inequalities 1 ≤ (a, b) ≤ a and t− 1 ≤ btc ≤ t it follows
that

ca,b ≤ b−
b− 1

a
+ 1− (a, b) ≤

(
1− 1

a

)
b+

1

a
,

ca,b ≥ b−
b− 1

a
− (a, b) ≥

(
1− 1

a

)
b− a,

which yields the first relation of the theorem, (5.1).
The second relation, (5.2), follows from the identity (see (2.2) and (2.4))

pa,b(n) = ca,bn+ (b− 1− ca,b), (5.3)

upon substituting the estimate (5.1) for ca,b.

We now turn to second question above, concerning the average behavior of the complexity function.
In the theorem below we give an asymptotic estimate for the average slope of the complexity function
pa,b(n), as a runs through the b − 2 integers a = 2, 3, . . . , b − 1. Note that, if b ≥ 5 is squarefree, then
for each of these integers (a, b) is admissible.

Let

cb =
1

b− 2

b−1∑
a=2

ca,b. (5.4)

be the average of the slopes ca,b, taken over all integers a in the interval 2 ≤ a ≤ b− 1.

Theorem 5.2 (Average behavior of the complexity). With the above notation we have, for any fixed ε > 0,

cb = b+Oε (bε) , (5.5)

where the notation Oε(. . . ) means that the implied constant in the O-term depends on ε.

Proof: By part (i) of Corollary 2.5 we have

b−1∑
a=2

ca,b =

b−1∑
a=2

(
b−

⌊
b− 1

a

⌋
− (b, a)

)
= b(b− 2)−

b−1∑
a=2

⌊
b− 1

a

⌋
−
b−1∑
a=2

(b, a). (5.6)

Let S1 and S2 denote the last two sums. Then

S1 ≤
b−1∑
a=2

b− 1

a
= (b− 1)(log(b− 1) +O(1)) = O (b log b) . (5.7)
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Moreover,

S2 ≤
b∑

a=1

(a, b) ≤
∑
d|b

d#{a ≤ b− 1 : (a, b) = d} (5.8)

≤
∑
d|b

d#{a ≤ b : d|a} ≤
∑
d|b

d
b

d

= bτ(b) = Oε
(
b1+ε

)
,

where τ(b) denotes the number of divisors of b, and in the last step we have used the estimate (see, e.g.,
[HW79, Theorem 315])

τ(b) = Oε (bε) ,

which holds for any fixed ε > 0. Combining (5.6), (5.7), and (5.8), we get

cb = b+Oε(log b) +Oε (bε) = b+Oε (bε) , (5.9)

as claimed.

6 The set of complexity functions pa,b(n)
A fundamental question in the complexity theory of sequences is which functions can arise as the com-
plexity function pS(n) of some sequence S. There exists a large body of results in the literature estab-
lishing necessary or sufficient conditions on a complexity function; see Ferenczi [Fer99] for a survey. In
particular, a result of Cassaigne [Cas97, Théorème 5.3] implies that any function of the form cn + d,
where c and d are positive integers, is the complexity function of some sequence S for all n ≥ 1.

By Theorem 2.2, if (a, b) is admissible, then the complexity function pa,b(n) of the leading digit se-
quence Sa,b is necessarily an affine function, i.e., of the form cn + d. In light of the result mentioned
above, the theorem therefore does not give rise to new classes of complexity functions. However, one can
ask which functions cn + d can be obtained as complexity functions of a sequence of the special form
Sa,b. In this section we address this question. We begin with the following definition.

Definition 6.1 (Leading Digit Complexity Function and Good Pairs).

(i) A function cn+d a called a leading digit complexity function if there exists an admissible pair (a, b)
such that cn+ d = pa,b(n) for all n.

(ii) A pair (c, d) of integers is called good if it is the pair of coefficients of a leading digit complexity
function cn+ d.

We define the sets

G = {(c, d) : cn+ d is a leading digit complexity function}, (6.1)
G(c) = {d : (c, d) ∈ G}. (6.2)

Thus, G is the set of all “good” pairs (c, d), and |G(c)| is the number of good pairs with first coordinate c.
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Figure 3 shows the behavior of |G(c)|/
√
c as a function of c and of (

∑
c≤N |G(c)|)N−3/2 as a function

ofN . The data suggests the first of these two functions is bounded above and below by positive constants,
but does not converge to a limit, while the second function appears to converge to a limit.

Fig. 3: Number of good pairs (c, d): The figure on the left shows the behavior of the function |G(c)|/
√
c as a function

of c. The figure on the right shows the behavior of (
∑

c≤N |G(c)|)N−3/2 as a function of N .

Motivated by such numerical data, we make the following conjecture:

Conjecture 6.2 (Number of Good Pairs).

(i) There exist positive constants k1 and k2 such that

k1
√
c ≤ |G(c)| ≤ k2

√
c (6.3)

for all sufficiently large c, but the limit

lim
c→∞

|G(c)|√
c

(6.4)

does not exist.

(ii) There exists a positive constant k such that∑
c≤N

|G(c)| ∼ kN3/2 (N →∞). (6.5)

The numerical data presented in Figure 3 suggests that we can take k1 = 1 and k2 = 2.5 in (6.3). and
k = 1 in (6.5)
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7 Other complexity measures
In a series of papers in the early 1980s (see [IRU83], [Kak83], [RUS+84]), S. Iyengar, A.K. Rajagopal,
S.C. Kak and others studied the complexity of the sequence of leading digits of 2n using graph-theoretic
complexity measures. In this section, we describe this approach, and we determine explicitly the com-
plexity of sequences Sa,b with respect to a particular graph-theoretic complexity measure, the so-called
cyclomatic complexity.

Cyclomatic complexity is a well-known complexity measure for graphs that is widely used as a measure
for the complexity of computer programs.

Definition 7.1 (Cyclomatic Complexity of a Graph (McCabe [McC76], Berge [Ber73])). LetG be a finite
directed graph. The cyclomatic complexity of G, CG, is defined as

CG = e− n+ p, (7.1)

where e is the number of (directed) edges, n the number of vertices, and p the number of connected
components of the graph G.

In order to apply this concept to the complexity of a sequence, one has to associate a graph to the
sequence. Iyengar et al. [IRU83] suggest several ways to do so. The simplest, and most natural, approach
is to consider the transition graph, GS , of the sequence S, defined as the directed graph whose vertices
are the symbols in S, and which contains an edge from a to b if and only if a and b occur in consecutive
positions in the sequence S. We thus make the following definition.

Definition 7.2 (Cyclomatic Complexity of a Sequence S). Let S be an infinite sequence over a finite set
of symbols, and let G be its transition graph. The cyclomatic complexity, CS , of the sequence S is defined
as the cyclomatic complexity of the transition graph G.

Under a mild additional assumption on S (which amounts to a weak type of recurrence), we have the
following connection between the cyclomatic complexity, CS , of a sequence and its block complexity,
pS(n).

Lemma 7.3 (Cyclomatic Complexity and Block Complexity). Let S be an infinite sequence over a finite
set of symbols and assume that each symbol occurring in S occurs infinitely often. Then we have

CS = pS(2)− pS(1) + 1. (7.2)

Proof: Let G be the transition graph of S, and let n, e, and p denote, respectively, the number of vertices,
directed edges, and connected components of G.

The number of vertices in G is the number of symbols in the sequence, which in turn is equal to the
number of distinct blocks of length 1 in the sequence, i.e., the quantity pS(1). Thus, we have

n = pS(1). (7.3)

Next, observe that there is a one-to-one correspondence between edges in G and pairs (d1, d2) of
consecutive terms in the sequence Sa,b. Indeed, by the definition of the transition graph of a sequence,
there is an edge from d1 to d2 if and only if d1 and d2 occur as consecutive terms in the sequence. Thus,
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the number of edges in G is equal to the number of distinct pairs (d1, d2) of consecutive terms in the
sequence. But the latter number is the number of distinct blocks of length 2 in the sequence, so we have

e = pS(2). (7.4)

Finally, we will show that the graph G has only one connected component, i.e., that

p = 1. (7.5)

Indeed, by our assumption that each term d that occurs in S occurs there infinitely often, it follows that,
given any two such terms, d1 and d2, the sequence must contain a string of consecutive terms beginning
with d1 and ending with d2. By the definition of the transition graph G, this means that there is a path
from d1 to d2. Since d1 and d2 were arbitrary terms (i.e., arbitrary vertices in G), it follows that the graph
can have only one connected component, proving (7.5).

Substituting (7.3), (7.4), and (7.5) into (7.1), we obtain the desired relation (7.2).

We now focus on the case of leading digit sequences of the form Sa,b, and we denote the cyclomatic
complexity of such a sequence by Ca,b, i.e., we set Ca,b = CS , where S = Sa,b. Combining Lemma 7.3
with Theorem 2.2, we can determine Ca,b explicitly for any for any admissible pair (a, b):

Corollary 7.4 (Cyclomatic Complexity of Sa,b). Let (a, b) be an admissible pair, and let Sa,b be the
sequence of leading digits of an in base b. Then the cyclomatic complexity of Sa,b is given by

Ca,b = b−
⌊
b− 1

r

⌋
−
⌊

(b, r)− 1

s

⌋
, (7.6)

where r and s are defined as in Theorem 2.2, i.e., as the unique integers satisfying

a =
r

s
bk, k ∈ Z, r, s ∈ N, (r, s) = 1, 1 <

r

s
< b. (7.7)

Proof: Let Sa,b be as in the statement. It is easy to see (cf. the argument following (3.10)) that each digit
d ∈ {1, 2, . . . , b− 1} occurs infinitely often in Sa,b. Thus Sa,b satisfies the hypothesis of Lemma 7.3, and
hence has cyclomatic complexity given by Ca,b = pa,b(2)− pa,b(1) + 1. Substituting the formulas (2.2)
and (2.3) from Theorem 2.2, it follows that

Ca,b = ca,b + 1 = b−
⌊
b− 1

r

⌋
−
⌊

(b, r)− 1

s

⌋
,

which is the desired formula (7.6).

8 Concluding remarks
In this section we discuss some related concepts and open questions suggested by our results.
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Rauzy graphs. In Section 7 we defined the cyclomatic complexity of a sequence S as the (graph-
theoretic) cyclomatic complexity of the transition graph GS associated with this sequence. This transition
graph is a particular case of a family of graphs associated with the sequence S, known as Rauzy graphs,
and defined as follows: Given a sequence S, the Rauzy graph of level n, Γn(S), is the directed graph
whose vertices are the distinct “blocks” of length n occurring in S, and in which two blocks of length n
are connected by a directed edge if and only if the second block “continues” the first block in the sense
that it overlaps with the first block in its first n − 1 positions; see Arnoux and Rauzy [AR91] and also
Section 2.1 of [AB98].

The Rauzy graph Γ1(S) is the transition graphGS we have used to define the cyclomatic complexity of
a sequence S. We remark that for sequences Sa,b the cyclomatic complexity of the Rauzy graph Γn(Sa,b)
is independent of n: Indeed, the graph Γn(Sa,b) has pa,b(n) vertices, pa,b(n+1) edges, and one connected
component, so its cyclomatic complexity is pa,b(n+1)−pa,b(n)+1 = ca,b+1, where ca,b is the “slope”
of pa,b(n), given by (2.3).

Another graph-theoretic complexity measure for sequences. In their paper [IRU83], Iyengar et al.
proposed an interesting graph-theoretic complexity measure for the leading digit sequence of {2n} that is
different from the one we considered in the previous section. It is based on the remarkable fact, established
in [IRU83], that the sequence of leading digits of 2n can be completely decomposed into the five blocks
a = 1248, b = 1249, c = 125, d = 136, and e = 137. Rewriting the sequence as a sequence in
the symbols a, b, c, d, e, one can then consider the associated transition graph between these symbols.
This graph is different from the simple transition graph, and also from the general Rauzy graphs Γn(S)
considered above. Yet, as Iyengar et al. have shown, when S is the leading digit sequence of {2n}, all of
these graphs have the same cyclomatic complexity, namely 5.

Iyengar et al. focused mainly on the leading digit sequence of {2n}. It would be interesting to see if
their approach can be extended to the more general leading digit sequences Sa,b we have considered in
the present paper.

Complexity functions of other “natural” arithmetic sequences. A key motivation for the present
work was to completely determine the complexity function for a natural class of sequences of arithmetic
interest, namely the sequences Sa,b of leading digits of an in base b. Another class of arithmetic se-
quences whose complexity has been analyzed in a similarly systematic manner are sequences obtained as
expansions with respect to an irrational base β > 1; see, e.g., Frougny et al. [FMP04] and Klouda and
Pelantová [KP09].

As a natural extension of our results on the complexity of the sequences Sa,b, one can try to deter-
mine the complexity of more general leading digit sequences, such as the leading digits of {2n2}, {n!},
and {nn}. Recent work [CHL19] on the local distribution of sequences of this type suggests that these
sequences have relatively low complexity, possibly of polynomial rate of growth. On the other hand,
in [CHL19] it was also shown that for “almost all” doubly exponential sequences {aθn} the associated
leading digit sequences behave locally like independent Benford-distributed random variables and thus
have maximal complexity, i.e., satisfy p(n) = 9n (in the case of base 10). Interestingly, recent numerical
investigations [CFH+] suggest that the same holds for the much slower growing sequence of Mersenne
numbers {2pn−1}, where pn denotes the n-th prime number. Proving results of this type, however, seems
to be well out of reach.
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