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The successive discrete structures generated by a sequential algorithm from random input constitute a Markov chain
that may exhibit long term dependence on its first few input values. Using examples from random graph theory and
search algorithms we show how such persistence of randomness can be detected and quantified with techniques from
discrete potential theory. We also show that this approach can be used to obtain strong limit theorems in cases where
previously only distributional convergence was known.
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1 Introduction
Given a sequence t1, t2, . . . of input values, a sequential algorithm produces an output sequence x1, x2, . . .,
where the next output xn+1 depends on the current state xn and the next input tn+1 only. For cases where
xn is a discrete structure, such as a permutation or a graph, and where the input values are realiza-
tions of independent random variables with the same distribution, the output sequence is a Markov chain
X = (Xn)n∈N that is adapted to a combinatorial family F in the sense that Xn takes its values in the
subset Fn ⊂ F of objects with base parameter n. Markov chains of this type often exhibit persisting
randomness: Informally, this means that the influence of early values does not disappear as time goes
by; formally, it means that the tail σ-field T (X) associated with X is not trivial. Further, such chains
eventually leave every fixed finite subset of F with probability 1, which leads to the related problem of
finding a state space completion that captures the information contained in T (X).

The classical example is the Pólya urn: Initially, at time n = 1, the urn contains one red and one blue
ball. At time n = 2, 3, . . ., a ball is selected uniformly at random and put back, together with another ball
of the same colour. Here Fn is the set of the pairs (i, j) ∈ N0 ×N0 with i+ j + 1 = n, where i and j are
the number of balls of the two colours added up to time n ∈ N. A suitable augmentation of the state space
F = N0 × N0 is obtained by regarding a sequence ((in, jn))n∈N with in + jn →∞ as convergent if and
only if (in + 1)/(in + jn + 2) (the proportion of red balls) tends to a value α ∈ [0, 1] as n→∞, which
leads to a state space completion F̄ that may be represented by F∪ [0, 1]. With respect to this convergence
we have Xn → X∞ almost surely, where X∞ generates the (non-trivial) tail σ-field T (X).

Discrete potential theory provides a general method for the construction of such state space boundaries.
This was initiated in a fundamental paper by Doob (1959) and has been applied to Pólya urns by Blackwell
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2 Rudolf Grübel

and Kendall (1964). A recent textbook treatment is given in Woess (2009); see also the survey by Sawyer
(1997). Many authors have used boundary theory for the analysis of random walks on discrete structures;
see Kaı̆manovich and Vershik (1983) for a very influential review, and the more recent monograph by
Woess (2000).

In the present paper we regard the discrete structures themselves as states of a stochastic process. Some
standard search algorithms have recently been investigated from this point of view in Evans et al. (2012),
and the results have been used in Grübel (2014) to prove strong limit theorems for functionals of the
output sequence, such as the path length or Wiener index of search trees, that have attracted the attention
of many researchers. We address the phenomenon of randomness persistence with these tools, specifically
in connection with some popular models for random graphs, and for search algorithms. Further, we
show that the method can be used to obtain almost sure convergence for the structures themselves or for
functionals of the structures in cases where previously only convergence in distribution was known.

In the next section we provide some background on discrete potential theory and the Doob-Martin
compactification. In order to keep this short we restrict ourselves to combinatorial Markov chains, where
the state space is graded by the time parameter. Section 3 gives some elementary examples from random
graph theory; the present author is not aware of any previous use of the Doob-Martin compactification in
connection with (general) graph limits. In Section 4 we consider search trees, where we can build on the
work of Evans et al. (2012) and Grübel (2014). In a final section we collect some comments on related
work and provide further pointers to the literature.

We hope that such results contribute to the theoretical understanding of the growth models and algo-
rithms. From an entirely practical point of view persisting randomness should be of interest as a strong
dependence on the first few input values may be an entirely unwelcome aspect of an algorithm that the
practitioner may have to address, for example by an additional randomization step.

2 An ultrashort summary of Markov chain boundary theory
A Markov chain is a sequenceX = (Xn)n∈N of random variables that take their values in some countable
set F, the state space, such that the Markov property holds,

P (Xn+1 = xn+1|Xn = xn, . . . , X1 = x1) = P (Xn+1 = xn+1|Xn = xn) (1)

for all n ∈ N, x1, . . . , xn+1 ∈ F. In the cases we are interested in there will be a canonical state
e ∈ F with X1 = e, and the transitions are homogeneous in time, which means that for some function
p : F× F→ [0, 1],

P (Xn+1 = y|Xn = x) = p(x, y) for all x, y ∈ F, n ∈ N.

These are the transition probabilities; together with the starting point e they determine the distribution of
the stochastic process X . We also assume that

P (Xn = x for some n ∈ N) > 0 for all x ∈ F. (2)

In words: Every state has a chance to be visited—the chain is weakly irreducible.
Boundary theory provides an approach to the asymptotics of chains that ‘leave the state space’ in the

sense that limn→∞ P (Xn ∈ S) = 0 for every finite set S ⊂ F. It gives the ‘right’ extension (completion,
compactification) F̄ of the state space, in the sense that

Xn → X∞ as n→∞ with probability 1 (3)
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for some random variable X∞ with values in the boundary ∂F of F in F̄, and that

σ(X∞) =a.s. T (X) :=

∞⋂
n=1

σ
(
{Xm : m ≥ n}

)
. (4)

In words: The limit generates the tail σ-field of the process, up to null sets. For property (4) we assume
thatX has the space-time property, by which we mean that each state can be visited at one particular point
in time only. The combinatorial Markov chains in Section 1 are such space-time processes.

This feat is achieved by the Doob-Martin compactification, where we regard a sequence (yn)n∈N ⊂ F
as convergent if the conditional probabilities P (X1 = x1, . . . , Xm = xm|Xn = yn) converge as n→∞
for all fixed m ∈ N, x1, . . . , xm ∈ F. Due to the Markov property (1) the construction can be based on
the Martin kernel K,

K(x, y) :=
P (Xn = y|Xm = x)

P (Xn = y)
, x, y ∈ F, n > m,

where m and n are the time values associated with the states x and y respectively; here weak irreducibil-
ity (2) is important. Indeed, manipulations of elementary conditional probabilities lead to

P (X1 = x1, . . . , Xm = xm|Xn = yn) = K(xm, yn)P (X1 = x1, . . . , Xm = xm),

which connects the convergence condition on the conditional probabilities to the convergence of the values
of the Martin kernel. We mention in passing that this approach to Doob-Martin convergence is equivalent
to the usual approach via potential kernels; see also (Evans et al., 2012, Section 3) and (Evans et al., 2014,
Section 2).

From a general point of view, any family F of functions f : F→ R that separates the points of F leads
to an embedding of F into the space RF of functions from F to R via

x 7→
(
f 7→ f(x)

)
.

On RF we use the topology of pointwise convergence. If all f ∈ F are continuous (which they automat-
ically are if we endow F with the discrete topology) and bounded, then the embedding is continuous and
its range is a product of bounded intervals, hence compact by Tychonov’s theorem. This is a variant of the
Stone-Čech compactification, see (Kelley, 1955, p.152f). In this construction, all f ∈ F have a unique
continuous extension to the whole of the compactified space. Alternatively, for a countable family F , a
suitable metric can be defined on F using these functions, such that the associated completion has these
properties; see (Woess, 2009, p.187).

In our present setup, the Doob-Martin compactification arises by taking F to be the set of functions
y 7→ K(x, y), x ∈ F. We use the same symbol for the extended functions and denote boundary elements
by lower case Greek letters. With this construction, (3) and (4) are satisfied. In addition, we have the
following remarkable properties: First, all non-negative harmonic functions h : F → R can be written
as mixtures of the functions K(·, α), α ∈ ∂F. To be precise we recall that h : F → R is harmonic if
h(x) =

∑
y∈F p(x, y)h(y) for all x ∈ F. Then for each such h with h ≥ 0 and h(e) = 1 there is a

probability measure µh on (the Borel subsets of) the boundary ∂F such that

h(x) =

∫
K(x, α)µh(dα) for all x ∈ F. (5)
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The distribution µ1 of the limit X∞ represents the (trivial) harmonic function h ≡ 1. Secondly, condi-
tioned on a limit value X∞ = α, the process is again a Markov chain, with transition probabilities ph

given by

ph(x, y) =
1

K(x, α)
p(x, y)K(y, α). (6)

This is an instance of Doob’s h-transform, with K(·, α) the corresponding harmonic function h. Of
course, the interpretation of these transforms by a conditioning on the final value is a natural consequence
of the initial idea of conditioning on the values yn at time n and then letting n tend to∞.

As it is central to our theme of persisting randomness we briefly explain why (and how) X∞ generates
the tail σ-field, up to null sets, that is, why property (4) holds.

The limit is obviously T (X)-measurable, which means that σ(X∞) ⊂ T (X). For the other direction
we need, for each tail event A, a Borel subset B of ∂F such that

P
(
A4X−1

∞ (B)
)

= 0, (7)

where X−1
∞ (B) := {ω ∈ Ω : X∞(ω) ∈ B}. Let A ∈ T (X) and let 1A be the associated indicator

function; we may assume that κ := P (A) > 0. As the state space is graded in the sense that it can
be written as the disjoint union of the ‘slices’ Fn of states that are possible at time n, we can define
h : F → [0,∞) by setting h(x) = κ−1P (A|Xn = x) for x ∈ Fn, n ∈ N. With (1) it follows that h is
harmonic, and it turns out that the measure µh representing h as in (5) has a density Φ with respect to the
distribution µ1 of X∞. The set required in (7) can now be given as B = Φ−1({κ−1}).

In particular, if the distribution of X∞ is concentrated on a single value of the boundary then T (X) is
P -trivial, so randomness ‘disappears in the limit’.

3 Graph limits
Our basis in this section is the recent monograph by Lovász (2012), which also gives references to the
original research articles. Let G[n] be the set of simple graphs G = (V,E) with vertex set V = [n] :=
{1, . . . , n}. The set G[1] has only one element, the graph e = G1 with the single node 1 and no edges. A
number of popular models for randomly growing graphs fits into the framework of combinatorial Markov
chains, with state space F = G :=

⋃∞
n=1 G[n] and start atG1. We work out the boundary for two of them,

the uniform attachment process, and the Erdős-Rényi graphs, where we consider two variants of the latter.
We note that the state space compactifications are abstract constructions so that the only uniqueness that
we may expect is up to homeomorphisms; usually there are many possibilities for a concrete description.

On its own the question of how to define limits of finite graphs, interpreted as the search for a completion
or compactification of the countable set G, does not involve any probability and, of course, it can have
quite different answers depending on the specific circumstances. For example, we might distinguish
between sparse and dense graphs, referring to the rate of growth of the number e(Gn) of edges E(Gn) in
relation to the number v(Gn) of vertices V (Gn) of Gn in a sequence (Gn)n∈N ⊂ G. For the dense case
the notion of subgraph sampling has turned out to be important (there are several equivalent definitions):
For two graphsG,H ∈ G let t(H,G) be the number of possibilities to embedH intoG or, more formally,
with Γ(H,G) the set of injective functions φ : V (H)→ V (G), let

T (H,G) :=
{
φ ∈ Γ(H,G) : {φ(i), φ(j)} ∈ E(G)⇔ {i, j} ∈ E(H)

}
, (8)
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t(H,G) := #T (H,G), ρ(H,G) :=
(v(G)− v(H))!

v(G)!
t(H,G). (9)

We then say that a sequence (Gn)n∈N converges if for all H ∈ G the relative number ρ(H,Gn) of
these possibilities converges as a sequence of real numbers. The value ρ(H,Gn) can be interpreted as
the probability that, choosing m = v(H) elements of V (Gn) randomly and without replacement, the
subgraph of Gn induced on these nodes is isomorphic to H . The convergence may be rephrased in a
somewhat abstract manner: We define an embedding of G into the set [0, 1]G of functions on G with
values in the unit interval by

G 7→
(
H 7→ ρ(H,G)

)
, G ∈ G, (10)

and then consider the closure of the range of the embedding as a compactification of G. Note that the
function space is compact with respect to pointwise convergence by Tychonov’s theorem. Viewed this
way, the similarity to the Doob-Martin compactification becomes apparent, where we use the embedding

x 7→
(
y 7→ K(x, y)

)
, x ∈ F, (11)

based on the Martin kernel instead.
Returning to the Markov chain models of randomly growing graphs, we first consider the uniform

attachment model; see (Lovász, 2012, Example 11.39). In order to describe its dynamics suppose that
we are in state Gn ∈ G[n] at time n. We then construct Gn+1 ∈ G[n + 1] by adding those edges
{i, j} ⊂ [n+1] not (yet) inGn with probability 1/(n+1), independently of each other. LetX = (Xn)n∈N
be the corresponding Markov chain, which has state space G and starts at G1.

Let ∆ := {{i, j} ∈ N × N : 1 ≤ i < j}. For each {i, j} ∈ ∆ we define the edge indicator
1{i,j} : G → {0, 1} to have the value 1 for a graph G if {i, j} is an element of the edge set E(G) of G,
and 0 otherwise. Recall thatXn = (V (Xn), E(Xn)) is a random graph with V (Xn) = [n]; letMn be the
corresponding (random) adjacency matrix. Expressed in graph theoretical terms, part (a) of the following
result shows that the Doob-Martin convergence associated with the uniform attachment graphs is the same
as pointwise convergence of the adjacency matrices Mn. The limit M may be regarded as the adjacency
matrix of the limit graph X∞ = (V (X∞), E(X∞)), with vertex set V (X∞) = N.

Theorem 1 (a) The Doob-Martin boundary of the uniform attachment process X consists of the set
{0, 1}∆, where convergence of a sequence (Gn)n∈N of graphs Gn ∈ G[n] to a limit M ∈ {0, 1}∆
means that the edge indicators 1{i,j}(Gn) converge to M(i, j) as n→∞, for each {i, j} ∈ ∆.

(b) With probability 1, X∞ is equal to M ≡ 1.

Proof: We compute the Martin kernel. Let Gm ∈ G[m], Gn ∈ G[n], m < n, be such that E(Gm) ⊂
E(Gn). For any {i, j} ∈ E(Gn)\E(Gm) and any l ∈ {m+1, . . . , n} let qi,j,l be the probability that this
edge appears in the X-sequence from time l onwards. Clearly, if i < j ≤ m, and with the understanding
that an empty product has the value 1,

P
(
{i, j} ∈ E(Xn)

∣∣Xm = Gm
)

=

n∑
l=m+1

qi,j,l

=

n∑
l=m+1

( l−1∏
k=m+1

(
1− 1

k

))1

l
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=

n∑
l=m+1

m

l(l − 1)
= 1− m

n
.

If i < j and j > m,

P
(
{i, j} ∈ E(Xn)

∣∣Xm = Gm
)

=

n∑
l=j

qi,j,l = 1− j − 1

n
.

Let Ej(G) := {1 ≤ i < j : {i, j} ∈ E(G)} and ej(G) := #Ej(G). In order to go from Gm to Gn the
edges in Ej(Gn) \Ej(Gm) with j = 2, . . . ,m and those in Ej(Gn) with j = m+ 1, . . . , n have to enter
the graph at some time l ∈ {m+ 1, . . . , n}, and the edges {i, j}, 1 ≤ i < j, not in Ej(Gn), j = 2, . . . , n,
must remain unchosen. Hence, by independence,

P (Xn = Gn|Xm = Gm) =

m∏
j=2

(
1− m

n

)ej(Gn)−ej(Gm)(m
n

)j−1−ej(Gn)

·
n∏

j=m+1

(
1− j − 1

n

)ej(Gn)(j − 1

n

)j−1−ej(Gn)

.

Using this with m = 1 we get

P (Xn = Gn) =

n∏
j=2

(
1− j − 1

n

)ej(Gn)(j − 1

n

)j−1−ej(Gn)

.

Taking ratios we arrive at

K(Gm, Gn) = K1(Gm, Gn) ·K2(Gm, Gn) ·K3(Gm, Gn)

with

K1(Gm, Gn) :=

m∏
j=2

(
1− m

n

)−ej(Gm)

, K2(Gm, Gn) :=

m∏
j=2

(
1− m+ 1− j

n+ 1− j

)ej(Gn)

,

and

K3(Gm, Gn) :=

m∏
j=2

(j − 1

m

)ej(Gn)+1−j
.

Because of ej(G) ≤ j − 1 for all G ∈ G, the first two of these factors will converge as n → ∞ with m
fixed, and the respective limits will always be 1.

Now let Fi,m, 1 ≤ i < m, be the graph with node set [m] and a single edge {i,m}. If this edge appears
in Gn, then

K3(Fi,m, Gn) =

m∏
j=2

(j − 1

m

)ej(Gn)+1−j
≥ 1
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in view of ej(Gn) ≤ j − 1. As K(Fi,m, Gn) = 0 if {i,m} /∈ E(Gn) this means that Doob-Martin
convergence implies that the limits

M(i,m) := lim
n→∞

1{i,m}(Gn) ∈ {0, 1} (12)

exist for all {i,m} ∈ ∆. On the other hand, from (12) we obtain the existence of the limits

lim
n→∞

ej(Gn) ∈ {0, . . . , j − 1} (13)

for all j ∈ N, j ≥ 2, which in turn implies the convergence of K3(Gm, Gn). Taken together this
characterizes Doob-Martin convergence as stated in part (a). In (12) and (13) convergence means that the
sequence elements do not change from some index n onwards.

For the proof of part (b) let τij := inf
{
n ∈ N : {i, j} ∈ E(Xn)

}
be the entry time of the edge {i, j};

we need to show that P (τij < ∞) = 1 for all {i, j} ∈ ∆. This, however, is an easy consequence of the
construction of X as we have, for n ≥ j,

P (τij > n) =

n∏
l=j

P (τij > l | τij ≥ l) =

n∏
l=j

(
1− 1

l + 1

)
=

j

n+ 1
.

2

As a consequence of part (b) of the theorem, the tail σ-field of the uniform attachment process is trivial.
Further, using (6), the chain conditioned on some limit value M ∈ {0, 1}∆ can easily be described as
follows: We proceed as before, but only edges {i, j} ∈ ∆ with M(i, j) = 1 are allowed to enter.

Remark (a) An embedding interpretation as in (10) and (11) of the topology in Theorem 1 results if
we identify a graph with the values of the edge indicators,

G 7→
(
{i, j} 7→ 1{i,j}(G)

)
, G ∈ G. (14)

Here the boundary is the full function space {0, 1}∆, which is usually not the case.

(b) The graph sequence generated by the uniform attachment model converges in the sampling topol-
ogy too, and in fact to what is arguably a more interesting limit; see (Lovász, 2012, Proposition 11.40).
However, this ‘more global’ topology does not capture the tail information. To be specific, consider a
random variable ξ with values in N and define a random element α of the boundary by α(i, j) = 0 if
j = ξ and α(i, j) = 1 otherwise, and let Y be the corresponding h-transform. In Y the random node ξ
remains isolated forever. Then T (Y ) =a.s. σ(ξ), which means that some randomness persists. The ‘local’
topology in Theorem 1 detects this, whereas from the global point of view Y and the original chain X are
asymptotically indistinguishable.

(c) Whereas (14) is an embedding in the strict sense of being one-to-one, (10) is not: If G and G′ are of
the same isomorphism type, then the functions ρ(·, G) and ρ(·, G′) coincide; see also Theorem 5.29 and
its proof in Lovász (2012). /
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The second model that we consider is perhaps the most famous of all random discrete structures: To
obtain the Erdős-Rényi-Gilbert graph (Lovász, 2012, p.8) or binomial random graph (Janson et al., 2000,
p.2) Yn with node set [n] and parameter θ ∈ [0, 1] we include each of the

(
n
2

)
possible edges with prob-

ability θ, independently of each other. In contrast to the uniform attachment model discussed above the
variables Yn are now defined for each n separately, with

P (Yn = Gn) = θe(Gn)(1− θ)(
n
2)−e(Gn) for all Gn ∈ G[n], (15)

but there is a well-known and canonical method to combine these into a Markov chain Y = (Yn)n∈N: In
order to move from Yn to Yn+1 we add the node n+ 1 and then, independently of each other, each of the
edges {i, n+ 1}, 1 ≤ i ≤ n, with probability θ.

A moment’s thought reveals that, in this model, none of the randomness will ever go away, which is the
other extreme as compared with tail triviality. Indeed, it is possible to reconstruct the complete sequence
G1, . . . , Gn from its last element Gn, which implies that T (Y ) = σ(Y ). Roughly, for such chains with
perfect memory ‘the sequence is the limit’; see also (Evans et al., 2012, Section 9). In order to formalize
this, let Ψn

m(Gn) be the graph in G[m] that Gn ∈ G[n] induces on [m], that is, we delete the nodes
m + 1, . . . , n and the incident edges. This defines a family {Ψn

m : 1 ≤ m ≤ n < ∞} of functions
Ψn
m : G[n] → G[m] that is consistent in the sense that Ψm

l ◦ Ψn
m = Ψn

l whenever l ≤ m ≤ n. Let
Gproj ⊂ G[1]×G[2]×G[3]×· · · be the set of all sequences (Gn)n∈N with the properties that Gn ∈ G[n]
for all n ∈ N, and Ψn

m(Gn) = Gm for all m,n ∈ N with m < n. This set is known as the projective
(or inverse) limit associated with the sequence (G[n])n∈N and the family {Ψn

m : 1 ≤ m ≤ n < ∞}.
In the set of sequences, we regard a sequence (of sequences) as convergent if the respective elements at
any particular position l ∈ N ‘freeze’, i.e. converge in the discrete topology on G[l]. With the discrete
topology the individual components are compact in view of #G[l] <∞, so that their (infinite) product is
compact. The set Gproj is closed therein, hence compact too.

There is a slightly different point of view that connects this abstract procedure to the material in the
next section and that is also useful for the description of probability measures on the projective limit:
The transition graph of a perfect memory chain on G is a rooted and locally finite tree, with root G1 and
directed edges (Gn, Gn+1), Gn = Ψn+1

n (Gn+1). The projective limit then coincides with the boundary
of the ends compactification of the transition tree. For a node G of this tree with k vertices let

AG :=
{

(Gn)n∈N ∈ Gproj : Gk = G
}

be the set paths through G. It is easy to see that a probability measure µ on the ends compactification is
completely specified by the values µ(AG), G ∈ G.

Theorem 2 (a) The boundary of the Doob-Martin compactification of G with respect to Y is given by the
projective limit Gproj.

(b) The distribution µ of Y∞ is given by µ(AG) = P (Ym = G) if G ∈ G[m].

Proof: Again, we look at the Martin kernel: If Gm is on the unique path from G1 to Gn then P (Yn =
Gn, Ym = Gm) = P (Yn = Gn) so that K(Gm, Gn) = 1/P (Ym = Gm), and K(Gm, Gn) = 0
otherwise. From this part (a) of the theorem follows easily. For (b) we note that a boundary point (Gn)n∈N
is in AG if and only if Gm = G. 2
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In this situation conditioning on a limit value leads to a deterministic motion along the sequence of
graphs that represents the limit. Part (b) and (15) imply that the limit distribution is diffuse. In particular,
the tail σ-field is not trivial, as we have already noted before.

The perfect memory property is a consequence of the labelling of the nodes in the order of their ap-
pearance and the fact that in the step from n to n + 1 only edges incident to n + 1 are added. Uniform
attachment graphs do not have this property; for example, if {1, 2} ∈ E(X3) then it is not clear whether
this edge has been added at time 2 or 3.

We now show that in the perfect memory case random relabelling may lead to a more interesting
topology. We recall that the group S[n] of permutations of [n] acts on G[n], meaning that each πn ∈ S[n]
defines a function on and to G[n] by mapping G = ([n], E(G)) to

πn(G) :=
(
[n],

{
{πn(i), πn(j)} : {i, j} ∈ E(G)

})
. (16)

Now let Πn, n ∈ N, be a sequence of independent random variables, with Πn uniformly distributed
on S[n]. We define X = (Xn)n∈N inductively by X1 ≡ G1, Xn+1 = Πn+1(X̃n+1), where X̃n+1 is
constructed from Xn as in the chain Y above: V (X̃n+1) = [n + 1] and E(X̃n+1) is obtained from
E(Xn) by adding each of the edges {i, n + 1}, i ∈ [n], independently with probability p. In view of
the fact that the transition from Xn to Xn+1 only involves Xn and quantities that are independent of
Xn the process X = (Xn)n∈N is again a Markov chain and it continues to be adapted to G. Also, the
distribution (15) is invariant under S[n] as the action (16) does not change the number of edges. This
implies that Xn and the variable Yn from the perfect memory version without random relabelling have
the same distribution (but they will in general not be equal). Below, we will refer to the sequence X as
the Erdős-Rényi chain with parameter θ.

The following result shows that the Doob-Martin compactification for this model leads to the sampling
topology mentioned at the beginning of this section; see (8) and (9).

Theorem 3 Let X be the Erdős-Rényi chain with parameter θ, 0 < θ < 1.
(a) A sequence (Gn)n∈N with Gn ∈ G[n] for all n ∈ N converges in the Doob-Martin compactification

associated with X if and only if the sequences
(
ρ(H,Gn)

)
n∈N converge for every fixed H ∈ G.

(b) With probability 1, X∞ is equal to the function

H 7→ θe(H)(1− θ)(
v(H)

2 )−e(H), H ∈ G.

Proof: (a) Let Gm ∈ G[m], Gn ∈ G[n] with n > m be given. The random relabellings in steps
m+1, . . . , nmove the nodes 1, . . . ,m ofGm to different positions in [n]. This defines a random injective
function Φ : [m] → [n], where all n!/(n − m)! possible values φ of Φ are equally likely. For φ /∈
T (Gm, Gn), with T as in (8), we clearly have P (Xn = Gn|Xm = Gm,Φ = φ) = 0, whereas for
φ ∈ T (Gm, Gn),

P (Xn = Gn|Xm = Gm,Φ = φ) = θe(Gn)−e(Gm)(1− θ)(
n
2)−e(Gn)−(m

2 )+e(Gm). (17)

Note that the right hand side does not depend on φ. Using (15) a decomposition with respect to the value
of Φ now gives

K(Gm, Gn) =

∑
φ∈T (Gm,Gn) P (Xn = Gn|Xm = Gm,Φ = φ)P (Φ = φ|Xm = Gm)

P (Xn = Gn)
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=
(n−m)! t(Gm, Gn)

n! θe(Gm)(1− θ)(
m
2 )−e(Gm)

=
ρ(Gm, Gn)

P (Xm = Gm)
.

Clearly, this converges for fixed Gm as n→∞ if and only if ρ(Gm, Gn) does.

(b) This follows from the sampling interpretation of ρ and the independence of the edge indicators. 2

Again, part (b) implies that the tail σ-field ofX is trivial. Further, the Erdős-Rényi chains with different
parameter values are easily seen to be h-transforms of each other.

Theorem 3 identifies the Doob-Martin boundary of the Erdős-Rényi chain as a subset of the set of all
functions G∞ : G → [0, 1]. For a concise description of this subset, by ‘graphons’, we refer the reader
to Lovász (2012).

4 Search trees
The nodes of the complete binary tree V = {0, 1}? are finite 0-1 sequences (or words) u = (u1, . . . , uk);
we write u0 = (u1, . . . , uk, 0) and u1 = (u1, . . . , uk, 1) for the left and right child of u respectively and,
if k = |u| > 0, ū = (u1, . . . , uk−1) for its direct ancestor. The concatenation of u = (u1, . . . , uk) and
v = (v1, . . . , vl) is given by u + v = (u1, . . . , uk, v1, . . . , vl). We further write ∂V = {0, 1}∞ for the
ends compactification of the tree V.

By a binary tree we mean a subset x ⊂ V that is prefix-stable or, equivalently, contains the ancestor of
each of its non-root elements. If u /∈ x, ū ∈ x, then we call u external, and we write ∂x for the set of
external nodes of x. The (fringe) subtree of x rooted at u is given by x(u) := {v ∈ V : u+ v ∈ x}. Let
Bn be the set of binary trees with n nodes; B :=

⋃∞
n=1 Bn. Prefix stability implies that any x ∈ B can be

regarded as a contiguous subset of V and hence be described by its boundary function

Bx : ∂V→ N, (ui)i∈N 7→ min
{
k ∈ N : (u1, . . . , uk) /∈ x

}
.

(This seems to be the most natural term, but in view of all the other occurrences of boundaries in the
present paper, ‘frontier’ may be a sensible alternative.)

Given a sequence (tn)n∈N of pairwise distinct real numbers the binary search tree (BST) algorithm
generates a sequence (xn)n∈N of labelled binary trees as follows: The first value is stored at the root
node; given xn the next value tn+1 is stored at the first empty node found when travelling through xn,
moving from u to u0 if the new value is smaller that the label of an occupied node and to u1 otherwise.
This is one of the standard algorithm for searching and also arises in the context of sorting; see Knuth
(1973), Mahmoud (1992) and Drmota (2009). Suppose that the ti’s are realizations of independent random
variables ηi, i ∈ N, with the same continuous distribution. Then the random binary trees Xn obtained for
η1, . . . , ηn, n ∈ N, can be collected into a Markov chainX = (Xn)n∈N with a simple transition structure:
X1 is the tree that consists of the root node ∅ only, and in the transition from Xn to Xn+1 one of the n+ 1
external nodes of Xn is chosen uniformly at random and incorporated into the tree. The BST chain has B
as its state space, and P (Xn ∈ Bn) = 1 for all n ∈ N.

The Doob-Martin compactification of B with respect to X and the distribution of the limit X∞ were
obtained by Evans et al. (2012) and can be described as follows: ∂B is the set of probability measures µ
on ∂V. Convergence to µ ∈ ∂B of a sequence (xn)n∈N ⊂ B means that an := #xn → ∞ and that the
relative number #xn(u)/an of nodes in the subtree rooted at u ∈ V converges to µ(Au) for all u ∈ V,
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where Au consists of all infinite 0-1 sequences with prefix u. As with the transition tree in the previous
section, the values µ(Au), u ∈ V, determine µ.

We have P (X∞(Au) > 0) = 1 for all u ∈ V. The distribution of X∞ is a probability measure on ∂B,
hence on the set of probability measures on ∂V, where the latter is endowed with the σ-field generated
by the projections µ 7→ µ(A), A a Borel subset of ∂V. This distribution has the (characterizing) property
that the random variables

ξu :=
X∞(Au0)

X∞(Au)
, u ∈ V, (18)

are independent and uniformly distributed on the unit interval. This in turn implies that X∞(Au) can
be written as the product of independent, identically distributed random variables, a fact that we will use
repeatedly below.

In the present section we apply this to the asymptotics of the random functionsBXn
, n ∈ N. The idea of

describing randomly growing sets by their boundary appears in connection with models now known under
the acronym ‘IDLA’ (internal diffusion limited aggregation). This subject area was initiated by Diaconis
and Fulton (1991), an early important contribution is Lawler et al. (1992). Both papers deal with integer
lattices, but the basic model has since then been applied to various other infinite discrete background sets,
for example to the ‘comb’ by Huss and Sava (2012). BST chains may be seen as an IDLA variant on
the background set V, where the exploration process is a reinforced random walk in the sense that the
probabilities of moving from u to u0 and u1 respectively depend on the number of previous particles
that have travelled along the respective edge. The BST boundary functions have earlier been investigated
under the name of ‘silhouette’ in Grübel (2005, 2009), where they were regarded as functions on the unit
interval via

∂V 3 u = (uk)k∈N 7→ β(u) :=
1

2
+

∞∑
k=1

2uk − 1

2k+1
∈ [0, 1] (19)

(binary rationals do not matter as X∞ has no atoms). Figure 1 shows the boundary functions of Xn for
various n, with pseudorandom data, where (19) has been used to display BXn

as a function on [0, 1].
We begin with two real-valued functionals of the boundary functions. First we consider the growth of

the trees along a fixed path through the infinite binary tree.

Theorem 4 Let u ∈ ∂V be fixed. Then the tail σ-field of the sequence (BXn
(u))n∈N is P -trivial.

A proof can easily be obtained on using the well-known connection to records: The BST dynamics
imply that (BXn

(u))n∈N is identical in distribution to the sequence (Sn)n∈N, Sn =
∑n
k=1 ζk, of partial

sums of independent random variables ζk with P (ζk = 1) = 1 − P (ζk = 0) = 1/k, k ∈ N, which also
appears when counting records in random samples. It follows that ((n, Sn))n∈N is a Markov chain with
state space F = {(n, i) : n ∈ N, i ∈ [n]} and transition probabilities

p
(
(n, k), (n+ 1, k + 1)

)
= 1− p

(
(n, k), (n+ 1, k)

)
=

1

n+ 1
.

The structural similarity to the Pólya urn mentioned in Section 1 should be apparent. In the records chain,
a sequence ((n, kn))n∈N of states converges in the sense introduced in Section 2 if and only if

lim
n→∞

kn
log n

= α ∈ [0,∞],



12 Rudolf Grübel

Fig. 1: The subgraph of BXn , for n = 50 (black), n = 100 (gray) and n = 200 (light gray).

which leads to F̄ = F ∪ [0,∞]. This can be proved by ‘path-counting’, the asymptotics of unsigned
Stirling numbers of the first kind, and an interesting monotonicity argument; see Gnedin and Pitman
(2005) and the references given there. In the compactification, Sn tends to the constant value 1, which
implies triviality of the tail σ-field as explained at the end of Section 2.

Let

H(0) = 0, H(n) =

n∑
k=1

1/k for n ∈ N,

be the harmonic numbers. From the representation ofBXn
(u) as a sum of independent Bernoulli variables

we obtain the expected value EBXn
(u) = H(n) and, usingH(n) ∼ log n, the distributional convergence

1√
log n

(
BXn(u)− log n

)
→distr Z as n→∞, (20)

where Z has a standard normal distribution. However, by Theorem 4, there is no transformation of the
random variables BXn

(u), u ∈ ∂V fixed, that leads to strong convergence with a non-degenerate limit.
For the second functional we integrate the boundary functions with respect to the measure λ on ∂V

given by λ(Au) = 2−|u|. This is the unique normalized Haar measure if we regard the set of infinite
0-1 sequences as a compact group under the pointwise addition modulo 2. Recall from (18) that ξu =
X∞(Au0)/X∞(Au), and let

C(t) = 1 +
1

2

(
log(t) + log(1− t)

)
, 0 < t < 1.

Lemma 5 The random variables L∞,k :=
∑
|u|<k 2−|u|C(ξu), k ∈ N, converge almost surely and in L2

as k →∞.
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Proof: A straightforward calculation shows that EC(ξu) = 0 and var(C(ξu)) = 1− (π2/12). In particu-
lar, using independence of the ξu’s,

var
( ∑
|u|=k

2−|u|C(ξu)
)

= 2−k
(

1− π2

12

)
,

which implies that
(∑
|u|≤k 2−|u|C(ξu), σ({ξu : |u| ≤ k})

)
k∈N is an L2-bounded martingale, so that

the corresponding limit theorem can be used. 2

We write L∞ =
∑
v∈V 2−|v|C(ξv) for the limit of L∞,k as k → ∞. In this series we do not have

absolute convergence: For k ∈ N fixed the mean of the random variable
∑
|u|=k 2−|u||C(ξu)| is a positive

value that does not depend on k.

Theorem 6 Let Ln :=
∫
BXn dλ. Then Ln −H(n) → L∞ with probability 1 as n→∞.

Proof: Let Fn be the σ-field generated by the first n variables X1, . . . , Xn of the BST chain. We first
show that

Zn := E[L∞|Fn] =
∑
u∈Xn

2−|u| − H(n). (21)

By (18), the family {ξu : u ∈ V} is a function of the limit X∞ of the BST sequence. Hence, using
the Markov property of the latter, E[C(ξu)|Fn] = E[C(ξu)|Xn]. From Proposition 2 and Lemma 4
in Grübel (2014) it is known that the distribution of ξu given #Xn(u0) = i and #Xn(u1) = j is the beta
distribution with parameters i + 1 and j + 1, and that for a random variable ζ with this distribution we
have E log(ζ) = H(i)−H(i+ j+ 1). In particular, E[C(ξu)|Xn] = 0 on {u /∈ Xn}. For u ∈ Xn, using
#Xn(u) = #Xn(u0) + #Xn(u1) + 1 we obtain

E[C(ξu)|Xn] = 1 +
1

2

(
H(#Xn(u0)) +H(#Xn(u1))

)
−H(#Xn(u)),

which may be written as

2−|u|E[C(ξu)|Fn] = 2−|u| −
(
ψn(u)− ψn(u0)− ψn(u1)

)
with ψn(u) := 2−|u|H

(
#Xn(u)

)
. A summation by parts, see (Grübel, 2014, Lemma 5), now gives∑

u∈Xn

(
ψn(u)− ψn(u0)− ψn(u1)

)
= ψn(∅)−

∑
u∈∂Xn

ψn(u).

Obviously, ψn(u) = 0 for u ∈ ∂Xn, which completes the proof of (21).
The integral defining Ln may be rewritten as follows,∫

BXn
dλ =

∞∑
k=1

k 2−k#{u ∈ ∂Xn : |u| = k} =
∑

u∈∂Xn

|u| 2−|u| =
∑
u∈Xn

2−|u|, (22)

where the last equality can easily be proved by induction. Combining this with (21) and the convergence
of L2-bounded martingales we obtain the assertion. 2
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As a sum of independent and non-degenerate random variables the limit L∞ is not almost surely con-
stant; in particular, the tail σ-field of the L-sequence is not P -trivial.

A strong limit theorem for Ln−H(n) has already been obtained in (Grübel, 2009) by proving directly
that (Ln −H(n),Fn)n∈N is an L2-bounded martingale. Our approach here differs insofar as it replaces
the search for a suitable martingale by projecting the limit on the natural filtration (Fn)n∈N of the Markov
chain, and it also provides a representation of the limit in terms of X∞. The representation in turn leads
to an interpretation of the limit as a distance from X∞ to the Haar measure λ: Let Gk be the σ-field on
∂V generated by the sets Au with |u| = k. The Kullback-Leibler divergence KL(µ1, µ2) of two measures
µ1 and µ2 on a measure space (Ω,F), with F generated by a partition A1, . . . , Al of Ω, is given by

KL(µ1, µ2) :=

l∑
j=1

µ1(Aj) log

(
µ2(Aj)

µ1(Aj)

)
.

We write µ|G for the restriction of the measure µ to a sub-σ-field G of its domain F .

Theorem 7 With probability 1, L∞ = limk→∞ KL(X∞|Gk , λ|Gk).

Proof: If we restrict the sum in the definition of L∞ to the nodes of depth less than k then we obtain with
φ(u) := 2−|u| log

(
X∞(Au)

)
, using (18) and a summation by parts as in the proof of Theorem 6,

∑
|u|<k

2−|u|C(ξu) =
∑
|u|<k

2−|u|
(

1 + 2−1
(

log
X∞(Au0)

X∞(Au)
+ log

X∞(Au1)

X∞(Au)

))
=

∑
|u|<k

2−|u| +
∑
|u|<k

(
φ(u0) + φ(u1)− φ(u)

)
= k +

∑
|u|=k

φ(u) − φ(∅)

=
∑
|u|=k

k2−|u| +
∑
|u|=k

2−k log
(
X∞(Au)

)
= KL(X∞|Gk , λ|Gk).

2

It is tempting to think of the limit as the Kullback-Leibler divergence of X∞ and λ. Note, however,
that the density Zk : V→ [0,∞) of X∞|Gk with respect to λ|Gk is given by

Zk(u) =
X∞(Au)

2−|u|
=

k∏
j=1

(2ξ̃j),

where ξ̃j is equal to either ξv or 1 − ξv with the ξ-variables as in (18), depending on the value of the jth
entry of the sequence u, and with v the corresponding length j − 1 prefix of u. From this representation
as a product of independent, identically distributed and non-degenerate random variables with mean 1 it
follows that

P
(
lim inf
k→∞

Zk(u) = 0
)

= P
(
lim sup
k→∞

Zk(u) =∞
)

= 1.
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In particular, X∞ and λ are mutually singular with probability 1. Clearly, some cancellation occurs in the
sum defining L∞, due to the fact that X∞ is a random measure. xs

0 10 1

0 10 1

Fig. 2: Two values of Yn, with n = 500 (blue) and n = 1000 (red).

We return to the boundary functions. From Theorem 4 it is clear that we cannot expect these to converge
pointwise; see also Figure 1. Further, the asymptotic normality in (20) shows that, at a specific point, the
functions increase roughly as log n but that there are fluctuations of the order

√
log n. Hence, apart

from shifting, some smoothing is needed, as has already been noticed in (Grübel, 2009). We first adapt
the smoothing procedure introduced in (Grübel, 2009) to ∂V instead of [0, 1] as domain of the random
functions. For this we define a total order on ∂V by setting u ≺ v for u = (uk)k∈N, v = (vk)k∈N, with
u 6= v, if and only if ul = 0 and vl = 1 in the first position l where the sequences differ. With the IDLA
connection in mind we are now led to normalizing and smoothing BXn to Yn given by

Yn(u) :=

∫
v≺u

(
BXn

(v)−H(n)
)
λ(dv)

(recall that the nth harmonic number is the expectation of BXn
(v) for each v ∈ ∂V). It is easy to deduce

from (Grübel, 2009, Theorem 8) that Yn converges in distribution to a process with continuous paths.
However, as the Yn’s are all defined on the same probability space, it makes sense to ask whether these
variables themselves converge.

Figure 2 shows the values of Yn(ω) for two ω’s, with n = 500 and n = 1000 respectively, where
instead of two such ω’s in the left and the right part of the figure two separate streams of numbers were
used that the present author regards as plausible substitutes for truly random numbers: The two sequences
were generated from alternating blocks of ten digits in the decimal expansion of π − 3, so that the left
stream begins with t1 = 0.1415926535, t2 = 0.2643383279, . . ., whereas the right stream has t1 =
0.8979323846, t2 = 0.5028841971 and so on. As in Figure 1, ∂V is mapped to [0, 1] by the function β
defined in (19) in order to be able to draw the functions.

The figure supports the conjecture that the random functions Yn themselves converge, and that the limit
is not a fixed function. Incidentally, it also demonstrates the influence of the first few values on the output
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of the BST algorithm: The long-term proportion #Xn((0))/n of nodes in the left subtree is equal to the
value of the first input variable, for example, and for the above π-data the t1-values are quite different.

The theorem below confirms this conjecture. The theorem also provides a representation of the limit
process in terms of the Doob-Martin limit X∞ of the BST sequence and, in fact, its proof is closely
connected to this representation.

We need to specify what convergence of the random functions Yn means. For this, we define a metric
d on ∂V by d(u, v) = 2−l+1 for u, v ∈ ∂V, u 6= v, where l is the first coordinate in which the two
sequences differ as in the definition of the total order on ∂V; also, l− 1 = |u∧ v| where u∧ v denotes the
longest common prefix (last common ancestor) of u and v. This turns ∂V into a compact metric space;
we write C(∂V) for the set of continuous functions on (∂V, d). Endowed with the supremum norm,
‖f‖∞ = supu∈V |f(u)|, C(∂V) becomes a Banach space.

Further, for u = (uk)k∈N ∈ ∂V let K(u) := {k ∈ N : uk = 1}, and u(k) := (u1, . . . , uk−1, 0) for
k ∈ K(u). Generalizing the notation introduced above in connection with the second functional of the
boundary functions we write

L∞(u) :=
∑
v≥u

2−|v|C(ξv), u ∈ V, (23)

where ‘≥’ now refers to prefix order. Clearly, L∞(u) has the same distribution as 2−|u|L∞(∅), and we
know from Lemma 5 that L∞(∅) = L∞ has zero mean and finite variance.

We require two auxiliary results.

Lemma 8 (a) For each u ∈ ∂V, the random variables

Y ′∞,m(u) :=
∑

k∈K(u),k≤m

L∞(u(k)), m ∈ N,

converge almost surely and in L2 as m→∞.
(b) For each u ∈ ∂V, the random variables

Y ′′∞,m(u) :=
∑

k∈K(u),k≤m

2−k log
(
2kX∞(Au(k))

)
, m ∈ N,

converge almost surely and in L2 as m→∞.

Proof: (a) For all m,n ∈ N we have∥∥Y ′∞,m(u)− Y ′∞,n(u)
∥∥

2
= E

∥∥∥ ∑
k∈K(u),

m∧n<k≤m∨n

L∞
(
u(k)

)∥∥∥
2
≤ 2−(m∧n−1)/2 ‖L∞‖2.

This shows that that (Y ′∞,m(u))m∈N is a Cauchy sequence in L2 and that, with Y ′∞ the limit,

E
(
Y ′∞,m − Y ′∞

)2
= O(2−m).

In particular, using Chebyshev’s inequality, we get
∞∑
m=1

P (|Y ′∞,m − Y ′∞| > ε) <∞ for all ε > 0,
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which implies almost sure convergence.
(b) It follows from (18) that

logX∞(Au) =

|u|∑
j=1

log ξ̃j ,

with ξ̃1, . . . , ξ̃|u| independent and uniformly distributed on the unit interval; see also the discussion fol-
lowing Theorem 7. This leads to ∥∥log

(
2−|u|X∞(Au))

∥∥
2

= O(|u|).

Using this bound on the L2-norm of the individual summands we can now proceed as in the proof of
part (a). 2

In view of Lemma 8 it makes sense to define two random functions Y ′∞ = (Y ′∞(u))u∈∂V and Y ′′∞ =
(Y ′′∞(u))u∈∂V on ∂V by

Y ′∞(u) =
∑

k∈K(u)

L∞(u(k)), Y ′′∞(u) =
∑

k∈K(u)

2−k log
(
2kX∞(Au(k))

)
. (24)

The random functions Y ′∞ and Y ′′∞ may also be regarded as stochastic processes with time parameter
u ∈ ∂V.

Lemma 9 (a) With probability 1, the processes Y ′∞ and Y ′′∞ have continuous paths.

(b) Both processes are integrable in the sense that

E‖Y ′∞‖∞ <∞ and E‖Y ′′∞‖∞ <∞.

Proof: We consider Y ′∞ first. For the proof of continuity we adapt the well-known chaining argument,
see e.g. (Kallenberg, 1997, p.35), to the present situation. Let

ρk := max
{
|L∞(v)| : v ∈ V, |v| = k

}
, k ∈ N.

For nodes v on a fixed level k the variables L∞(v) are independent. Using ρ2
k ≤

∑
|v|=k L∞(v)2 we

obtain
Eρ2

k ≤
∑
|v|=k

EL∞(v)2 =
∑
|v|=k

var(L∞(v)) = 2−kvar(L∞),

from which it follows that

E
( ∞∑
k=1

2k/2ρ2
k

)
<∞. (25)

This implies that on a set A of probability 1 we have

ρk(ω) ≤ C(ω) 2−k/4 for all k ∈ N, ω ∈ A,
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with some C(ω) < ∞ that does not depend on k. Suppose now that u, v ∈ V are such that d(u, v) ≤ ε.
Then the first l = l(ε) = d− log2(ε)e entries of u and v coincide, so that their connecting path does not
go below height l. With Lemma 8 and the triangle inequality we therefore get

∣∣Y ′∞(u)(ω)− Y ′∞(v)(ω)
∣∣ ≤ 2

∞∑
k=l+1

ρk(ω) ≤ 13C(ω) ε1/4

whenever ω ∈ A. This implies that almost all paths of Y ′∞ are continuous.
For the proof of integrability we first note that ‖Y ′∞‖∞ ≤

∑∞
k=1 ρk. Using (25) and( ∞∑

k=1

|ak| |bk|
)2

≤
( ∞∑
k=1

a2
k

)( ∞∑
k=1

b2k

)
with ak = 2−k/4 we see that the upper bound has finite mean.

As in the proof of the previous lemma, the arguments used for Y ′∞ can be transferred to the other
process Y ′′∞: We now put

σk := max
{

2−k
∣∣log(2kX∞(Av))

∣∣ : v ∈ V, |v| = k
}
, k ∈ N,

and again, we will show that these decrease rapidly enough as k → ∞. However, we no longer have
independence of the individual random variables in the maximum, so we need a different argument. As
in (Grübel, 2014) in connection with the maximum of the probabilities X∞(Au), |u| = k, we use the
connection to the branching random walks discussed by Biggins (1977). This rests upon the observation
that the variables

Yu := − logX∞(Au), |u| = k,

are the positions of the members of the kth generation in a branching random walk with offspring distri-
bution δ2, meaning that each particle has exactly two descendants, and with

Z := δ− log ξ + δ− log(1−ξ), L(ξ) = unif(0, 1),

for the point process of the positions of the children relative to their parent. Let

m(θ) := E
(∫

eθt Z(dt)
)

=
2

1− θ
, θ < 1, (26)

and let Z(k)
+ (t) be the number of particles in generation k that are located to the right of t. The random

measure Z(k) is the kth convolution power of Z, which leads to

E
(∫

eθtZ(k)(dt)
)

= m(θ)k,

so that

P
(
max{Yu : |u| = k} ≥ t

)
≤ EZ(k)

+ (t)

≤ e−θt E
(∫

[t,∞)

eθsZ(k)(ds)
)
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≤ e−θtm(θ)k

for all t ∈ R, 0 ≤ θ < 1 and k ∈ N. Using (26) we get, with θ = 1/2,

E
(
max{Yu : |u| = k}

)
=

∫ ∞
0

P
(
max{Yu : |u| = k} ≥ t

)
dt

≤
(5

4

)k
+

∫ ∞
(5/4)k

e−t/2 4k dt

= O

((4

3

)k)
,

so that, for some constant C <∞,

E
( ∞∑
k=1

(5

4

)k
σk

)
≤ C

∞∑
k=1

(5

4

)k
2−k E

(
max{Yu : |u| = k}

)
< ∞.

Using this instead of (25) we can now proceed as in the first part of the proof. 2

There is obviously room to spare in the above chaining inequalities; tightening these leads to path
properties beyond continuity.

In the proof of our final result we will use infinite-dimensional martingales; see (Neveu, 1975, Chap-
ter V-2). For this, we require separability of the Banach space

(
C(∂V), ‖ · ‖∞

)
: The sets Au, u ∈ V, are

closed and open in ∂V, so their indicator functions are continuous. Moreover, the intersection of two such
sets is again of this form, and the indicator functions separate the points of ∂V. The required separability
now follows on using the Stone-Weierstraß theorem.

Theorem 10 With probability 1, Yn converges in
(
C(∂V), ‖ · ‖∞

)
to Y∞ := Y ′∞ + Y ′′∞ as n→∞.

Proof: For all u ∈ V, n ∈ N,∫
Au

BXn dλ =
∑

v∈∂Xn,v≥u

|v| 2−|v|

=
∑

w∈∂Xn(u)

(|u|+ |w|) 2−|u|−|w|

= 2−|u|
(
|u|

∑
w∈∂Xn(u)

2−|w| +
∑

w∈∂Xn(u)

|w| 2−|w|
)

= 2−|u|
(
|u| +

∑
w∈Xn(u)

2−|w|
)

= |u| 2−|u| +
∑

v∈Xn,v≥u

2−|v|.

Further, with L∞(u) as in (23),

E[L∞(u)|Fn] = E
[ ∑
v∈V,v≥u

2−|v|C(ξv)
∣∣∣Fn]
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=
∑

v∈Xn,v≥u

(
2−|v| −

(
ψn(u)− ψn(u0)− ψn(u1)

))
=

∑
v∈Xn(u),v≥u

2−|v| − 2−|u|H
(
#Xn(u)

)
,

where we have used the same notation and the same arguments as in the proof of (21). Combining these
we get, for all u ∈ V,∫

Au

(
BXn −H(n)

)
dλ = E[L∞(u)|Fn] + 2−|u|

(
H(#Xn(u))−H(n) + |u|

)
. (27)

Now let u = (uk)k∈N ∈ ∂V be such that #K(u) <∞. The integration range appearing in the definition
of Yn(u) can be decomposed as follows,

Iu := {v ∈ ∂V : v ≺ u} =
∑

k∈K(u)

Au(k).

With (27) we thus obtain, setting Y ′n := E
[
Y ′∞
∣∣Fn],

Yn(u) =
∑

k∈K(u)

∫
Au

(
BXn −H(n)

)
dλ

= Y ′n(u) +
∑

k∈K(u)

2−k
(
H(#Xn(u(k)))−H(n) + k

)
.

From Lemma 9 we know that Y ′∞ is a C(∂V)-valued integrable random variable. Hence (Y ′n,Fn)n∈N is a
martingale with values in the separable Banach space

(
C(∂V), ‖ · ‖∞

)
, and by (Neveu, 1975, Proposition

V.2.6) Y ′n converges almost surely in this space to Y ′∞ as n→∞.
It remains to prove that, as n→∞,∑

k∈K(u)

2−k
(
H(#Xn(u))−H(n) + k

)
→ Y ′′∞(u), (28)

with probability 1 and, with both sides regarded as functions of u, in
(
C(∂V), ‖ · ‖∞

)
. For this, we first

show that
E
[
log
(
X∞(Au)

∣∣Fn] = H
(
#Xn(u)

)
−H(n) for all u ∈ V, n ∈ N. (29)

Clearly, for u = ∅, both sides of (29) are equal to 0. If u = (u1, . . . , uk, uk+1) with uk+1 = 0 then,
from (18),

logX∞(Au) = logX∞(Aū) + log ξū.

Further, we know from the proof of Theorem 6 that

E[log ξū|Fn] = H
(
#Xn(ū0)

)
−H

(
#Xn(ū)

)
.

Hence, if (29) holds for ū, then so it does for u. The same arguments work in the case uk+1 = 1,
with 1 − ξū and #Xn(ū1) instead of ξū and #Xn(ū0) respectively. This completes the induction proof
for (29).
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As in the first part of the proof we now get

E
[
Y ′′∞(u)

∣∣Fn] =
∑

k∈K(u)

2−k
(
H
(
#Xn(u(k))

)
−H(n) + k

)
.

From this (28) follows on using the infinite-dimensional martingale convergence theorem again. 2

5 Comments and complements
We collect some references to related work and also put the above results into a larger perspective.

(a) The approach of the present paper is not limited to graphs and search trees but may be used quite
generally in the context of combinatorial Markov chains. For an elementary introduction to such processes
and their boundaries, with many examples and algorithms, see Grübel (2013) (written in simple German).

(b) In concrete cases, the results provided by a general method such as the Doob-Martin approach
can often be obtained more directly, using the additional structures then present. For example, in Grübel
(2014) a proof of the basic BST result from Evans et al. (2012) is given that is based on the BST algorithm;
this direct approach also leads to a representation of X∞ in terms of the input sequence. Obviously, the
same applies to the theory of graph limits, but the exposition of a common structure provided by a general
theory may lead to a deeper understanding of such individual cases.

(c) As seen above, the boundary theory approach may lead to strong limit theorems for discrete struc-
tures and their functionals, occasionally improving on previous results. In Grübel (2014) such an am-
plification from convergence in distribution to convergence of the random variables is carried out for the
Wiener index of search trees, where distributional convergence had earlier been obtained by Neininger
(2002) with the contraction method. In both cases it is instructive to compare the proofs, which are quite
different and seem to be less involved for the stronger result (once the Doob-Martin compactification has
been worked out). The records chain provides an example where we have distributional convergence with
a non-degenerate limit, but where a strong limit is necessarily degenerate, i.e. constant.

(d) At a qualitative level functionals of discrete random structures may have a non-trivial tail σ-field,
which we interpret as persisting randomness, or they may not, even if the structures themselves show such
a persistence; see Theorem 4. A similar phenomenon has been observed in connection with the subtree
size profile of binary search trees by Dennert and Grübel (2010).

Acknowledgements. I thank Steve Evans, Klaas Hagemann, Anton Wakolbinger and Wolfgang Woess
for helpful discussions. Further, I am grateful to the referee for comments that have led to numerous
improvements. A talk based on the material of this paper was given at the 2014 AofA conference in Paris;
I also thank the participants for their feedback.
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R. Grübel. On the silhouette of binary search trees. Ann. Appl. Probab., 19(5):1781–1802, 2009.
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