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Let G = (X,Y ;E) be a bipartite graph, where X and Y are color classes and E is the set of edges of G. Lovász

and Plummer asked whether one can decide in polynomial time that a given bipartite graph G = (X,Y ;E) admits

a 1-anti-factor, that is subset F of E such that dF (v) = 1 for all v ∈ X and dF (v) 6= 1 for all v ∈ Y . Cornuéjols

answered this question in the affirmative. Yu and Liu asked whether, for a given integer k ≥ 3, every k-regular

bipartite graph contains a 1-anti-factor. This paper answers this question in the affirmative.
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1 Introduction

In this paper, we consider finite undirected graphs without loops and multiple edges. LetG = (V (G), E(G))
be a graph with vertex set V (G) and edge set E(G). A graph G′ is called a spanning subgraph of G if

V (G) = V (G′) and E(G′) ⊆ E(G). The degree of a vertex x in G is denoted by dG(x), and the set

of vertices adjacent to x in G is denoted by NG(x). For x ∈ V (G), we write NG[x] = NG(x) ∪ {x}.
For xy /∈ E(G), G + xy denotes the graph with vertex set V (G) ∪ {x, y} and edge set E(G) ∪ {xy}.
For S ⊆ V (G), the subgraph of G induced by S is denoted by G[S] and G − S = G[V (G) − S]. For

two disjoint subsets S, T ⊆ V (G), let EG(S, T ) denote the set of edges of G joining S to T and let

eG(S, T ) = |EG(S, T )|. For a positive integer r, let [r] = {0, 1, . . . , r}. Let c(G) denote the number of

connected components of G.

Let G be a graph, and for every vertex x ∈ V (G), let H(x) be a set of integers. An H-factor is a

spanning graph F such that

dF (x) ∈ H(x) for all x ∈ V (G). (1)

A matching of a graph is a set of edges such that no two edges share a vertex in common. A perfect

matching of a graph is a matching covering all vertices. Clearly, a matching (or perfect matching) of a

graph is also a {0, 1}-factor (1-factor, respectively). On 1-factors of bipartite graphs, Hall obtained the

following result.
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Theorem 1.1 (Hall (1935)) Let k ≥ 1 be an integer. Every k-regular bipartite graph contains a 1-factor.

A spanning subgraph F of bipartite graph G = (X,Y ;E) is called a 1-anti-factor if dF (x) = 1 for

all x ∈ X and dF (y) 6= 1 for all y ∈ Y . Lovász and Plummer (see Lovász and Plummer (1986), Page

390) proposed the following problem: can one decide in polynomial time whether a given bipartite graph

admits a 1-anti-factor?

A set {h1, h2, . . . , hm} of increasing integers is called allowed (see Lovász (1972)) if hi+1 − hi ≤ 2
for all 1 ≤ i ≤ m− 1. Let H : V (G) → 2Z be a function. If H(v) is allowed for each vertex v, then we

call H an allowed function. The H-factor problem, i.e., determining whether a graph contains H-factors,

is NP-complete in general. For the case when H is an allowed function, Lovász (1972) gave a structural

description. In fact, Lovász introduced the definition of negative degree by giving a 2-end-coloring of

edges. By defining the negative degree for a general graph G, Lovász may study the degree constrained

factor problems of mixed graphs (including multiple edges, loops, directed edges, two way edges(↔ or

→← (one edge))). Cornuéjols (1988) provided the first polynomial time algorithm for H-factor problem

with H being allowed and so give an affirmative answer to the problem proposed by Lovász and Plummer.

A classical approach, due to Tutte, for studying f -factor problems is to look for reductions to the simpler

matching problem. For studying H-factor problems, where every gap of H(v) has the same parity, Szabó

(2009) used a reduction to local K2 and factor-critical subgraph packing problem of Cornuéjols et al.

(1981/1982). The idea of reducing a degree prescription to other matching problems appeared in works

of Cornuéjols (1988). Cornuéjols (1988) and Loebl (1993) considered reductions to the edge and triangle

packing problem, which can be translated into 1-anti-factor problem. Let G be a graph, U = V (G)
and let W be the set of all edges and triangles of G. Let G′ = (U,W ;E′) be a bipartite graph, where

E′ = {xy | x ∈ U, y ∈ W and x ∈ V (y)}. Then G′ has a 1-anti-factor if and only if G contains a set of

vertex-disjoint edges and triangles covering V (G).
Shirazi and Verstraëte (2008) showed that every graph G contains an H-factor when |{1, . . . , dG(v)}−

H(v)| = 1 holds for all v ∈ V (G). Addario-Berry et al. (2007) showed that every graph G contains

a factor F such that dF (v) ∈ {a−v , a
−
v + 1, a+v , a

+
v + 1, } for all v ∈ V (G), where dG(v)/3 ≤ a−v ≤

dG(v)/2 − 1 and dG(v)/2 ≤ a+v ≤ 2dG(v)/3. Addario-Berry et al. (2008) slightly improved the result

in Addario-Berry et al. (2007) and obtained a similar result for bipartite graphs. For more results on

non-consecutiveH-factor problems of graphs, we refer readers to Lu (2016); Lu et al. (2013); Thomassen

et al. (2016).

However, there is no nice formula to determine whether a bipartite graph contains a 1-anti-factor. So it

is interesting to classify bipartite graphs with 1-anti-factors. Yu and Liu (see Yu and Liu (2009), Page 76)

asked whether every connected r-regular bipartite graph contains a 1-anti-factor. In this paper, we give an

affirmative answer to Yu and Liu’s problem and obtain the following result.

Theorem 1.2 Let k ≥ 3 be an integer. Every k-regular bipartite graph contains a 1-anti-factor.

The rest of the paper is organized as follows. In Section 2, we introduce Lovász’s H-Factor Structure

Theorem that is needed in the proof of Theorem 1.3. The proof of Theorem 1.2 will be presented in

Section 3.

2 Lovász’s H-Factor Structure Theorem

Let F be a spanning subgraph of G = (V,E) and let H : V (G) → 2Z be an allowed function. Fol-

lowing Lovász (1972), one may measure the ”deviation” of F from the condition (1) by ∇H(F,G) :=
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∑
v∈V (G) min{|dF (v) − h| : h ∈ H(v)}. Moreover, let ∇H(G) = min{∇H(F,G) : F is a spanning

subgraph of G}.∇H(G) is called deficiency of G with respect to the function H . The subgraph F is said

to be H-optimal if ∇H(F,G) = ∇H(G). It is clear that F is an H-factor if and only if ∇H(F,G) = 0,

and any H-factor (if exists) is H-optimal. We study H-factors of graphs based on Lovász’s structural

description to the degree prescribed factor problem.

For v ∈ V , we denote by IH(v) the set of degrees of v in all H-optimal spanning subgraphs of G,

i.e., IH(v) := {dF (v) : F is an H-optimal spanning subgraph of G}. Based on the relation of the sets

IH(v) and H(v), one may partition the vertex set V into four classes:

CH(G) := {v ∈ V : IH(v) ⊆ H(v)},

AH(G) := {v ∈ V − CH(G) : min IH(v) ≥ maxH(v)},

BH(G) := {v ∈ V − CH(G) : max IH(v) ≤ minH(v)},

DH(G) := V − CH(G)−AH(G) −BH(G).

When there is no confusion, we omit the reference to G. It is clear that the 4-tuple (AH , BH , CH , DH) is

a partition of V . A graph G is said to be H-critical if it is connected and DH = V . By the definition of

AH , BH , CH the following observations hold:

(*) for every v ∈ AH , there exists an H-optimal graph F such that dF (v) > maxH(v);

(**) for every v ∈ BH , there exists an H-optimal graph F such that dF (v) < minH(v).

We will need the following results of Lovász (1972).

Lemma 2.1 (Lovász (1972)) Let G be a simple graph and let H : V (G) → 2Z be an allowed function.

Let v ∈ DH .

(a) IH(v) consists of consecutive integers.

(b) IH(v) ∩H(v) contains no consecutive integers.

Let R be a connected induced subgraph of G. Let HR : V (R) → 2Z be a set function such that

HR(x) = H(x) for all x ∈ V (R).

Lemma 2.2 ( Lovász (1972)) Let G be a graph and let H : V (G)→ 2Z be an allowed function.

(a) ∇H(G) = c(G[DH ]) +
∑

v∈BH
(minH(v)− dG−AH

(v)) −
∑

v∈AH
maxH(v).

(b) If BH = ∅, then every connected component R of G[DH ] is HR-critical.

(c) EG(CH , DH) = ∅.

(d) If G is H-critical, then∇H(G) = 1.
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3 The Proof of Theorem 1.2

Lemma 3.1 Let p ≥ 2 be an integer. Let G = (X,Y ;E) be a bipartite graph. Let H : V (G)→ 2Z such

that H(y) = [max{dG(y), p}]− {1} for all y ∈ Y and H(x) = {−1, 1} for all x ∈ X . Then AH ⊆ X
and BH = ∅.

Proof: Firstly, we show that BH = ∅. Suppose that BH 6= ∅ and let v ∈ BH . By the definition of BH , if

v ∈ X , then max IH(v) ≤ minH(v) = −1, which is impossible. Thus we may assume that v ∈ Y . This

implies that 0 ≤ max IH(v) ≤ minH(v) = 0. Hence IH(v) = {0} ⊆ H(v), which implies v ∈ CH , a

contradiction.

Next we show that AH ⊆ X by contradiction. Suppose that there exists a vertex y ∈ AH −X . Since

p ≥ 2, by the definition of set AH , we have that dG(y) ≥ max IH(y) ≥ min IH(y) ≥ maxH(y) ≥
dG(y). Thus we may infer that IH(y) = {dG(y)} ⊆ H(y), which implies that y ∈ CH by the definition,

a contradiction. This completes the proof. ✷

Lemma 3.2 Let p ≥ 2 be an integer. Let G = (X,Y ;E) be a bipartite graph and let H : V (G) → 2Z

such that H(y) = [max{dG(y), p}] − {1} for all y ∈ Y and H(x) = {−1, 1} for all x ∈ X . If G is

H-critical, then the following properties hold.

(i) G− x contains an HG−x-factor for all x ∈ X;

(ii) IH(u) ⊆ {0, 1, 2} for all u ∈ V (G);

(iii) |X | is odd;

(iv) Let y ∈ Y such that dG(y) ≥ 3. Then there exist three vertices x1, x2, x3 ∈ NG(y) such that

∇H
G′
(G′) = 2, where G′ = G− {x1, x2, x3, y}.

Proof: Let G be H-critical. By the definition of H-critical graph and Lemma 2.2 (d), we have that

DH = V (G) and ∇H(G) = 1. For any x ∈ X , by the definition of DH , there exists an H-optimal

subgraph F of G such that dF (x) = 0 and dF (w) ∈ H(w) for all w ∈ V (G) − {x}. Hence G − x
contains an HG−x-factor. This completes the proof of (i).

Next we show (ii). Suppose that there exists a vertex u ∈ V (G) and an integer r ≥ 3 with r ∈ IH(u).
Since ∇H(G) = 1 and H(x) = {−1, 1} for any x ∈ X , we have u ∈ Y . From the definition of DH ,

we may infer that IH(u) − H(u) 6= ∅. Recall that H(u) = [max{dG(u), p}] − {1}. Thus we have

1 ∈ IH(u). By Lemma 2.1 (a), IH(u) is an interval, which implies {2, 3} ⊆ IH(u). Then we have

{2, 3} ⊆ IH(u) ∩H(u), contradicting to Lemma 2.1 (b). This completes the proof of (ii).

Given x ∈ X , since x ∈ DH = V (G), we may choose an H-optimal subgraph F of G such that

dF (x) = 0. Note that ∇H(G) = 1. Thus we have dF (w) ∈ H(w) for all w ∈ V (G) − {x}. Since F is

bipartite,

∑

y∈Y

dF (y) = eF (X,Y ) =
∑

x∈X

dF (x) = |X | − 1. (2)

By (ii), we have that dF (y) ∈ {0, 2} for all y ∈ Y . So we have that
∑

y∈Y dF (y) is even. By (2), |X | is
odd. This completes the proof of (iii).
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Now we show that (iv) holds. Let F be an H-optimal subgraph of G such that dF (y) = 1 and let

NF (y) = {x}. Since ∇H(G) = 1 and dF (y) = 1 /∈ H(y), we have dF (w) ∈ H(w) for all w ∈
V (G) − {y}. Let x2, x3 ∈ NG(y) − x. Then we have that dF+x2y+x3y(y) = 3 ∈ H(y). One can see

that dF+x2y+x3y(w) = dF (w) ∈ H(w) for all w ∈ V (G) − {x2, x3, y} and dF+x2y+x3y(xi) = 2 for

i ∈ {2, 3}. Set G′ = G − {y, x, x2, x3}. Let yi ∈ NF (xi) − {y} for i ∈ {2, 3}. (Note that y2 = y3 is

possible.) Thus we have dF−{y,x,x2,x3}(w) ∈ H(w) = HG′(w) for all w ∈ V (G′)− y2− y3. Recall that

dF (yi) ∈ HG′(yi) for i ∈ {2, 3}. One can see that

∇H
G′
(F − {y, x, x2, x3};G

′) ≤ 2.

Hence we have

∇H
G′
(G′) ≤ 2.

Since G contains no H-factors, we have

∇H
G′
(G′) ≥ 1.

If∇H
G′
(G′) = 1, let F ′ be an HG′-optimal subgraph ofG′, thenF ′∪{xy, x2y, x3y} is also an H-optimal

subgraph of G, which implies 3 ∈ IH(y), contradicting to (ii). This completes the proof. ✷

Theorem 3.3 Let p ≥ 2 be an integer. Let G = (X,Y,E) be a bipartite graph and let H : V (G) → 2Z

such that H(y) = [max{dG(y), p}] − {1} for all y ∈ Y and H(x) = {−1, 1} for all x ∈ X . Then G
contains an H-factor if and only if for any subset S ⊆ X , we have

q(G− S) ≤ |S|, (3)

where q(G− S) denotes the number of connected components R of G− S, such that R is HR-critical.

Proof: Firstly, we prove the necessity. Suppose that G contains an H-factor F . Let R1, . . . , Rq denote

these HR-critical components of G−S. Since Ri contains no HRi
-factors, every H-factor of G contains

at least an edge from Ri to S. Thus

q(G− S) ≤
∑

x∈S

dF (x) = |S|,

which implies q(G− S) ≤ |S|.
Next, we prove the sufficiency. Suppose that G contains no H-factors. Let AH , BH , CH , DH be

defined as in Section 2. By Lemma 3.1, AH ⊆ X and BH = ∅.
By Lemma 2.2 (a), we have

0 < ∇H(G) = c(G[DH ]) +
∑

v∈BH

(minH(v)− dG−AH
(v))−

∑

v∈AH

maxH(v)

= c(G[DH ])− |AH |,

i.e.,

c(G[DH ]) > |AH |. (4)
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By Lemma 3.1, we have BH = ∅. By Lemma 2.2 (b), every connected component R of G[DH ] is also

HR-critical. Then, by (5),

q(G −AH) ≥ c(G[DH ]) > |AH |.

This completes the proof. ✷

From the proof of Theorem 3.3 and Lemma 2.2 (b), one can see the following result.

Lemma 3.4 Let p ≥ 2 be an integer. Let G = (X,Y,E) be a bipartite graph and let H : V (G) → 2Z

such that H(y) = [max{dG(y), p}] − {1} for all y ∈ Y and H(x) = {−1, 1} for all x ∈ X . If G
contains no H-factors, then

∇H(G) = c(G[DH ])− |AH |, (5)

where every connected componentR of G[DH ] is HR-critical and also a connected component of G−AH .

Lemma 3.5 Let k ≥ 2 be an integer. Let G = (X,Y ;E) be a connected k-regular bipartite graph and

let H : V (G)→ 2Z such that H(y) = [k]− {1} for all y ∈ Y and H(x) = {−1, 1} for all x ∈ X . Then

either G contains an H-factor or G is H-critical.

Proof: Suppose that G contains no H-factors and is not H-critical. By Lemma 3.1, we have that

BH = ∅ and AH ⊆ X. (6)

Since G is not H-critical, we have DH 6= V (G). Thus we infer that AH 6= ∅, otherwise, CH =
V (G)−DH 6= ∅ and by Lemma 2.2 (c), EG(CH , DH) = ∅, a contradiction since G is connected.

Recall that H contains no H-factors. By Lemmas 3.1 and 3.4, we have BH = ∅, AH ⊆ X and

0 <∇H(G) = c(G[DH ])− |AH |. (7)

Let R1, . . . , Rq denote connected components of G−AH , where q = c(G−AH). Since G is a connected

regular bipartite graph and AH ⊆ X , we have |X | = |Y | and every connected component R of G− AH

satisfies |V (R) ∩X | < |V (R) ∩ Y |. So we have

qk ≤ k

q∑

i=1

(|V (Ri) ∩ Y | − |V (Ri) ∩X |) =

q∑

i=1

eG(V (Ri), AH) =
∑

x∈AH

dG(x) = k|AH |,

which implies

c(G[DH ]) ≤ q = c(G−AH) ≤ |AH |,

contradicting to (7). This completes the proof. ✷

LetH be the set of graphs G, which satisfies the following properties:

(a) G is a connected bipartite graph with color classes X,Y ;

(b) |X | = |Y | − 1;

(c) dG(x) = 3 for every vertex x ∈ X and dG(y) ≤ 3 for every vertex y ∈ Y .
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Lemma 3.6 If G ∈ H, then G is not H-critical, where H : V (G) → 2Z is a function such that H(x) =
{−1, 1} for all x ∈ X and H(y) = {0, 2, 3} for all y ∈ Y .

Proof: Suppose that the result does not hold. Let G ∈ H be an H-critical graph with the smallest order.

By Lemma 3.2 (iii), |X | is odd. Recall that |X | = |Y | − 1 and dG(x) = 3 for all x ∈ X . Hence

|X | + 1 = |Y | ≥ 4 and there exists y ∈ Y such that dG(y) = 3. If |Y | = 4, then |X | = 3 and the

spanning subgraph of G with edge set {xy | x ∈ NG(y)} is an H-factor, a contradiction. Hence we may

assume that |X | ≥ 5.

Let N(y) = {x1, x2, x3} and G′ = G − N [y]. Let H ′ = HG′ . By Lemma 3.2 (iv), we have

∇H′ (G′) = 2. Let A′ := AH′ (G′), B′ := BH′(G′), C′ := CH′(G′) and D′ = DH′(G′). By Lemma

3.1, B′ = ∅. By Lemma 3.4, we have

∇H′ (G′) = c(G′[D′])− |A′| = 2. (8)

Now we show that G′[D′] contains a connected component R such that R ∈ H, which contradicts to

the choice of G since R is HR-critical and |V (R)| < |V (G)|. Let q := c(G′ − A′). Let R1, . . . , Rq

denote the connected components of G′ − A′. Note that for every connected component R of G − A′,

dR(x) = 3 for all x ∈ V (R) ∩X . So we have |V (R) ∩ X | < |V (R) ∩ Y |. Recall that |X | = |Y | − 1.

Moreover, one can see that |X | =
∑q

i=1 |V (Ri) ∩X |+ |A′|+ 3 and |Y | =
∑q

i=1 |V (Ri) ∩ Y |+ 1. So

we may infer that

q∑

i=1

|V (Ri) ∩X |+ |A′|+ 3 =

q∑

i=1

|V (Ri) ∩ Y | ≥

q∑

i=1

|V (Ri) ∩X |+ q, (9)

i.e.,

q ≤ |A′|+ 3. (10)

Since EG′(C′, D′) = ∅, combining (8), we have q ≥ c(G[D′]) = |A′|+2 ≥ 2. So q ∈ {|A′|+2, |A′|+3}.
By (9), each connected componentR of G′−A′ except at most one satisfies |V (R)∩X | = |V (R)∩Y |−1.

Since c(G[D′]) ≥ 2, we have G[D′] contains an HR-critical component R such that |V (R) ∩ X | =
|V (R) ∩ Y | − 1. By Lemma 3.2 (iii), |V (R) ∩X | is odd and so V (R) ∩X 6= ∅. Hence we have R ∈ H.

This completes the proof. ✷

Proof of Theorem 1.2: Let G be a k-regular bipartite graph with bipartition (X,Y ). Let H : V (G)→ 2Z

such that H(x) = {−1, 1} for all x ∈ X and H(y) = {0, 2, 3} for all y ∈ Y . Clearly, if G has an H-

factor, then G has a 1-anti-factor. By Hall’s Theorem, G contains a 3-factor. Thus it is sufficient for us to

show that every connected 3-regular bipartite graph contains an H-factor. So we may assume that G is a

connected 3-regular bipartite graph. By contradiction, suppose that G contains no H-factors.

By Lemma 3.5, we may assume that G is H-critical. Let y ∈ Y and G′ = G−N [y]. Let H ′ := HG′ ,

D′ := DH′(G′), A′ := AH′ (G′), B′ := BH′(G′) and C′ := CH′ (G′). By Lemma 3.2 (ii) and (iv), we

have that IH(y) ⊆ {0, 1, 2} and∇H′ (G′) = 2. By Lemma 3.4, we have

2 = ∇H′ (G′) = c(G′[D′])− |A′|, (11)

By Lemma 3.1, we have B′ = ∅. Let q := c(G′ − A′). Let R1, . . . , Rq be the connected components of

G′ −A′.
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Now we will show that G′[D′] contains a connected component R such that R is HR-critical and

R ∈ H, which contradicts to Lemma 3.6. (The proof is completely similar with that of Lemma 3.6.) Note

that |X | = |Y |, |X | =
∑q

i=1 |V (Ri) ∩X |+ 3 + |A′| and

|Y | =

q∑

i=1

|V (Ri) ∩ Y |+ 1 ≥

q∑

i=1

|V (Ri) ∩X |+ q + 1. (12)

So we have q ≤ |A′| + 2. By (11), we have q ≥ c(G′[D′]) = |A′| + 2. Thus q = |A′| + 2 and so the

equality holds for (12), which implies that for every connected component R of G′ −A′, it is HR-critical

and |V (R) ∩ X | = |V (R) ∩ Y | − 1. So every connected component of G′[D′] belongs to H. This

completes the proof of Theorem 1.2. ✷

Remark 1. The bound that k ≥ 3 in Theorem 1.2 is sharp. Let m ∈ N be a positive integer. For example,

C4m+2 is a 2-regular graph and contains no H-factors. However, it is easy to show that C4m contains an

H-factor.

Remark 2. Theorem 1.2 does not hold for multi-graphs. By doubling every second edge in C4m+2, we

get a 3-regular bipartite multi-graph G. But, as one sees in Remark 1 that C4m+2 does not contain an

H-factor, one sees that neither does G.
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