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Closed monopolies in graphs have a quite long range of aijaits in several problems related to overcoming fail-
ures, since they frequently have some common approachesdhtioe notion of majorities, for instance to consensus
problems, diagnosis problems or voting systems. We intrediere opet-monopolies in graphs which are closely
related to different parameters in graphs. Given a gi@ph (V, ) andX C V, if §x(v) is the number of neigh-
borsv has inX, k is an integer and is a positive integer, then we establish in this article anemtion between the
following three concepts:

e Given a nonempty set/ C V a vertexv of G is said to bé:-controlled byM if dxs(v) > 5VT(“) + k. The set
M is called an opetk-monopoly forG if it k-controls every vertex of G.

e Afunctionf : vV — {—1, 1} is called asigned totatdominating function folz if f(N(v)) = >-,cn(,) f(v) =
tforallveV.

e A nonempty sefS C V is a global (defensive and offensiviedalliance inG if §s(v) > dv_s(v) + k holds
foreveryv € V.

In this article we prove that the problem of computing the imisim cardinality of an opef-monopoly in a graph
is NP-complete even restricted to bipartite or chordal lgsapn addition we present some general bounds for the
minimum cardinality of opert-monopolies and we derive some exact values.

Keywords: openk-monopoliesk-signed total domination, global defensikalliance, global offensivé-alliance

1 Introduction

We begin stating some terminology and notation which we wg#. Throughout this articlé; denotes a
simple graph with vertex sé&f(G) and edge selt(G) (we will use onlyl” andE if the graph is clear from
the context). The order @¥ isn = |V (G)| and the size is» = | E(G)|. We denote two adjacent vertices
uwandv by u ~ v. Given a vertex € V, the setN (v) = {u € V : u ~ v} is theopen neighborhoodf
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v, and the sefV[v] = N(v) U {v} is theclosed neighborhoodf v. So, thedegreeof a vertexv € V' is
d(v) = |[N(v)|. Given a setS C V, theopen neighborhoodf S is N(S) = (U, N(v) and theclosed
neighborhoof S is N[S] = N(S) U S. The minimum and maximum degree@fare denoted by(G)
andA(G), respectively (again we ugeandA for short if G is clear from the context). For a nonempty
setS C V and avertew € V, Ng(v) denotes the set of neighbardas inS, i.e, Ng(v) = SN N(v).
The degree of in S will be denoted byis(v) = |Ng(v)|. Also, S = V — S is the complement of a set
SinV anddS = N[S] — S is the boundary of a s&t. The subgraph of? induced by a sef' is denoted
by (5).

In the first article, see Linial et al. (1993), on closed maoviggs in graphs (called monopolies there)
the following terminology was used. A vertexin G is said to be controlled by a séf c V if at least
half of its closed neighborhood is it¥. The setM is called aclosed monopolif it controls every vertex
v of G. Equivalently, the seb/ is a closed monopoly i, if for any vertexv € V(G) it follows that

Nlv . . . . . .
[INv]n M| > P—Q”W In this article, we introduce opéfrmonopolies in a natural way, by replacing

closed neighborhoods with open neighborhoods. Hence, waisa the degree of vertices instead of
cardinalities of closed neighborhoods. Given some intégervertexv of G is said to bek-controlled

by a setM if dp;(v) > @ + k. Analogously, the set/ is called anopenk-monopolyif it k-controls
every vertexv of G. Notice that not for every value d@f there exists an opelrmonopoly inG (further

on we give some suitable interval for sugh Also, note that, close and open monopolies cannot be
exactly compared, since in a closed monopoly a verstaiso counts itself in controlling, which is not

the case in any open monopoly. The smallest example is gl&&adwhere is only one vertex in a closed
monopoly, but both vertices are necessary in an dperonopoly. Differently, there are only two vertices
in a minimum operd-monopoly of P, while we need at least three vertices in every closed mdgabo

Ps. In this article, we are focused only in opérmonopolies. In this sense, from now on we omit the
term “open” and just use the terminology/efmonopolies. On the other hand, we remain using the term
closed monopoly whenever referring to some previous worth@topic.

According to Bermond et al. (2003), several problems rdl&weovercoming failures have some com-
mon approaches around the notion of majorities. Their id@adirected toward decreasing, as much
as possible, the damage caused due to failed vertices; ytaimang copies of the most important data
and performing a voting process among the participatinggssors in situation that failures occur; and
by adopting as true those data stored at the majority of théailed processors. This idea is also com-
monly used in some fault tolerant algorithms including agnent and consensus problems (see Dwork
et al. (1988)), diagnosis problems (see Sullivan (1986ybting systems (see Garcia-Molina and Barbara
(1985)), among other applications and references.

Bermond et al. (2003) were interested into locality basetherfollowing facts. Frequently, proces-
sors running in a system are better aware of whatever happéhnsir neighborhood than outside of it.
Moreover, some distributed network models allow only fomguitations developed with local proces-
sors, which means that, a processor can only obtain a datedffver processors having a “relative” close
distance from itself. Therefore, it is more efficient to stdata as locally as possible.

Nevertheless, there could exists also a risk in this wapndfoting is restricted to local neighborhoods,
we could produce a sufficiently large set of failures which piiobably constitute the majority in some
of these neighborhoods. In this sense, see Bermond et &3 2Me authors assert the followingnce
the voting is performed over subsets of vertices, the glififailed vertices to influence the outcome of
the votes becomes not only a function of their number butaafsaction of their location in the network:
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well situated vertices can acquire greater influenddnis simple fact led them to study the problem of
characterizing the potential power of a set of failures iredmork of processors, and as a consequence,
the study of (closed) monopolies in graphs.

Notions of closed monopolies in graphs were introducedbiydtinial et al. (1993), where several ideas
regarding voting systems were described. Once such agjigjeared, a high number of researches were
devoted to such parameter and its relationship with otimeitai structures like (defensive and offensive)
alliances, see Kristiansen et al. (2004), or signed donmigditinctions, see Dunbar et al. (1995), among
other works. An interesting article, where several of them@nections are dealt with, is from Fernau and
Rodriguez-Velazquez (2014). Moreover, this articlespres a possible generalization of all these (closed)
monopolies-related structures which comprise them altege The complexity of closed monopolies in
graphs is also well studied. The NP-hardness of finding timémim cardinality of a closed monopoly in
a graph is easy to observe as stated by Linial et al. (1993udh work was also pointed out a conjecture
concerning the inapproximability of such problem. A weakersion of such conjecture has been proved
by Mishra et al. (2002). In addition some other inapproxiitigtresults of this problem have appeared
by Mishra (2012) and Mishra and Rao (2006). Particularlylishra and Rao (2006), these results are
centered in regular graphs. Moreover, there it is also mtdkat for the case of tree graphs, a closed
monopoly of minimum cardinality can be computed in lineargi On the other hand, see Khoshkhah
et al. (2013), some relationships and bounds for the miniroairdinality of closed monopolies in graphs
are stated in terms of matchings and/or girths. Also, dyoasiuised monopolies has been introduced
in connection with modeling some problems of spreadingnflaénce in social networks (see Bermond
et al. (2003); Peleg (2002)). Other studies in dynamic dasenopolies can be found in Flocchini et al.
(2003) and in Zaker (2012).

2 Concepts related to monopolies

Many times mathematical concepts are defined independentlyo or even more papers. When this
occurs, the equivalence sometimes is obvious (mostly wiagens occur in the same time period), but
sometimes we need more effort to find the connection (mostnihere is a longer time period between
publications). This may yield not sufficient effort of lauthors with the history, but we rather present it
as an enough important concept to start to investigateri fiferent point of view.
The above holds (at least partial) for signed (total) dodmg(introduced first by Hattingh et al. (1995)

(by Zelinka (2001))) and for different types of alliancest(oduced first by Kristiansen et al. (2004)). We
add monopolies to this list and present these connectiaihssiisection.

2.1 Alliances

Alliances in graphs were introduced first by Kristiansenle{2004) and generalized to-alliances by
Shafique and Dutton (2003, 2006). After that several works baen developed in this topic. Remarkable
cases are Favaron et al. (2004) and Haynes et al. (2003)tidRskips with different parameters of the
graphs have been obtained and the alliances of severaldamflgraphs have been studied. A nonempty
setS C V is adefensiveé:-alliancein G for k € {—A, ..., A} if foreveryv € S

55(v) > b5(v) + k. (1)
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Moreover, fork € {2 — A,..., A}, a nonempty sef C V is anoffensivek-alliancein G if for every
v € DS
05(v) > 05(v) + k. )

A nonempty setS C V is apowerfulk-allianceif S is a defensivé-alliance and an offensivé: (+ 2)-
alliance. A setD is adominating sein G if every vertex outside oD is adjacent to at least one vertex of
G.

A (defensive, offensive or powerful-alliance is calledjlobal if it is a dominating set. Thelobal
defensivg offensive k-alliance numberf G, denoted byy(G) (v¢(G)), is defined as the minimum
cardinality of a global defensive (offensivé}alliance inG. Fork € {—A,...,A — 2}, the global
powerful k-alliance numbemf G, denoted byy; (G), is defined as the minimum cardinality of a global
powerful k-alliance inG. A global powerful alliance of minimum cardinality i¥ is called &y} (G)-set
of G. Notice that there exist graphs not containing any globelgyéul k-alliance for some specific values
of k. In this sense, in this work we are interested in those graplimg global powerfuk-alliances. It
means that whenever we study such an alliances we are soppbat the graph contains it.

Notice that the terminology used for alliances provides iy weseful tool which can be used while
proving several result$.e., a set of verticed/ is ak-monopoly inG if and only if for every vertex of
G, 0r(v) > o57(v) + 2k (from now we will call this expressiothe k-monopoly conditiopand we will
say thatM is ak-monopoly inG if and only if everyv of G satisfies th&-monopoly condition fot\/.

An interesting possible generalization of alliances inpisa(and some other related parameters) is
given by Fernau and Rodriguez-Velazquez (2014). In thaskvis proposed a new framework, which
the authors cal(D, O)-alliances. The main idea of this allows not only to chanazgeseveral known
variants of alliances, but also suggest a unifying framé&dfarits study. In this sense, (@, O)-alliance,
with D,O C Z in a graphG = (V, E) is a setS such that for any € S, d5(v) — d5(v) € D and
foranyv € N(5)\ S, ds(v) — dg5(v) € O. According to this, it is clear to observe that a defensive
k-alliance can be understood agf& € Z : z > k},Z)-alliance, and an offensive-alliance as a
(Z,{z € Z : z > k})-alliance.

2.2 Signed (total) domination
Given a graplG = (V, E) and a functionf : V — {—1, 1} we consider the following foy":
e fis asigned dominating functiofor G if f(N[v]) = >, ey f(u) 2 1, forallv e V.
e fis asigned total dominating functidior G if f(N(v)) = ZueN(v) f(u)>1,forallveV.
e fis asignedk-dominating functiodor G if f(N[v]) > kforallv € V.
¢ fis asigned totalk-dominating functiorior G if f(N(v)) > kforallv € V.

The minimum weighd " _,, f(v) of a signed (total) {-dominating) dominating functiofi is thesigned
(total) (k-dominatior) numberof G and they are denoted in the following way.

signed domination] signed total domination signedk-domination| signed totak-domination
5(G) 5t(G) 2 (G) 14 (G)

Notice that, ifk = 1, then a signed (total}-dominating function is a standard signed (total) domimgti
function forG. Also, any kind of signed (totalxtdominating) dominating functioyi of G induces two
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disjoint sets of verticed3; and B_1, such that for every vertex € B;, f(v) = i withi € {-1,1}.
Hereby we will represent such a functighby the setsB; and B_; induced byf and we will write
f = (B1,B-1). A signed (total) k-dominating) dominating functiori of minimum weight is called a
y-function withy € {v5(G), vs:(G), 75 (G), 7% (G)}, respectively.

2.3 Connections between concepts

Observing the definitions of monopoly and alliance we seelibth concepts are closely related. That
is, let M be a0-monopoly inG = (V, E) and letv € V. Hence, has at least half of its neighbors in
M,ie, dp(v) > 5(2”), which leads tay, (v) > d57(v). Since this is satisfied for every vertex Gfwe
obtain that)/ is a global defensive-alliance and also a global offensigalliance. On the contrary, let

be a global defensive-alliance which is also a global offensivealliance inG. Hence, for every vertex
u € V we have thab 4 (v) > d4(v), which leads td 4 (v) > @ Therefore A is a0-monopoly.

Shafique and Dutton (2003) defined the concept of global dolvkralliances. Nevertheless, it was
not taken into account the possibility of studying the caseshich a set is a global defensikealliance
and also a global offensivealliance. According to the concept of monopoly we obselmesiinportance
of such a case, which is one of our motivations to develop thegnt investigation.

We continue with a relationship between signed total dotrinaalliances and monopolies.

Theorem 1. LetG = (V, E) be a graph and lek € {1, cee {@J} be an integer. The following
statements are equivalent:

(i) M c Visak-monopoly inG;

(i) M is a global defensiv&k)-alliance and a global offensiv@k)-alliance inG;

(i) f=(B1=M,B_; = M)is a signed tota[2k)-dominating function fof.
Moreover, ifk = 0, then(i) and(ii) are also equivalent.

Proof: The equivalence between (i) and (ii) is straightforwardsifor every set of vertice®/ and every
vertexv of G, the conditionsi;(v) > ) 4k anddy(v) > o5;7(v) + 2k are equivalent for every

) 2 i

Let M be a global defensiv@k)-alliance and a global offensi@k)-alliance inG. Let the function
f:V — {-1,1} be such that for any € V, it follows f(v) = 1if v € M and,f(v) = —1 otherwise.
If v € M, then sincel! is a global defensiv&k)-alliance inG, we have that

F(N(©) = f(Na(v) + f(Nyr(v))
= m(v) — 637(v)
> o37(v) + 2k — 057(v)
= 2k.

Now, if v € M, then by using thad/ is a global offensivé2k)-alliance inG, the same computation as

above gives thaf = (B, = M, B_; = M) is a signed tota{2k)-dominating function foG.
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On the other hand, let’ = (B}, B’_,) be a signed totgRk)-dominating function fol7. Let M’ = B
and let the vertex. € V. If u € M’, then sincef’ is a signed tota{2k)-dominating function in&, we
have that

oarr(u) = f'(Nar(u))
= ['(N(u) = f'(Ngp(w))
> 2k — f'(Ngpr(u))
= Oy (u) + 2k.

Thus, M’ is a global defensiv¢2k)-alliance inG. Finally, sincef’ is a signed tota(2k)-dominating
function for G, if u € M, then as above we deduce thidt is a global offensivé2k)-alliance. O

The following corollary is a direct consequence of Theorefi) and (iii). We omit the proof.

Corollary 2. LetG = (V, E) be a graph and lek € {1, ceey {@J} be aninteger. Aset/ Cc Visa
global defensivé-alliance and a global offensivie-alliance inG ifand only if f = (B; = M,B_1 =

M) is a signed totak-dominating function for5.
Now we prove a connection between signed domination and rfioledliances.

Theorem 3. LetG = (V, E) be a graph and lek € {0,...,46(G)}. ThenS C V is a global powerful
k-alliance inG ifand only if f = (B; = S, B_; = S) is a signed k + 1)-dominating function for5.

Proof: Let S be a global powerfuk-alliance inG. So, S is a global defensivé-alliance and a global
offensive(k + 2)-alliance inG. Let f = (B; = S,B_; = S) be afunction inG and letv € V. We
consider the following cases.

Case 1w € S. SinceS is a global defensivg-alliance inG, we have that

F(NP]) = f(Ns(v)) + f(Ng(v) +1
=0g(v) —og(v) +1
> og(v) +k —dg(v) +1
=k+1

Case 2w € S. SinceS is a global offensivék + 2)-alliance inG, we have that

f(N[]) = f(Ns(v)) + f(Ng(v)) =1
=0ds5(v) —dg(v) — 1
26§(U)+]€+2—5§(’U)—1
=k+1
Thus,f = (B; = S,B_, = S) is a signedk + 1)-dominating function folG.
On the other hand, lef’ = (Bj, B” ;) be a signedk + 1)-dominating function inG. We will show
thatA = B is a global powerfuk-alliance inG. Letu € V. We consider the following.
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Case 3w € A. Sincef’ is a signed k + 1)-dominating function forz, we have that

da(u) = f'(Na(u))
= ['(Nu) = f'(Nz(u)) =1
>k+1— f'(Ng(u)—1
= 04(u) + k.

Thus, A is a global defensivé-alliance inG.
Case 4u € A. SinceA is a signedk + 1)-dominating function irG;, we have that

da(u) = f'(Na(u))
= f'(Nu)) = f'(Ng(u)) +1
>k+1— f'(Ng(u)+1
= 52(’&) + k + 2

Thus, A is a global offensivék + 2)-alliance and, as a consequendss a global powerfuk-alliance in
G. Therefore, the proof is complete. O

Corallary 4. For any graphG of ordern and any integek € {0,...,6(G)},
yEL@) = 271 (G) — n.

dominating function of minimum weight i&. Thusy**+1(G) = |S| — |S|. Since|S| + [S| = n and
7o(G) = |S|, the result follows by adding these two equalities above.

Proof: Let S be ay}(G)-set. By Theorem 3f = (B; = S,B_; = S) is a signed totalk + 1)-
S

According to the above ideas we can resume the relationshijzh motivated our work in the follow-
ing table.

Global defensivé2k)-alliance and
global offensivg 2k)-alliance
k-monopoly ¢ > 1) & Signed total2k)-domination
Global defensivé:-alliance and
global offensivek-alliance
Global defensivé:-alliance and
Signed(k + 1)-domination § > 0) | < global offensivek + 2)-alliance
(A global powerfulk-alliance)

k-monopoly ¢ > 0) &

Signed totak-domination g > 1) | <

Notice that the definition of signed (tota&)dominating function is restricted o> 1 while k-alliances
are defined forany € {—A(G), ..., A(G)} andk-monopolies can be defined for some integ@rhose
limits are presented further. In this sense, these condegitg) quite similar between them could be
generalized fok being zero or negative. To obtain a meaningful negative tdwend fork-monopolies
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we involve another well-known concept: total dominafforNamely, every:-monopolyk > 0 is also a
total dominating set fo€z. To remain this property also fdér < 0, we need to demandh,(v) > 1 for
everyv € V(G). Therefore in this work we propose the following definitidmmonopolies and we study
some of its mathematical properties.

Given a integek € {1 — [@W ey {@J } and a sef\/, a vertexv of G is said to be:-controlled

2 2
by M if 6p(v) > @ + k. The setM is called ak-monopolyif it k-controls every vertex of G.
The minimum cardinality of ang-monopoly is thek-monopoly numbeand it is denoted byM . (G). A
monopoly of cardinalityM (G) is called aM(G)-set. In particular notice that for a graph with a leaf

(vertex of degree one), there exist oBlynonopolies and the neighbor of every leaf is in eAdh-set.
Notice that every non trivial grapt¥ contains at least onk-monopoly, withk € {1 — [@W ,

e @ } since every vertex aff satisfies thé&-monopoly condition for the whole vertex SE{G).

Also, if G has an isolated verteX\1;(G) does not exists. But i has no isolated vertices, then, since
M, (G)-set is also a total dominating set, we havi,(G) > 2. Thus, we can say that in general for any
graphG of ordern, 2 < My (G) < n.

The last result of this section reveals a connection betweien B2y (G) and(G).

Theorem 5. For anyr-regular graphG,

Proof: Letq = £ +1—[5] and letM be aM, rs] (G)-set. Ifris even, thery = 1 and ifr is odd, then

q= % In both cases, for any vertexof G, d,s(v) > 1, sincedys(v) is an integer. Henc@/ is a total
dominating set anm\/llf[%] (G) > v(G). If Ais ay(G)-set, then for every vertex € V we obtain

6a(v) =1 > ¢, sinceq € {1,1}. Thus,A is also a(1 — [%])-monopoly and/\/ll_(q(G) < n(G),
which yields the equality. O

3 Complexity

Studies about complexity of signed domination were firssepneed by Hattingh et al. (1995). After

that Henning (2004) has shown that signed total dominatioblpm is NP-complete even restricted to

bipartite or chordal graphs. This last work was continuedibyg (2014), where the NP-completeness of

signed (total}:-domination problem was shown fér> 2. Consequently, by Theorem 1 thenonopoly

problem is also NP-complete for eveky> 1. Hence, it remains to investigate the complexitykef
5(G)

monopolies forl — [T < k < 0. As mentioned in the introduction, the complexity and akseesal

inapproximation results are known for a closed monoposies,Mishra (2012); Mishra and Rao (2006);
Mishra et al. (2002); Peleg (2002).

On the other hand, also the global defenéiadliance problem is NP-complete (unpublished manuscript
Fernau (2013)) as well as global offenskalliance problem (see Fernau et al. (2009)), but not both to
gether. Notice that global powerfétalliance problem is NP-complete as shown by Fernau etal. (t

() A set D is atotal dominating sein a graphG if every vertex ofG is adjacent to a vertex db. The minimum cardinality of a
total dominating set is thiotal domination numbeidenoted byy; (G).
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appear) but, as we mention before, a global powetfalliance is a global defensivie-alliance and a
global offensive(k + 2)-alliance. Here we follow a similar approach as Hattinghle¢i095) to show
that0-monopoly problem is NP-complete. We will show the polynahtime reduction on the total dom-
ination set problem:

Problem:TOTAL DOMINATION SET (TDS)
INSTANCE: A graphG and a positive integet < [V (G)].
QUESTION: Is:(G) < k?

Problem:0-M ONOPOLY
INSTANCE: A graphG and a positive integet < [V (G)].
QUESTION: Is My(G) < k?

Recall that the total domination set problem is NP-compdsten when restricted to bipartite graphs
(see Laskar and Pfaff (1984)) or to chordal graphs (see @fa§4)).

Theorem 6. Problem 0-MONOPOLY is NP-complete, even when restrictbiptartite or chordal graphs.

Proof: It is obvious thaD-monopoly is a member of NP since for a given 8étwith |M| < k we can
check in polynomial time for each vertexof a graphG if v is controlled byM .

Let G be a graph of ordet and sizem. We construct a grapH from G as follows. For every vertex
v addig(v) — 1 paths on five vertices and connectvith an edge to every middle vertex of these paths.
Hence to obtairf! from G we added }°, .y, ()(0c(v) — 1) = 10m — 5n vertices and the same amount
of edges. (Notice that we have added exadtly — 2n leaves.) Clearly this can be done in polynomial
time. Also, if G is bipartite or chordal graph, so i¢. Next we claimM(H) = 6m — 3n + v:(G).

To prove this, letM be a0-monopoly of H. Letv;v2v3v4v5 be an arbitrary path added €& Clearly
va,v4 € M, since they are unique neighborsigfanduvs, respectively. Moreover, i is not in M, then
bothv; andvs must be inM to controlvs andvy, respectively. Sincd/ has minimum cardinality, this
implies thatvs € M. Letv € V(G). By the abovey hasés(v) — 1 neighbors inM outside ofG. Since
0 (v) = 26¢(v) — 1, v needs an additional neighborid N V(G) = P to be controlled byM/. Hence,

P forms a total dominating set @f and soy;(G) < |P|. Altogether

Mo(H) =|M|=[P[+3 Y  (5g(v) — 1) = %(G) + 6m — 3n.
veV(G)

On the other hand, suppoSds av:(G)-set of G. We will show thatM = SU {v e V(H) — V(G) :
dm(v) > 1} is a0-monopoly forH. Every vertexo € V(H) with i (v) = 1 has a neighbor of degree
two which is in M. Without loss of generality, every vertexe V(H) — V(G) with 0 (v) = 2 has
one neighbor of degree 1 and the other neighbor which igiand we have = 5, (v) > 057(v) = 1.
Every other vertex € V(H) — V(G) has degree three, and two of its neighbors ar¥ (/) — V(G)
with degree two and thus they aref. Hence2 = 6,,(v) > d37(v) = 1. It remains to check vertices
from V(G). Letwv be a vertex withdeg;(v) = 2degqs(v) — 1. SinceS is avy(G) set,v has at least
one neighbor inS and additionabs(v) — 1 vertices inM in V(H) — V(G). Altogetherv has at least
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dc(v) neighbors inM, which is more than half of its neighbors. The next calcolagnds the proof of
the claim:

N

Mo(H) < [M[ =S|+ {v e V(H) = V(G) : 6u(v) > 1}]

= w@+3 Y (@aw)-1)
veV(G)
= % (GQ)+6m — 3n.
Therefore, we have that jf= 6m — 3n + k, theny(G) < kif and only if My(H) < j and the proof
is completed. O
Once having studied the complexity of finding-anonopoly in a graph, it remains to investigate the
complexity forl — [@} < k < —1, which we leave as an open problem.

4 Bounding M (G)

In this section we present bounds {01, (G) with respect to the minimum and maximum degreeé/of

and with respect to the order and size. First notice thaktheonopoly conditiord,; (v) > @ +kis
equivalent to the following expressions:
6(v)

o) < 250~k ©)

Theorem 7. Let G be a graph of ordem, minimum degreé and maximum degreA. Then for any
integerk € {1 - [@W e {@J}

{A+2k+2

0 —2k
5 .

WSMM@SH—MjT—

Proof: Let A be a set of vertices off such thatA| = |[2=2%]| and letv be a vertex ofG. Hence
da(v) < [5572] < 224, So,

5 — 2k S(v) — 2k 8(v) + 2k

F3(0) > 6(0) = T2 > o) - D = A

Thus we hav@d4(v) > 0(v) +2k = d5(v)+04(v) + 2k, which leads td—(v) > da(v)+2k. Therefore
A'is ak-monopoly inG and the upper bound follows.
On the other hand, lIe¥/ be a M (G)-set and let, be a vertex of maximum degree @i By (3) we
have that
6(u)

A
A =0p(u) + 5ﬁ(u) < Onr(u) + 5 k=0pm(u)+ 5 k,

which leads to§ + k < da(u). Now, if u € M, then we obtain tha + &k < &x(u) < |M| — 1 and,
as a consequencéZ2 < |M|. Conversely, ifu ¢ M, then§ + k < &p(u) < |M| which leads
A+2k A+2k+2 A+2k+2
to 842k < |)M|. Therefore|M| > max{ J; , + 5 + } _otET
follows. O

and the lower bound

As the following corollary shows the above bounds are tight.
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Corollary 8. For every complete graphk’,, and everyk € {1 - [@} ey {@J }

My (Ky) =

n+2k+1
— |-

11

Proof: From Theorem 7 we have thp#2EtL] < My (K,) < n —
thenn + 2k + 1 is even and we obtain that

|2=2E=L] if n — 2k — 1 s even,

(n 42k +1 n—2k—1 n—2k—1 n+2k+1 [n+2k+1]
L <n—|——— | =n— = = )
2 S Mi(Kn) Sn—|=————| =n 2 2 2

On the other hand, it — 2k — 1 is odd, them + 2k + 1 is odd and we have that
n+2k+1 < My(Ky) <n— n—2k—1 :n_n—2k—2:n—|—2k—|—2: n+2k+1 .
2 2 2 2 2
O

Next we obtain a lower bound fo¥1,(G) in terms of order and size @f.

Theorem 9. For any graphG of ordern and sizen and for everyk € {1 — [@W Yooy {@J }— {0},

3kn —m
> | —.
M (G) = { 5% -‘
Proof: Let M be aM,(G)-set. Since every vertexe M satisfies thafiy, (v) > d57(v) + 2k > 2k, we
have thate(M, M) > 2k|M| = 2k(n — |M]|), wherec(M, M) is the edge cut set betweddh and M.
Sincedys(v) > d57(v) + 2k holds for every vertex € M, we have

2k[M| < (M, )

=Y oxv)
veEM
< (Oum(v) = 2k)

veEM
=2|E((M))| — 2k|M]|,

which leads td E((M))| > kn. Sincem > |E({M))| + ¢(M, M), we obtain thatn > kn + 2k(n —
|M|) = 3kn — 2k| M| and the result follows. O

To see the tightness of the above bound we consider the fiolipfamily 7 of graphs. We begin with
a complete grapli; with set of verticed” = {vg,v1,...,v:—1} andt — 1 = 0 (mod 4) andt isolated
verticesU = {ug,us,...,us—1}. From now on all the operations with subindexespbr «; are done
modulot. To obtain a graplG € F, for everyi € {0,...,¢t — 1}, we add the edgeg;v;, u;v;1,
UiVit2, .- -, UiVip(¢—3)/2- Notice thatG' has ordeRt and sizet(t — 1) and every vertex; € V has%
neighbors inJ and vice versa. HengdG) = 5. Supposé: = L%J If v eV, thendy(v) =t—1=
L4l = 5y (v)+ 5 = 6p(v)+2k. Alsoifv € U, thendy (v) = 52 = 6y (v)+ 52 = 6u(v)+2k.
ThusV is ak-monopoly inG. By Theorem 9 we havé1,(G) = ¢ and the bound is achieved.
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Theorem 10. For anyr-regular graphG of ordern and for everyk € {1 - [@} ey {@J }
My(G) > n(2k +r)
k - 2r '

Proof: Let V' be the vertex set aff and letM be aM,(G)-set. For any vertex € V and anyM C V
we have that(v) = dar(v) + o57(v). By subtracting2d;;(v) in both sides of the equality we obtain
d(v) — 2057(v) = dm(v) — d57(v). Making a sum for every vertex d@f and using the fact tha® is
r-regular, it follows

> (Ga () = d57(v)) = D (8(v) = 2057(v)) =nr — 2 dg7(v) = nr — 2r|M| = r|M| — r[M].

veV veV veV

Thus,Y, oy (6ar(v) — 657(v)) = r|M|—r[M|. Since every vertex € V satisfiesir (v) > d37(v) + 2k,
we have
2kn = 2k <Y (On(v) — 657(v)) = r[M]| — r[M]| = 2r| M| — rn

veV veV

and the result follows. O

As we will see in Proposition 15, the above bound is tight. iRetance, it is achieved for the case of
cyclesCy; for k = 0.

5 Exact values for M (G)

As already mentioned, for any graghof ordern, 2 < M (G) < n. We first characterize the classes of
graphs achieving the limit cases for these bounds.

Proposition 11. LetG be a graph of order.. ThenM,(G) = 2 if and only ifG is isomorphic taP,, Ps,
Py, C3 or C4. Moreoverk is either O or 1.

Proof: If G is isomorphic toP,, Ps, Py, C3 or Cy, thend(G) < 2, k € {0,1} and M (G) = 2. On
the contrary, suppose that;,(G) = 2. Let S = {u,v} be aM(G)-set. Notice thats andv must be
adjacent. Sojg(u) < 1 anddég(v) < 1 andG must contain at most four vertices. Moreover, for every
vertexz ¢ {u,v} it follows ég(x) < 1. Thus,6(G) < 2, k € {0,1} and we have the following cases. If
dg(u) = 0 anddg(v) = 0, thenG is isomorphic toP. If 5g(u) = 1 anddg(v) = 0 (or vice versa), then
G is isomorphic taPs. If ég(u) = 1 anddg(v) = 1, thenG is isomorphic either ta>, Cs or Cy, which
completes the proof. O

Proposition 12. Let G be a graph of order. and minimum degre& ThenM(G) = n if and only if
k= || and either

(i) Jis even and every vertex 6fis adjacent to a vertex of degréeor § + 1, or

(i) o is odd and every vertex ¢f is adjacent to a vertex of degrée
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Proof: SupposeM(G) = n. Hence, for any vertex € V(G), M = V(G) — {v} is notk-monopoly
in G. Thus the vertex or some vertex. € N (v) does not satisfy the monopoly condition.dlf (v) <
d57(v) + 2k, then we have thai(v) < 2k < 0, a contradiction. Thugy (u) < d57(u) + 2k, which leads
tod(u) —1 < 1+ 2k. Sod(u) < 2k + 1. As a consequence, we obtain that 5;21 (or equivalently
k> [252]). Sincek < ||, we obtain that = [$| = [$52]. Thus,d(u) < 2k +1 =2 [251] + 1.
Hence, if is even, then we have thétu) < 6+ 1, and ifd is odd, then we have thatu) < §. Therefore,
(i) and (ii) follow.

On the other hand, suppoke= L%J . Assume) is even and every vertex 6f is adjacent to a vertex of
degreey or ¢ + 1. Hence, letM C V(G), letx ¢ M and letu € N(z) having degreé ord + 1. So we
have,

6M(u)§§<2{gJ +1=2k+1<65(u) + 2k.

Thus, M is not ak-monopoly.
Now, supposé is odd and every vertex @ is adjacent to a vertex of degrée As above letM’ C
V(G), letz’ ¢ M’ and letw’ € N(z') having degreé. So we have,

5M’(’U/) <d=2 LgJ +1=2k+1< 5W(UI)+2IC

Thus, M’ is not ak-monopoly.
Therefore, any proper subsetdfG) is not ak-monopoly and we have thatl,(G) = n. O

The wheel graph of ordet is defined adV; ,,_; = K; + C,_1, where+ represents the join of
mentioned graphs. The fan graph,,_; of ordern is defined as the grapki; + P,_;.

Coroallary 13.

(i) Foranyr-regular graphG of ordern, ML%J (G) =n.

(i) For any wheel graptvy ,,—1, My (W1 p—1) = n.
(i) For any fan graph#y ,,—1, M1 (F1 p—1) = n.

(iv) For any bipartite graph/, 41, 7 even,/\/lL ] (Kyp41) =2r + 1.

3

We continue this section by obtaining exact values for soraplyclasses. Recall that, by Corollary
8, fork € {1 - [@W e {@J} we haveM,,(K,) = [22+L]. We continue with complete
bipartite graphs.

Proposition 14. For every complete bipartite graphi, ; and everyk e {1 - [@W el {@J }

Mi(Kry) = W+2kw N F+2lﬂ _

2 2
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Proof: Let X andY” be the partition sets ok, ; such thaj X | = » and|Y'| = ¢t and letS be a subset of
vertices ofK ., such tha{S N X| = [2t2:] and|S N Y| = [2E]. Letv be a vertex ofK.,.;. If v € X,
then

t+2k" L2k

t+2k t+ 2k
55(’[}):’, 5 5 >t—’r

= t42k - —o— > -‘+2k:55(v)+2k.

Analogously, ifv € Y, then we obtain thats(v) > dg(v) + 2k. Thus,S is ak-monopoly ink, ; and we
have thatM, (K, ;) < [Z52E] + [LE2E]

Now, let M be aM (K, ;)-set and let: be a vertex ofK, ;. If v € X, then we have thafy,(u) >
657(uw) + 2k = t — 6pr(u) + 2k, which leads toy (u) > 2% and, as a consequend®, N M| =

6n(u) > [H2E]. Analogously, ifu € Y, then we obtain thatX N M| > [“£2£]. Thus, M (K,,) =
IMNX|+|MnY|> [2£22] + [££28] and the proof is complete.

O

Next we studyk-monopolies of cycles and paths. First notice that the ¢ase1 for cycles follows
directly from Corollary 13 (i), that isM; (C,,) = n.

Proposition 15. For every integen > 3,
5 if n =0 mod 4,
Mo(Cp) = Mo(P,) = ¢ 22 if n=2mod 4,
#3= ifn=1mod4 orn = 3 mod 4.
Proof: By Theorem 5M(C,) = 7(Cy) and it is known from Henning (2000) that(C,) = | % | +
[2] — | 2]. Hence we are done with cycles.

Let V(P,) = {vo,...,vn—1}. We proceed by induction oh > 1 wheren = 4k + i andi €
{-1,0,1,2}. Let M,, be a subset of (P,) defined as follows.

o If n. =0 (mod 4), thenM,, = {v1, v2, V5, V6, ..., Un_3,Vpn_2}.

o If n =1 (mod 4), thenM,, = {v1,v2, v3, Vg, U7, V10, V11, - - - , Un—3, Un—2 }-

o If n =2 (mod 4), thenM,, = {vy, v1, v3, V4, U7, VS, V11, V12, - -  , Un—3, Un—2 }-
o If n. =3 (mod 4), thenM,, = {vg, v1,v4,V5,...,Un_3,Vp_2}.

It is straightforward to check that/,, is a M(P,)-set fork = 1. Notice thatM, is the unique
Mo(Py)-set. Letk > 1. SetMy 1)+ IS @ Mo(Pyx—1)+.)-Set by induction hypothesis. Clearly, any
0-monopolyM’ of P, contains at least two vertices of the last three vertiges;, v,_2,v,_1. Hence,
these two vertices have no influence on the vertice®/6from the first4(k — 1) + ¢ vertices of the path
Pyi+i. Thereforg M’ N {vo, ..., vag—1)1ri}l = [Mag—1)1il and Mgy = My—1)45 U {vn—3,vn—2}
is aMq(Pyri)-Set. Itis easy to see thgt/y ;| gives the desired values. O
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6 Partitions into k-monopolies

In this section we present some results about partitioniggaphs into monopolies. To this end, we say
that a grapiG = (V, E) is k-monopoly partitionable if there exists a vertex partitién= {51,...,S,}
of V,r > 2, such that forevery € {1,...,r}, S; is ak-monopoly inG.

Theorem 16. If a graphG is k-monopoly partitionable, for some € {1 — [@W ey {@J }, then

2
r<2-—2kandk <0.
Proof: Let S;, S; € Il and letv be a vertex of5. Then we have that

=2+ Z 53, (v)

0=1,04i

=0g,(v) +2k+ > 65,(v)

0=1,07i,j

> 05-(v) + 4k + Z 55, (v)

=105

Since for every: of G, ds,(u) > 1 foreveryl € {1,...,r}, we obtain that Z ds,(u) > r —2. So,
0=10+£4,5

ds, (v) > 5S—j(v) +4k+r—2

=4dk+r—2+ Z s, (v)
(=1,04]

=05, (v) +dk+r -2+ > 65,(v)
0=1,0#1,5

> ds, (v) + 4k + 2r — 4.
Thus2k + r — 2 < 0, which leads to- < 2 — 2k andk < 1 —r/2. Sincer > 2, we have that < 0. O

From the above result we have ti@tcan be only partitioned into at mo3t— 2k k-monopolies for
k < 0. The particular casé = 0 is next studied. Notice that for instance, cycles of ordieand
hypercubesg),; with ¢t > 1 are examples of graphs having a partition into tiwmonopolies.

Proposition 17. Let G be a graph having a vertex partition into twlsmonopolies{ X,Y}. Then the
following assertions are satisfied.

(i) Forevery vertex of G, dx(v) = dy (v).

(i) Forevery vertew of G, §(v) is an even number.
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(i) The sizenx of (X) equals the sizewy of (V).

(iv) The cardinality of the edge cut s€tX, V") produced by the vertex partitionX, Y’} equals the size
m of G minus two times the size @X).

Proof: For every vertex of G we have thabx (v) > dy (v) anddy (v) > dx (v). Thus, (i) follows. Now,
(ii) follows from the fact that) (v) = dx (v) + dy (v) = 25x (v) = 20y (v). To prove (iii) we consider the

following
D ox)+ Y x() =D dy(v)+ Y by (v).

veX veY veX veY

Since,) ], oy 0x(v) = >, cx Oy (v) we have the result. As a consequenees c(X,Y) +mx + my
and by (iii) we obtain (iv). O

A natural question which now arises concerning the comjmutak complexity on the existence of
such partitions mentioned above. That is for instance,rgivgraph(z, can we decide whethé¥ is k-
monopoly partitionable? Moreover, if the answer is positivan we find such partitions by using some
efficient algorithm?
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