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A rearrangement operation makes a small graph-theoretical change to a phylogenetic network to transform it into
another one. For unrooted phylogenetic trees and networks, popular rearrangement operations are tree bisection and
reconnection (TBR) and prune and regraft (PR) (called subtree prune and regraft (SPR) on trees). Each of these
operations induces a metric on the sets of phylogenetic trees and networks. The TBR-distance between two unrooted
phylogenetic trees T and T ′ can be characterised by a maximum agreement forest, that is, a forest with a minimum
number of components that covers both T and T ′ in a certain way. This characterisation has facilitated the develop-
ment of fixed-parameter tractable algorithms and approximation algorithms. Here, we introduce maximum agreement
graphs as a generalisations of maximum agreement forests for phylogenetic networks. While the agreement distance
– the metric induced by maximum agreement graphs – does not characterise the TBR-distance of two networks, we
show that it still provides constant-factor bounds on the TBR-distance. We find similar results for PR in terms of
maximum endpoint agreement graphs.
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1 Introduction
Phylogenetic trees and networks are graphs where the leaves are labelled bijectively by a set of taxa, for
example a set of organisms, species, or languages (Semple and Steel, 2003; Dunn, 2014). They are used
to model and visualise evolutionary relationships. While a phylogenetic tree is suited only for tree-like
evolutionary histories, a phylogenetic network can also be used for taxa whose past includes reticulate
events like hybridisation, horizontal gene transfer, recombination, or reassortment (Semple and Steel,
2003; Huson et al., 2010; Steel, 2016). Such reticulate events arise in all domains of life (Thomas and
Nielsen, 2005; Rieseberg and Willis, 2007; Meier et al., 2017; Wagner et al., 2017). There is a distinction
between rooted and unrooted phylogenetic networks. More precisely, in a rooted phylogenetic network
the edges are directed from a designated root towards the leaves, thus modelling evolution along the
passing of time. On the other hand, the edges of an unrooted phylogenetic network are undirected and the
network thus represents the evolutionary relatedness of the taxa. In some cases, unrooted phylogenetic
networks can be thought of as rooted phylogenetic networks in which the orientation of the edges has
been disregarded. Janssen et al. (2018); Francis et al. (2018a); Huber et al. (2019) call such unrooted
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2 Jonathan Klawitter

phylogenetic networks proper. Here we focus on unrooted, binary, proper phylogenetic networks where
binary means that all vertices except for the leaves have degree three.

A rearrangement operation makes a small graph-theoretical change to transform a phylogenetic net-
work into another one. Since this induces neighbourhoods, rearrangement operations structure the set of
phylogenetic networks on the same taxa into a space. Because of this property, they are used by several
phylogenetic inference methods that traverse this space (Page, 1993; Bouckaert et al., 2014; Ronquist and
Huelsenbeck, 2003; Guindon et al., 2010; Yu et al., 2013, 2014; Whidden and Matsen, 2015). Further-
more, the minimum number of rearrangement operations needed to transform one network into another
induces a metric. This allows the comparison of results obtained for different data or from different
inference methods, for instance, to evaluate their robustness or to find outliers or clusters.

1

2

3

4

6

5

T1

SPR 1

2

3

4 6

5

1

2

3

4 6

5

TBR

e

e′

T2 T3

e′

Fig. 1: An SPR prunes the edge e in T1 and regrafts it to the edge incident to leaf 1 to obtain T2. A TBR moves the
edge e′ to obtain T3 from T2.

On unrooted phylogenetic trees, two popular rearrangement operations are subtree prune and regraft
(SPR), which cuts (prunes) an edge at one side and then reattaches it, and tree bisection and reconnection
(TBR), which removes an edge and then reconnects the two resulting smaller trees (Swofford et al., 1996).
These are illustrated in Figure 1. Computing the SPR- and TBR-distance of two unrooted phylogenetic
trees T and T ′ is NP-hard (Allen and Steel, 2001; Hickey et al., 2008). On the positive side, the TBR-
distance of T and T ′ is characterised by a maximum agreement forest (MAF) of T and T ′, which is a
forest of smaller phylogenetic trees on which T and T ′ agree upon and that among all such forests has the
minimum number of components (Allen and Steel, 2001). The idea is that a MAF captures all parts that
remain unchanged by a shortest TBR-sequence that transforms T into T ′. Figure 2 shows a maximum
agreement forest F for T1 and T3 of Figure 1. Furthermore, a MAF F together with the edges that got
moved by the TBR-sequence can be embedded into T and T ′ such that all edges are covered; see again
Figure 2. Compared to a sequence of trees that describe a TBR-distance, MAFs provide a single structure
and have therefore been utilised for NP-hardness proofs (Allen and Steel, 2001; Hickey et al., 2008), for
fixed-parameter tractable and approximation algorithms (Allen and Steel, 2001; Hallett and McCartin,
2007; Rodrigues et al., 2007; Whidden and Zeh, 2009; Chen et al., 2015). So far, no characterisation of
the SPR-distance in terms of such a structure has been found and Whidden and Matsen (2019) argue why
such a characterisation is unlikely. In particular, they showed that an edge might be pruned twice and that
common clusters (subtrees on a subset of the leaves) are not always maintained. However, Whidden and
Matsen introduced maximum endpoint agreement forests (MEAF) (precisely defined in Section 4) as a
variation of MAFs that bound the SPR-distance of two trees.

SPR and TBR on trees have recently been generalised to phylogenetic networks with the operations
prune and regraft (PR) and TBR (Francis et al., 2018b; Janssen and Klawitter, 2019). In principle, these
operations work the same on networks as on trees. A PR operation first prunes an edge at one side and
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Fig. 2: The graph F is a maximum agreement forest for T1 and T3 of Figure 1. Together with the edges moved by
the operations, F can be embedded into T1 and T3 such that all edges are covered.

then reattaches it at another edge; a TBR operation on a network may also first remove an edge and then
add a new edge like a TBR operation on a tree. This is illustrated in Figure 3. However, both PR and
TBR may also remove or add an edge to change the size of the network (see Figure 5). Janssen and
Klawitter (2019) studied several properties of spaces of networks under PR and TBR and, among other
results, showed that computing the TBR-distance of two networks is NP-hard.
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Fig. 3: A PR prunes the edge {u, v} at u in N1 and regrafts it to the edge incident to leaf 3 to obtain N2. A TBR
moves the edge {u, v} to obtain N3 from N2. The graph G is a maximum agreement graph for N1 and N3 shown
with an embedding into N3.

Similar to the TBR-distance of unrooted phylogenetic trees, the SPR-distance of two rooted phylo-
genetic trees can be characterised by a rooted version of MAFs (Bordewich and Semple, 2005). This
has again facilitated the development of fixed-parameter and approximation algorithms (Bordewich et al.,
2008; Wu, 2009; Bonet and St. John, 2009; Whidden et al., 2013; Bordewich et al., 2017b). Prune and
regraft (PR) and subnet prune and regraft (SNPR) are extensions of SPR for rooted phylogenetic net-
works (Bordewich et al., 2017a; Klawitter, 2019). Recently, we generalised MAFs to maximum agree-
ment graphs (MAG) for networks. Similar to a MAF, the idea of a MAG is that its components model
those parts of two phylogenetic networks on which they agree upon and on which they disagree upon (or
the parts that stay unchanged and get changed under a sequence of rearrangement operations). Figure 3
illustrates this for the two unrooted phylogenetic networks N1 and N3. While MAFs characterise the
SPR-distance, we have shown that MAGs do not characterise the PR-distance (nor the SNPR-distance)
of two rooted phylogenetic networks (Klawitter, 2019). This is due to similar reasons to why MAFs and
MEAFs do not characterise the SPR-distance of two unrooted trees. However, we showed that MAGs in-
duce a metric on phylogenetic networks, the agreement distance, which bounds the PR-distance of rooted
networks (Klawitter, 2019).

In this paper, we look at how MAF and MEAF generalise for unrooted phylogenetic networks by
introducing maximum agreement graphs and maximum endpoint agreement graphs and show that they
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induce metrics (Section 3 and Section 4, respectively). We call these metrics the agreement distance
(AD) and endpoint agreement distance (EAD), respectively. We then study the relations of AD, EAD, the
TBR-distance, and the PR-distance in Section 5.

2 Preliminaries
This section provides the notation and terminology used in the remainder of the paper. In particular, we
introduce notation in the context of phylogenetic networks as well as the PR and TBR operations.

Phylogenetic networks and trees. Let X = {1, 2, . . . , n} be a finite set. An unrooted binary phyloge-
netic network N on X is a connected undirected multigraph such that the leaves are bijectively labelled
with X and all non-leaf vertices have degree three. It is called proper if every cut-edge separates two
labelled leaves (Francis et al., 2018a), and improper otherwise. Unless mentioned otherwise, we assume
that a phylogenetic networks is proper. Note that our definition permits the existence of parallel edges
in N . An unrooted binary phylogenetic tree on X is an unrooted binary phylogenetic network that is a
tree. See Figure 4 for examples. An edge of N is external if it is incident to a leaf, and internal otherwise.

To ease reading, we refer to a proper unrooted binary phylogenetic network (resp. unrooted binary
phylogenetic tree) on X simply as a phylogenetic network or network (resp. phylogenetic tree or tree).
Furthermore, let uNn denote the set of all phylogenetic networks on X and let uTn denote the set of all
phylogenetic trees on X where n = |X|.
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Fig. 4: An unrooted, binary phylogenetic tree T ∈ uT6 and an unrooted, binary proper phylogenetic network N ∈
uN6. The unrooted, binary phylogenetic network M is improper since the cut-edge e does not lie on a path that
connects two leaves.

A networkN has reticulation number r or, equivalently, is in tier r if r is the minimum number of edges
that have to be deleted from N to obtain a spanning tree of N . Note that r = |E| − (|V | − 1) where E
and V are the edge and vertex set ofN , respectively. This number is also known as the cyclomatic number
of a graph (Diestel, 2017). Let uNn,r denote tier r of uNn, that is, the set of networks in uNn that are in
tier r.

Suboperations and sprouts. Let G be an undirected graph. A degree-two vertex v of G with adjacent
vertices u and w gets suppressed by deleting v and its incident edges, and adding the edge {u,w}. The
reverse of this suppression is the subdivision of {u,w} with a vertex v.

Let {u, v} be an edge of G such that u either has degree one and is labelled (like a leaf of a network) or
has degree three. A pruning of {u, v} at u is the process of deleting {u, v} and adding a new edge {ū, v},
where ū is a new (unlabelled) vertex. If u is now a degree two vertex, then we also suppress u. In
reverse, the edge {ū, v} gets regrafted to an edge {x, y} by subdividing {x, y} with a new vertex u and
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then identifying ū and u. Alternatively, {ū, v} may be regrafted to a labelled singleton u by identifying ū
and u. The edge {u, v} gets removed by deleting {u, v} fromN and suppressing any resulting degree-two
vertices.

A sprout of G is an unlabelled degree one vertex of G. For example, applying a pruning to a phyloge-
netic network yields a graph with exactly one sprout.

Rearrangement operations. Let N ∈ uNn. The TBR operation is the rearrangement operation that
transforms N into a phylogenetic network N ′ ∈ uNn in one of the following four ways:

(TBR0) Remove an internal edge e of N , subdivide an edge of the resulting graph with a new vertex u,
subdivide an edge of the resulting graph with a new vertex v, and add the edge {u, v}; or
prune an external edge e = {u, v} of N that is incident to leaf v at u, regraft the resulting sprout
to an edge of the resulting graph.

(TBR+) Subdivide an edge of N with a new vertex u, subdivide an edge of the resulting graph with a
new vertex v, and add the edge e = {u, v}.

(TBR−) Remove an edge e of N .

Note that a TBR0 can also be seen as the operation that prunes the edge e = {u, v} at both u and v and
then regrafts the two resulting sprouts. Hence, we say that a TBR0 moves the edge e. Furthermore, we say
that a TBR+ adds the edge e and that a TBR− removes the edge e. TBR is illustrated in Figure 5. Note
that a TBR0 has an inverse TBR0 and that a TBR+ has an inverse TBR−, and that furthermore a TBR+

increases the reticulation number by one and a TBR− decreases it by one. On trees, TBR0 equals the
well known tree bisection and reconnection operation (Allen and Steel, 2001), which is also where the
acronym comes from.
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Fig. 5: Illustration of the TBR operation. The network N2 can be obtained from N1 by a TBR0 that moves the edge
{u, v} and the network N3 can be obtained from N2 by a TBR+ that adds the edge {u′, v′}. Each operation has its
corresponding TBR0 and TBR− operation, respectively, that reverses the rearrangement.

Since a TBR operation has to yield a phylogenetic network, there are some restrictions on the edges that
can be moved or removed. Firstly, if removing an edge by a TBR0 yields a disconnected graph, then in
order to obtain a phylogenetic network an edge has to be added between the two connected components.
For similar reasons, a TBR− cannot remove a cut-edge. Secondly, the suppression of a vertex when
removing an edge with a TBR− may not yield a loop {u, u}. Thirdly, removing or moving an edge cannot
create a cut-edge that does not separate two leaves. Otherwise the resulting network would be improper.

Let N ∈ uNn. A PR (prune and regraft) operation is the rearrangement operation that transforms N
into a phylogenetic network N ′ ∈ uNn with a PR+ = TBR+, a PR− = TBR−, or a PR0 that prunes
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and regrafts an edge e only at one endpoint, instead of at both like a TBR0 (Janssen and Klawitter, 2019).
Like for TBR, we the say that the PR0/+/− moves/adds/removes the edge e in N . The PR operation is
a generalisation of the well known SPR (subtree prune and regraft) operation on unrooted phylogenetic
trees (Allen and Steel, 2001).

Distances. Let N,N ′ ∈ uNn. A TBR-sequence from N to N ′ is a sequence

σ = (N = N0, N1, N2, . . . , Nk = N ′)

of phylogenetic networks such thatNi can be obtained fromNi−1 by a single TBR for each i ∈ {1, 2, ..., k}.
The length of σ is k. The TBR-distance dTBR(N,N ′) between N and N ′ is the length of a shortest TBR-
sequence from N to N ′. The PR-distance is defined analogously. Janssen and Klawitter (2019, Corollary
4.4) have shown that the TBR- and PR-distance are well defined.

Embeddings and displaying. Let G be an undirected graph that is not necessarily simple; that is, G
may contain parallel edges and loops. An edge {u, v} of G is subdivided if {u, v} is replaced by a path
form u to v that contains at least one edge. A subdivision G∗ of G is a graph that can be obtained from G
by subdividing edges of G. If G has no degree two vertices, there exists a canonical mapping of vertices
of G to vertices of G∗ and of edges of G to paths of G∗.

Let N be an undirected graph, for example a network in uNn. Assume that G is connected. We say G
has an embedding into N if there exists a subdivision G∗ of G that is a subgraph of N . Now assume
that G has components C1, . . . , Ck. We say G has an embedding into N if the components Ci of G,
for i ∈ {1, . . . , k}, have embeddings into N to pairwise edge-disjoint subgraphs of N . Note that these
definitions imply that a labelled vertex of G∗ is mapped to a labelled vertex of N with the same label.

We define a special type of embedding. Let n vertices ofG be labelled bijectively withX = {1, 2, . . . , n}.
We sayG has an agreement embedding intoN if there exists an embedding ofG intoN with the following
properties.

• The pairwise edge-disjoint embeddings of components of G into N cover all edges.

• At most two vertices of G are mapped to the same vertex of N . In the case that exactly two vertices
are mapped to the same vertex of N , one of these two vertices of G is a sprout and the other is a
labelled, isolated vertex.

• For each labelled vertex v of N , there exists exactly one vertex v̄ with the same label in G and v̄ is
mapped to v.

We make the observation that having an agreement embedding into a graph is a transitive property.

Observation 2.1. Let G, H , N be undirected graphs such that G has an agreement embedding into H
and H has an agreement embedding into N .
Then G has an agreement embedding into N .

Let N,N ′ ∈ uNn. We say N ′ displays N if N has an embedding into N ′. For example, in Figure 4
the tree T is displayed by both networks N and M .
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3 Agreement graph and distance
In this section we look at how agreement forests can be generalised for networks. Throughout this section,
let N,N ′ ∈ uNn be in tier r and r′, respectively. Without loss of generality, assume that r′ ≥ r and
let l = r′ − r.

Suppose there is a TBR0 that transforms N into N ′ by moving an edge e. This operation can be seen
as removing e from N , obtaining a graph S, and then adding a new edge to S. We can interpret S as
the part of N that remains unchanged or, in other words, N and N ′ agree on S. In general, we are
interested in finding a graph that requires the minimal number of edge removals from N (or N ′) such that
it has an embedding into N and N ′. For two trees T and T ′ in uNn, this graph is precisely a maximum
agreement forest (MAF) F . Allen and Steel (2001) showed that the number of components of F minus
one is exactly the TBR-distance of T and T ′, or, equivalently, the minimum number of edges that have
to be removed from T (or T ′) to obtain F . If we consider again N and N ′, then the removal of an edge
must not necessarily increase the number of components. Therefore, instead of counting components, we
are looking for a graph G consisting of components on which N and N ′ agree on and of additional edges
that can be embedded into N and N ′ such that all edges are covered. In other words, we want that G
has an agreement embedding into N and N ′. Note that if N and N ′ are in different tiers, then we need
additional edges for an agreement embedding into N ′. We now make this precise.

Agreement graph. Let G be an undirected graph with connected components S1, . . . , Sm and
E1, . . . , Ek−l, Ek−l+1, . . . , Ek such that the Si’s contain no sprouts and such that each Ej consist of
a single edge on two unlabelled vertices. Then G is an agreement graph of N and N ′ if

• G without Ek−l+1, . . . , Ek has an agreement embedding into N , and

• G has an agreement embedding into N ′.

For such an agreement graph, we refer to an Si as agreement subgraph and to an Ej as a disagreement
edge. A maximum agreement graph (MAG) G of N and N ′ is an agreement graph of N and N ′ with a
minimal number of disagreement edges. See Figures 6 and 7 for two examples.
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Fig. 6: A maximum agreement graph G for N,N ′ ∈ uNn. On the right, how G embeds into N ′. Note that the
disagreement edge E2 is only needed for an agreement embedding into N ′.

Note that if G contains m agreement subgraphs, then it also contains at least m−1 disagreement edges
since N and N ′ are connected graphs. Furthermore, unlike a MAF for two phylogenetic trees, G may
contain agreement subgraphs without any labelled vertices and G may contain loops or parallel edges.

Let T, T ′ ∈ uTn. Let G be a maximum agreement graph of T and T ′. Note that each agreement
subgraph ofG is a tree. Thus a (maximum) agreement graph of two trees is called a (maximum) agreement
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Fig. 7: A maximum agreement graph G for N,N ′ ∈ uNn. On the right, how G embeds into N ′. Note that G
contains an agreement subgraph without labelled vertices.

forest. Note that the commonly used definition of agreement forests disregards disagreement edges (Allen
and Steel, 2001).

Attached sprouts. Let VN and EN be the vertex and edge set of N , respectively. Let G = (VG, EG) be
an agreement graph of N and N ′. Fix an agreement embedding of G into N . We say a sprout ū ∈ VG is
attached to ē ∈ EG inN if ū is mapped to a vertex u ∈ VN that is an internal vertex of the path to which ē
is mapped. Suppose G contains a labelled singleton x̄. We say ū ∈ VG is attached to x̄ in N if ū and x̄
are mapped to the same leaf u ∈ VN . This terminology can be extended from sprouts to disagreement
edges. We say a disagreement edge Ei is attached to an edge ē ∈ EG in N if a sprout of Ei is attached
to ē in N . Furthermore, we say Ei is attached to an agreement subgraph Sj in N if Ei is attached to an
edge of Sj .

Note that a disagreement edge can be attached to itself. However, in general we would like to assume
that an agreement embedding has nicer properties. This is what we look at next.

Ordered agreement embedding. LetG be an agreement graph ofN andN ′ with agreement subgraphs
S1, . . . , Sm and disagreement edgesE1, . . . Ek. Then an agreement embedding ofG intoN ′ is an ordered
agreement embedding into N ′ if

• E1 is attached to two distinct agreement subgraphs in N ′,

• Ei for i ∈ {2, . . . ,m − 1} is attached to two distinct agreement subgraphs or an agreement sub-
graph and a disagreement edge Ej with j < i in N ′ such that the subgraph of N ′ covered by
S1, . . . , Sm and E1, . . . , Ei contains one connected component less than the subgraph of N ′ cov-
ered by S1, . . . , Sm and E1, . . . , Ei−1,

• Ei for i ∈ {m, . . . , k} is attached to agreement subgraphs or disagreement edges Ej with j < i
in N ′.

An ordered agreement embedding of G into N is defined analogously but with the small difference that
the third property only concerns the edges Em+1, . . . , Ek−l.

Note that the first and second property of an ordered agreement embedding imply that the vertices and
edges covered by the agreement subgraphs and the disagreement edges E1, . . . , Em−1 form a connected
subgraph of N . Moreover, in an ordered agreement embedding no disagreement edge is attached to itself.
We now prove that an agreement graph always has an ordered agreement embedding.
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Lemma 3.1. LetN,N ′ ∈ uNn be in tiers r and r′ ≥ r, respectively. Let l = r′−r. LetG be a maximum
agreement graph for N and N ′ with m agreement subgraphs.
Then G minus l disagreement edges has an ordered agreement embedding into N and G has an ordered
agreement embedding into N ′.

Proof: The proof works the same for N and N ′, so for simplicity we may assume that l = 0. Since G is
a MAG of N and N ′, there is an agreement embedding φ of G into N . Let Ni, i ∈ {1, . . . ,m}, be the
subgraphs of N to which the agreement subgraphs of G are mapped by φ. Colour all vertices and edges
contained in these Ni’s black, and all other vertices and edges red. The red edges are thus the edges to
which the disagreement edges of G are mapped. Note that the Ni’s are vertex-disjoint. Hence, since N is
connected, it follows that the Ni’s are connected by red edges and paths. We use this fact to construct an
ordered agreement embedding φ′ of G into N .

For the ordered agreement embedding φ′ map the agreement subgraphs of G into N like φ. Pick Ni

and Nj such that there is path P from Ni to Nj with black end vertices and with red internal vertices
and edges. Such a choice is possible by the observations above. Let φ′ map E1 to P . Colour the
edges and vertices of P black, which makes Ni and Nj a single black subgraph Ni. Repeat this process
for E2, . . . , Em−1. Note that this results in a single black component in N . Hence, for the remaining
disagreement edgesEm, . . . , Ek we require fromP only that it contains black end vertices and red internal
vertices and edges, but not that P connects two distinct black components. As long as there remain red
edges, we can find such P with a simple depth-first search in a red component that starts at a red edge
incident to a black vertex and ends at a red edge incident to another black vertex. (Note that a red vertex
always has degree three and a black, non-leaf vertex has at least degree two.) Therefore this process
ends with all edges of N covered and coloured black. From a simple counting argument we get that we
constructed exactly as many disagreement edges as G has. Hence, by construction the embedding φ′ is an
ordered agreement embedding of G into N .

We now define how to change an agreement embedding gradually. Let G be a MAG of N and N ′.
Let ū and v̄ be two sprouts of G with incident edges ē = (ū, w̄) and f̄ = (v̄, z̄), respectively, such that
ū is attached to f̄ in N . Let ē be mapped to the path P = (y, . . . , w) in N and let f̄ be mapped to the
path P ′ = (x, . . . , y, . . . , z) in N . Then an embedding change of G into N with respect to ū and v̄ is the
change of the embedding such that ē is mapped to the path (x, . . . , y, . . . , w) formed by a subpath of P ′

and the path P , and such that f̄ is mapped to the subpath (y, . . . , z) of P ′; see Figure 8.

ū

v̄

z̄
w̄

ū

z̄
w̄

Fig. 8: An embedding change with respect to ū and v̄.

Agreement distance. Let N,N ′ ∈ uNn. Let G be a MAG of N and N ′ with k disagreement edges.
We define the agreement distance dAD of N and N ′ as

dAD(N,N ′) = k.

Note that the agreement distance also equals half the number of sprouts of G.
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Theorem 3.2. The agreement distance dAD on uNn is a metric.

Proof: Note that dAD is symmetric, non-negative, and for allM,M ′ ∈ uNn dAD(M,M ′) = 0 if and only
if M = M ′. Therefore, to show that dAD is a metric, it remains to show that dAD satisfies the triangle
inequality.

Let N,N ′, N ′′ ∈ uNn and let k′ = dAD(N,N ′) and k′′ = dAD(N ′, N ′′). Let G′ (resp. G′′) be a
MAG of N and N ′ (resp. N ′ and N ′′) with k′ (resp. k′′) disagreement edges. To show that the triangle
inequality holds, we construct an agreement graph G for N and N ′′ with at most k′ + k′′ disagreement
edges. The following construction is illustrated with an example in Figure 10.

For simplicity, assume for now that N , N ′, and N ′′ are in the same tier. Fix ordered agreement em-
beddings of G′ and G′′ into N ′, which is possible by Theorem 3.1. Based on the ordered agreement
embedding we can construct a length-k′′ sequence of graphs (N ′ = M0,M1, . . . ,Mk′′ = G′′) from
N ′ to G′′ where Mi is obtained from Mi−1 for i ∈ {1, . . . , k′′} by removing an edge and adding a
disagreement edge. Note that Mi has an agreement embedding into Mi−1 and thus by the transitive
property of agreement embeddings (recall Theorem 2.1) also an agreement embedding into N ′. We use
this sequence, to construct a sequence of graphs (G′ = G0, G1, . . . , Gk′′ = G) such that Gi is obtained
from Gi−1 for i ∈ {1, . . . , k′′} either by setting Gi = Gi−1 or by the removal of an edge of an agreement
subgraph and adding a disagreement edge. First, colour the disagreement edges of G0 red. We will colour
each newly added disagreement edge blue. Our construction will ensure the following properties:

• The only sprouts of Gi are in disagreement edges;

• Gi has an agreement embedding into Mi,

• each blue disagreement edge of Gi is mapped to a disagreement edge of Mi.

Suppose from Mi−1 to Mi the edge e gets removed and disagreement edge F added. We distinguish
three cases, which are illustrated in Figure 9 (a) to (c). First, if there is an edge ē of Gi−1 that is mapped
to e by the agreement embedding of Gi−1 into Mi−1 and that is not incident to a sprout, then obtain Gi

from Gi−1 by removing ē and adding a blue disagreement edge Ej . This is shown in Figure 9 (a) and
in the step from G0 to G1 in Figure 10. Note that Gi has an agreement embedding in Mi where Ej is
mapped to F . Clearly Gi also has an agreement embedding into Gi−1 and thus by Theorem 2.1 into N
and N ′.

Second, suppose that an edge ē of an agreement subgraph of Gi−1 is mapped to a path Pe of Mi−1 that
contains e = {u, v}. If u (or v) lies within Pe, then a sprout of a disagreement edge of Gi−1 is attached
to it. Note that this sprout belongs to a red disagreement edge since blue disagreement edges are mapped
to edges that got removed in an earlier step. Obtain Gi from Gi−1 by removing ē and adding a blue
disagreement edge Ej . This case also applies in the step from G1 to G2 in Figure 10. For the agreement
embedding of Gi into Mi apply an embedding change (or embedding changes) as shown in Figure 9 (b).
Then Ej is mapped onto F .

Third, suppose that a red disagreement edge ē of Gi−1 is mapped to a path Pe that contains e = {u, v}.
In this case set Gi = Gi−1. To obtain an agreement embedding of Gi into Mi apply again appropriate
embedding changes as shown in Figure 9 (c) and in the step from G2 to G3 in Figure 10.

We claim that G = Gk′′ is an agreement graph ofN andN ′′. By Theorem 2.1G has an agreement em-
bedding intoG′ and thus intoN (andN ′). Furthermore,G has an agreement embedding intoMk′′ = G′′.
Therefore, again by Theorem 2.1, we get that G has an agreement embedding into N ′′. Concerning the
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Fig. 9: How to obtain Gi (right) from Gi−1 (left) with respect to the agreement embedding of Gi−1 into Mi−1 when
an edge of an agreement subgraph is mapped precisely to e (a) or to a path containing e (b); or when an disagreement
edge is mapped to a path containing e (c). It is also shown how embedding changes are applied to show that Gi has
an agreement embedding into Mi.

components of G, note that G contains precisely k′ red disagreement edges and at most k′′ blue dis-
agreement edges. By construction these disagreement edges contain all sprouts of G. Hence, G is an
agreement graph of N and N ′′ that proves that dAD(N,N ′′) ≤ k′ + k′′ = dAD(N,N ′) + dAD(N ′, N ′′).
This concludes the proof for the case when N , N ′, and N ′′ are in the same tier.

Cases where N , N ′, and N ′′ are in different tiers work analogously. However, when for example N ′′

is in a higher tier than N ′ then in the construction of the sequence (N ′ = M0,M1, . . . ,Mk′′ = G′′)
from N ′ to G′′ we stop removing edges at some point and only add disagreement edges. These extra
disagreement edges are only needed for the agreement embedding into N ′′ but not N ′. The same applies
then to the construction of (G′ = G0, G1, . . . , Gk′′ = G).

Next, we show that if we restrict the agreement distance to the space of phylogenetic trees, then it
equals the TBR-distance.

Proposition 3.3. The agreement distance is equivalent to the TBR-distance on uTn.

Proof: Let G be a maximum agreement forest of two trees T, T ′ ∈ uTn. Allen and Steel (2001) defined
the function m(T, T ′) as the number of agreement subgraphs of G minus one. If G contains k disagree-
ment edges, then it contains k+1 agreement subgraphs. Thus, dAD(T, T ′) = m(T, T ′). By Theorem 2.13
of Allen and Steel (2001), m(T, T ′) = dTBR(T, T ′). This concludes the proof.

Allen and Steel (2001) further showed that computing the TBR-distance of two phylogenetic trees is
NP-hard. Janssen and Klawitter (2019, Theorem 6.1) showed that the TBR-distance of two trees in uTn
is the same as in uNn. These two results together with Theorem 3.3 give us the following corollary.

Corollary 3.4. Computing the agreement distance on uNn is NP-hard.

4 Endpoint agreement graph and distance
While a TBR0 prunes an edge at both ends, a PR0 only prunes an edge at one side. Hence, agreement
graphs are not suited to model PR0. In this section we introduce endpoint agreement graphs as a slight
modification of agreement graphs which model PR0 more closely. Let again N,N ′ ∈ uNn be in tiers r
and r′, respectively, and let l = r′ − r.

Endpoint agreement graph. Let H be an undirected graph with connected components S1, . . . , Sm

and E1, . . . , El such that each Ej consist of a single edge on two unlabelled vertices. Then H is an
endpoint agreement graph (EAG) of N and N ′ if

• H without E1, . . . , El has an agreement embedding into N , and



12 Jonathan Klawitter

1

2

3

4

5

6

N

1

2

3

4

5

6

N ′ = M0

1

2

3

4

56

N ′′

1

2

3

4

5

6

1

2

4

5

6

1

2

3

4

5

6

M1 M2 M3 = G′′

1

2

3

4

5

6

G′ = G0

1

2

3

4

5

6

G1

1

2

3

4

5

6

G2

1

2

3

4

5

6

G3 = G G into N ′′

3

1

2

3

4

56

Fig. 10: An example for the constructions of the sequences (N ′ = M0,M1, . . . ,Mk′′ = G′′) and (G′ =
G0, G1, . . . , Gk′′ = G). Here, the networks N and N ′ have agreement distance 2 with maximum agreement graph
G′; the networks N ′ and N ′′ have agreement distance 3 with maximum agreement graph G′′. Lastly, an agreement
embedding of the constructed G into N ′′ is shown.

• H has an agreement embedding into N ′.

We refer to an Si as (endpoint) agreement subgraph and to an Ej as a disagreement edge. A maximum
endpoint agreement graph (MEAG) H of N and N ′ is an endpoint agreement graph of N and N ′ with a
minimal number of sprouts. See Figure 11 for an example. Note that, unlike to MAG, in a MEAG also
endpoint agreement subgraphs can contain sprouts. We define an ordered agreement embedding ofH into
N ′ as an agreement embedding of H into N ′ such that

• no sprout of an agreement subgraph is attached to a disagreement edge and

• and the disagreement edges can be ordered (E1, . . . , El) such that Ej may be attached to Ei only
if i ≤ j.

For an ordered agreement embedding of H into N only the first property has to hold.
A proof that ordered agreement embeddings exists works analogously to the proof of Theorem 3.1 and

the proof of Lemma 3.2 (Klawitter, 2019), yet we outline the proof idea here. Starting with an agreement
embedding of G into N ′, apply embedding changes to any sprout of an endpoint agreement subgraph that
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Fig. 11: A maximum endpoint agreement graph H for N,N ′ ∈ uNn. On the right, how H embeds into N ′.

is attached to a disagreement edge. This way the first property can be enforced. For the second property,
apply embedding changes if Ei that is attached to a disagreement edge Ej , j > i, for i ∈ {1, . . . , l}.

Endpoint agreement distance. Let H be a MEAG of N and N ′. Let s be the number of sprouts of
agreement subgraphs of H and let l be the number of disagreement edges of H . We define the endpoint
agreement distance (EAD), denoted by dEAD, of N and N ′ as

dEAD(N,N ′) = s+ l.

Following Whidden and Matsen (2019) we use their replug operation to show that the EAD is a metric.

Replug distance. We define a replug network M on X as an undirected multigraph such that the leaves
and singletons are bijectively labelled with X and all non-leaf vertices have degree three. Unlike for
a phylogenetic network, M may contain loops and be disconnected. Let uMn be the set of all replug
networks on X . Note that uNn ⊆ uMn.

Let M ∈ uMn. A replug operation is the rearrangement operation that transforms M into a replug
network M ′ ∈ uMn by pruning an edge at one vertex and then regrafting it again or by a vertical
operation like a PR+ or a PR−. Unlike for PR, a replug operation does not have to ensure that the
resulting network is connected or proper.

LetN,N ′ ∈ uNn. We define the replug distance dR ofN andN ′ as the distance ofN andN ′ in uMn

under the replug operation. Note that since uNn is connected under PR, it is also connected as subgraph
of uMn under the replug operation. Therefore, the replug distance is well defined and a metric. We now
use the replug distance to prove that the endpoint agreement distance is a metric.

Proposition 4.1. The endpoint agreement distance is equivalent to the replug-distance on uNn.

Proof: Let N,N ′ ∈ uNn. We first prove that dR(N,N ′) ≥ dEAD(N,N ′). Let d = dR(N,N ′) and let
σ = (N = M0,M1, . . . ,Md = N ′) be a shortest replug sequence. Suppose thatN andN ′ are in different
tiers and that N ′ is above N . Note that we may assume that σ does not use any PR−-like operation, as
such an operation and the next PR+-like operation can be replaced with at most two replug operations
that prune and regraft the same edge. We construct a sequence of graphs (M0 = H0, H1, . . . ,Hd) such
that Hi has an agreement embedding into Mi for i ∈ {0, 1, . . . , d}. The construction will also ensure
that Hi has an agreement embedding into Hi−1 (using the right number of disagreement edges) and thus
by Theorem 2.1 also into M0 = N .

Suppose Mi is obtained from Mi−1 by a horizontal replug operation θ that prunes the edge e = {u, v}
at u. Consider the agreement embedding of Hi−1 into Mi−1. Let ē = {ū, v̄} be the edge of Hi−1 that is
mapped to a trail P = (w1, w2, . . . , wk) containing e. Assume without loss of generality that ū is mapped
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to w1 and v̄ to wk. (If w1 = wk, we further assume that ē imposed with the directed (ū, v̄) is mapped
fromw1 towardswk.) Now, ifw1 = u, that is, ū is mapped to u, then we can prune ē at ū inHi−1 (unless ū
already is a sprout) to obtainHi. If ū already is a sprout, setHi = Hi−1. The agreement embedding ofHi

into Mi is derived from the agreement embedding of Hi−1 into Mi−1 and how θ regrafts e. If w1 6= u, a
sprout x̄ of Hi−1 is mapped to u. In this case, prune ē at ū (unless ū already is a sprout) to obtain Hi. If ū
already is a sprout, set Hi = Hi−1. Then apply an embedding change with respect to x̄ and ū to obtain
an agreement embedding into Mi−1. Derive an agreement embedding into Mi as in the previous case.
Clearly Hi has an agreement embedding into Hi−1.

Next, suppose Mi is obtained from Mi−1 by a vertical replug operation that adds the edge e = {u, v}
by subdividing the edges f and f ′. Obtain Hi from Hi−1 by adding a disagreement edge and obtain an
agreement embedding of Hi into Mi by mapping the disagreement edge to e.

At the end of the sequence, Hd is an endpoint agreement graph of N and Md = N ′. Since we added at
most d sprouts or disagreement edges, it follows that dR(N,N ′) ≥ dEAD(N,N ′).

We now prove that dEAD(N,N ′) ≥ dR(N,N ′). Let H be a maximum endpoint agreement graph of
N and N ′. Fix ordered agreement embeddings of H into N and N ′, i.e., no sprout of an agreement
subgraph is attached to a disagreement edge. Based on agreement embeddings of H into N and N ′ it
is straightforward to use a replug operation for each sprout of H to prune an edge of N (or a resulting
network) and regraft it according to the agreement embedding of H into N ′. Lastly, if N ′ is in a tier
above N , use a PR+-like replug operation for each disagreement edge of H to add an edge according to
the agreement embedding of H into N ′.

Corollary 4.2. The endpoint agreement distance on uNn is a metric.

Whidden and Matsen (2019) showed that the endpoint agreement distance (or rather the replug distance)
does not always equal the SPR-distance of two trees. Furthermore, they conjectured that computing the
endpoint agreement distance is NP-hard for trees. This and whether it is NP-hard to compute the endpoint
agreement distance of two networks remains open.

5 Relations of distances
In this section we look at the relations of the metrics induced by MAG, MEAG, TBR, and PR. We start
by comparing the agreement distance with the TBR-distance. As we have seen in Theorem 3.3, they are
equivalent on uTn. Furthermore, we can make the following observations.

Observation 5.1. Let N,N ′ ∈ uNn. Then dAD(N,N ′) = 1 if and only if dTBR(N,N ′) = 1.

Lemma 5.2. Let N,N ′ ∈ uNn be in tiers r and r′, respectively, such that N ′ displays N . Let l = r′− r.
Then dAD(N,N ′) = dTBR(N,N ′) = l.

Proof: The second equality follows from Corollary 5.6 by Janssen and Klawitter (2019). The equality
also implies that there is a TBR+-sequence σ of length l from N to N ′. Let G be the graph obtained from
N by adding l disagreement edges. Then G without its disagreement edges has an agreement embedding
intoN and we can obtain an agreement embedding intoN ′ from σ straightforwardly. Hence, G is a MAG
of N and N ′, which proves the first equality.
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Lemma 5.3. Let T ∈ uTn and N ∈ uNn,r. Then dAD(T,N) = dTBR(T,N).

Proof: Janssen and Klawitter (2019, Theorem 4.13) showed that there is tree T ′ that is displayed by
N such that dTBR(T,N) = dTBR(T, T ′) + dTBR(T ′, N). The tree T ′ is thus a tree that minimises the
TBR-distance to T among all trees displayed by N . From Theorem 3.3 and Theorem 5.2 we thus get that

dAD(T,N) ≤ dAD(T, T ′) + dAD(T ′, N) = dTBR(T, T ′) + dTBR(T ′, N) = dTBR(T,N).

For the converse direction, consider a maximum agreement graph G of T and N with k disagreement
edges. From an ordered agreement embedding of G into N , we get that G with k− r disagreement edges
embeds onto a tree T ′ displayed by N . Hence,

dAD(T,N) ≥ dAD(T, T ′) + dAD(T,N) = dTBR(T,N).

After these three cases, where the agreement distance and the TBR-distance are equivalent, we show
with the following example that this is in general not the case.
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Fig. 12: Two networks N,N ′ ∈ uNn with dAD(N,N ′) = 2, but with dTBR(N,N ′) = 3 as proven in Theorem 5.4
(for example with a TBR-sequence via M ). The graph G illustrated with an agreement embedding into N is a MAG
of N and N ′.

Lemma 5.4. The networks N and N ′ in Figure 12 have dAD(N,N ′) = 2, dEAD(N,N ′) = 2, and
dTBR(N,N ′) = 3.

Proof: Concerning the agreement distance, observe that dAD(N,N ′) > 1. Next, note that the graph G
in Figure 12 has agreement embeddings into N and N ′. This also yields an agreement embedding of G
into N ′ by swapping the singletons labelled 1 and 2. Hence, G with two disagreement edges is a MAG of
N and N ′, which proves that dAD(N,N ′) = 2.

Concerning the endpoint agreement distance, we see that the leaves 1 and 2 can be swapped with two
replug operations.

Concerning the TBR-distance, observe that there is no length two TBR0-sequence from N to N ′.
This can be seen as with only two TBR0 the leaves 1 and 2 cannot be swapped nor can the two bicon-
nected components be transformed into each other within uNn. To see that dTBR(N,N ′) = 3, note that
dTBR(N,M) = 1 and that the leaves 1 and 2 can be swapped with a single TBR0 in M resulting in a
network M ′ with dTBR(M ′, N ′) = 1.

Next, we show that the agreement distance provides a lower and an upper bound on the TBR-distance
of any two networks N and N ′.
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Lemma 5.5. Let N,N ′ ∈ uNn. Then

dAD(N,N ′) ≤ dTBR(N,N ′).

Proof: Let d = dTBR(N,N ′) and let σ = (N = M0,M1, . . . ,Md = N ′) be a TBR-sequence from N
to N ′. To prove the lemma, we show how to obtain an agreement graph G of N and N ′ with at most d
disagreement edges from σ.

We construct a sequence of graphs (N = G0, G1, . . . , Gd = G) such that Gi is an agreement graph
of M0 and Mi for i ∈ {0, 1, . . . , d}. This holds trivially for i = 0. In the following, when we consider
agreement embeddings of Gi into M0 and Mi where M0 and Mi are in different tiers then we ignore, for
simplicity, that one of the embeddings needs less disagreement edges.

Suppose Mi is obtained from Mi−1 by a TBR0 that moves the edge e = {u, v}. Let ē be the edge
of Gi−1 that is mapped to a path P that contains e by the agreement embedding of Gi−1 into Mi−1. We
distinguish four cases, namely whether ē is part of an agreement subgraph and whether P contains only e.
(They are comparable to the cases in the proof of Theorem 3.2; see also Figure 9 again.)

1. Assume that ē is part of an agreement subgraph and mapped precisely to e. Then obtain Gi by
removing ē and adding a disagreement edge. Clearly Gi has an agreement embedding into N
and Mi.

2. Assume that ē is part of an agreement subgraph and P has length at least two. Further assume
without loss of generality that neither u nor v is an end vertex of P . Then there there are sprouts ū
and v̄ that are attached to ē in Mi−1 and that are mapped to u and v, respectively. Again obtain Gi

by removing ē and adding a disagreement edge {x̄, ȳ}. However, for an agreement embedding of
Gi into Mi−1 map {x̄, ȳ} to P and then apply embedding changes with respect to x̄ and ū and with
respect to ȳ and v̄. We can derive from this an agreement embedding of Gi into Mi.

3. Assume that ē is a disagreement edge and mapped precisely to e. Then set Gi = Gi−1 and it is
straightforward to obtain agreement embeddings.

4. Last, assume that ē is a disagreement edge and P has length at least two. There are then again
without loss of generality two sprouts attached to ē. Set Gi = Gi−1 and obtain an agreement
embedding ofGi intoMi−1 (andMi) by applying embedding changes as in the second case. Hence,
in either case, we obtain an agreement graph Gi of M0 an Mi.

Next, suppose Mi is obtained from Mi−1 by a TBR− that removes the edge e = {u, v}. Like for
a TBR0, if an edge ē of an agreement graph is mapped to e, we obtain Gi from Gi−1 by removing ē.
Otherwise we set Gi = Gi−1. Furthermore, if Mi−1 is in a higher tier than M0 we also remove a
disagreement edge. Using again embedding changes if sprouts were attached to ē, it is straightforward to
construct an agreement embedding of Gi into Mi. Thus G is an agreement graph of M0 and Mi.

Lastly, suppose that Mi is obtained from Mi−1 by a TBR+. If Mi is in a higher tier than M0, then
obtain Gi from Gi−1 by adding a disagreement edge. Otherwise, set Gi = Gi−1. In either case, it is clear
that Gi is an agreement graph of M0 and Mi.

Note that for each TBR of σ we added at most one disagreement edge. Hence, Gd, which is an agree-
ment graph of M0 and Md, is an agreement graph of N and N ′ with at most d disagreement edges. This
concludes the proof.
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Lemma 5.6. Let N,N ′ ∈ uNn. Then dTBR(N,N ′) ≤ 2 dAD(N,N ′).

Proof: Suppose N and N ′ are in tier r and r′, respectively, and that r′ ≥ r. Let l = r′ − r. Let
d = dAD(N,N ′) and k = d − l. Let G be a MAG of N and N ′ with agreement subgraphs S1, . . . , Sm

and disagreement edges E1, . . . , Ek, Ek+1 . . . , Ed. To prove the theorem, we construct a TBR-sequence

σ = (N = M0,M1, . . . ,Md, . . . ,Md+k = N ′)

such that Mi is obtained from Mi−1 by a TBR+ for i ∈ {1, . . . , d} and by a TBR− for i ∈ {d +
1, . . . , d + k}. Along σ we maintain a series of graphs G0, . . . , Gd+k such that Gi has an agreement
embedding into Mi.

Fix ordered agreement embeddings of G into N and N ′, which is possible by Theorem 3.1. Let
N1, . . . , Nm be the subgraphs of N to which S1, . . . , Sm of G are mapped, respectively. We define
N ′1, . . . , N

′
m analogously for N ′. Note that the disagreement edges of G are mapped to paths in N

(resp. N ′) that (as a whole) pairwise connect the Ni’s (resp. N ′i ’s). The idea is now as follows. From M0

to Md we add d edges to reconstruct the paths that connect the N ′i ’s as in N ′ while maintaining the paths
that connect the Ni’s as in N . From Md to Md+k we then remove edges guided by how the paths connect
the Ni’s in N . This is illustrated in Figure 13. We now define the graphs Gi formally and explain how to
construct σ.
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Fig. 13: Construction of a TBR-sequence from N to N ′ based on a MAG G of N and N ′.

Let G0 be G without l disagreement edges. Therefore, G0 has k disagreement edges and an agreement
embedding into N0 = N without spare disagreement edges. For i ∈ {1, . . . , d} let Gi be Gi−1 plus one
disagreement edge. Next, for i ∈ {d+1, . . . , d+k} letGi beGi−1 minus one disagreement edge. LetEi

j

for i ∈ {0, 1, . . . , d+ k} and j ∈ {1, . . .} denote the disagreement edges of Gi.
In M0 colour the subgraph to which agreement subgraphs of G0 are mapped black. Colour all other

vertices and edges red. Obtain M1 from M0 as follows. First, assume that Ed+k
1 is attached to edges
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ē and ē′ of agreement subgraphs in Md+k. Consider the paths Pē and Pē′ in N0 to which ē and ē′ are
mapped. Ignoring vertices on these paths that are incident to red edges, we can perceive Pē and Pē′ as
edges e and e′. Then add with a TBR+ an edge f from e to e′. Next assume that Ed+k

1 is attached to a
labelled singleton ū of G in Md+k. Then let u be the leaf of M0 to which ū is mapped. Note that u is
incident to a red edge, say e, in M0. Obtain e′ as in the previous case. If Ed+k

1 is attached to two labelled
singletons, then obtain a second red edge e′ analogous to how we obtained e. In either case, apply the
TBR+ that adds an edge f from e to e′ . Let M1 be the resulting network. Colour the new edge f blue.
Obtain an agreement embedding of G1 into M1 by extending the agreement embedding of G0 into N0

by mapping E1
k+1 to f . Note that M1 is a proper phylogenetic network since adding an edge (with a

TBR+) to a proper network yields a proper network. In particular, edges obtained from subdividing e
and e′ still lie on paths between leaves and so does thus f . Repeat this process to obtain Mi from Mi−1

for i ∈ {2, . . . , d} based on how Ed+k
i embeds into Md+k.

Observe that Md and Gd with its agreement embedding into Md can also be obtained by applying
the construction we used to obtain Md from M0 by starting from Md+k and considering the agreement
embedding ofG0 intoM0 (instead of the agreement embedding ofGd+k intoMd+k). The only difference
is that in the two resulting agreement embeddings of Gd into Md blue disagreement edges might be
attached to red edges or vice versa, wherever there is a labelled singleton (leaf). Nevertheless, this shows
that we can construct the full TBR-sequence σ. To conclude the proof, note that d+ k ≤ 2d.

From Theorem 5.5 and Theorem 5.6 we get the following theorem.

Theorem 5.7. Let N,N ′ ∈ uNn. Then

dAD(N,N ′) ≤ dTBR(N,N ′) ≤ 2 dAD(N,N ′).

Janssen and Klawitter (2019, Corollary 3.3) showed that the PR-distance is bound from below by the
TBR-distance and from above by at most twice the TBR-distance. Hence, we get the following corollary.

Corollary 5.8. Let N,N ′ ∈ uNn. Then

dAD(N,N ′) ≤ dPR(N,N ′) ≤ 4 dAD(N,N ′).

We now turn to the endpoint agreement distance and look at its relation to the agreement distance and
the PR-distance.

Proposition 5.9. Let N,N ′ ∈ uNn. Then

dAD(N,N ′) ≤ dEAD(N,N ′) ≤ 2 dAD(N,N ′).

Proof: We start with the first inequality. Let H be a maximum endpoint agreement graph of N and N ′.
Suppose H has s sprouts in agreement subgraphs and l disagreement edges. We prove that there is an
agreement graph G of N and N ′ with at most s+ l disagreement edges. For this, we construct a sequence
of graphs (Gs, Gs−1, . . . , G0) such that each Gi is an endpoint agreement graph of N and N ′ with at
most i sprouts in agreement subgraphs and at most l + (s − i) disagreement edges. (We slightly abuse
the definition of disagreement edges here and consider any edge incident with two sprouts of Gi as a
disagreement edge.) Therefore, setting G = G0 will prove the proposition.

Suppose ū is a sprout of an agreement subgraph of Gi+1. Let ē = {ū, v̄} be the edge incident to ū.
If v̄ is also a sprout, set Gi = Gi+1 and classify ē as a disagreement edge. Furthermore, we can also
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set Gi−1 = Gi since we eliminated two sprouts of agreement subgraphs at once. Otherwise, obtain Gi

from Gi+1 by pruning ē from v̄. Since v̄ is either a degree vertex or a labelled leaf, we can directly derive
agreement embeddings of Gi into N and N ′ from the agreement embeddings of Gi+1. Since every step
reduces the number of sprouts in agreement subgraphs by at least one and adds at most one disagreement
edge, G0 is as desired.

For the second inequality, note that a MAG of N and N ′ with k disagreement edges is also an EAG of
N and N ′ with 2k sprouts.

Theorem 5.10. Let N,N ′ ∈ uNn. Then

dEAD(N,N ′) ≤ dPR(N,N ′) ≤ 3 dEAD(N,N ′).

Proof: Without loss of generality, assume that N is not in a higher tier than N ′. For the lower bound,
consider a shortest PR-sequence σ from N to N ′. Note that σ is also a replug sequence. There is thus
a replug sequence from N to N ′ whose length is at most the length of σ. The lower bound now follows
from Theorem 4.1.

Next, we prove the upper bound. Let H be a MEAG for N and N ′ with s sprouts in agreement
subgraphs and l disagreement edges. Fix ordered endpoint agreement embeddings of H into N and N ′.
Let d = dEAD(N,N ′) = s + l. We construct a PR-sequence σ = (N = M0,M1, . . . ,Md′ = N ′) with
d′ ≤ 3d. Along σ, we maintain a sequence of graphs (H = H0, H1, . . . ,Hd′) that consist of H plus
possibly extra disagreement edges such that Hi has an agreement embedding into Mi. We call these extra
disagreement edges ghost disagreement edges.

Let E1, . . . , El be the disagreement edges of H . For i ∈ {1, . . . , l} obtain Mi from Mi−1 by adding an
edge ewith a PR+ according to where the disagreement edgeEi is attached to in the agreement embedding
of H into N ′. If Ei is attached to a labelled singleton v̄, then both v̄ and a sprout ū are mapped to a leaf v
of Mi−1. In this case, attach e to the edge incident to v. For an agreement embedding of H into Mi, map
the disagreement edge Ei to the newly added edge. If Ei should be attached to v, apply the appropriate
embedding change with ū. Set Hi = H .

We now use PR0 to move edges according from where sprouts are attached to in Mi to where they are
attached to in N ′. If we have done this for a sprout, we call it handled and unhandled otherwise. Let
ū be an unhandled sprout of Hi. Let ū and its incident edge be mapped to u and e = {u, v} of Mi−1,
respectively. If e can be pruned at u and attached to the edge according to where ū is mapped to in N ′

such that the result is a proper phylogenetic network, then apply this PR0 to obtain Mi. Set Hi = Hi−1.
Note that in the case that ū is mapped to a leaf w in N ′, then e is attached the edge incident to w, and we
apply the appropriate embedding change for Hi. (Apply this to each unhandled sprout where possible).
Otherwise, use a PR+ to add a (ghost) edge f from e to the edge incident to leaf 1 to obtain Mi. Obtain
Hi from Hi−1 by adding a ghost disagreement edge F . Map F to f and apply an embedding change
with respect to F and ū. Note that now the first case applies for ū and e. Thus we also obtain Mi+1 and
Hi+1 = Hi. When all sprouts are handled, the agreement embedding of Hi without ghost disagreement
edges is mapped to the subgraph of Mi that is precisely a subdivision of N ′. We thus need at most s
further PR− to remove all ghost edges.

In total, this process requires at most l + 3s = d′ ≤ 3d PR. This proves the upper bound.
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6 Concluding remarks
In this paper, we defined maximum agreement graphs (MAG) for two unrooted, proper, binary phylo-
genetic networks. Like maximum agreement forests for trees, a MAG models how two networks agree
on subgraphs that stay untouched when moving edges with TBR operations. If the two networks are in
different tiers, then a MAG also models how the networks disagree on that. Based on MAGs, we defined
the agreement distance of phylogenetic networks. By showing that this new metric is equivalent to the
TBR-distance for two trees, we obtained that it is NP-hard to compute the agreement distance.

We have seen that the agreement distance and the TBR-distance are equivalent for trees and for net-
works with distances of at most one. Furthermore, we know that the agreement distance of a tree and a
network equals their TBR-distance. On the other hand, there are networks N and N ′, as in Figure 12,
with agreement distance two but higher TBR-distance. However, note that N and N ′ are in tier seven.
It is therefore of interest to further study when exactly the agreement distance is equivalent to the TBR-
distance and when not. In general, we showed that the agreement distance of two networks provides a
natural lower bound and an upper bound with factor two on their TBR-distance. If we drop the require-
ment that networks have to be proper, it is also open whether the agreement distance and the TBR-distance
are equivalent or not.

Like SPR on trees has been generalised to PR on networks, we have generalised maximum endpoint
agreement forests of Whidden and Matsen (2019) to maximum endpoint agreement graphs (MAEGs) for
networks. We showed that MAEGs induce a metric, called endpoint agreement distance, which bounds
the PR-distance naturally from below and with a factor of three from above. Furthermore, we showed that
the agreement distance provides bounds on the PR-distance either via the TBR-distance or via its relation
to the endpoint agreement distance.

MAFs and MAEFs have been used to develop algorithms that compute the TBR-distance and PR-
distance of two trees, respectively. It is thus of interest to see whether MAGs can be utilised to develop
approximation algorithms for the agreement distance. Note that such an algorithm would also be an
approximation algorithm of the TBR- and the PR-distance.
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