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Two lower bounds for p-centered colorings
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Given a graph G and an integer p, a coloring f : V (G) → N is p-centered if for every connected subgraph H of G,
either f uses more than p colors on H or there is a color that appears exactly once in H . The notion of p-centered
colorings plays a central role in the theory of sparse graphs. In this note we show two lower bounds on the number of
colors required in a p-centered coloring.

First, we consider monotone classes of graphs whose shallow minors have average degree bounded polynomially in
the radius, or equivalently (by a result of Dvořák and Norin), admitting strongly sublinear separators. We construct
such a class such that p-centered colorings require a number of colors super-polynomial in p. This is in contrast with
a recent result of Pilipczuk and Siebertz, who established a polynomial upper bound in the special case of graphs
excluding a fixed minor.

Second, we consider graphs of maximum degree ∆. Dębski, Felsner, Micek, and Schröder recently proved that these
graphs have p-centered colorings with O(∆2−1/pp) colors. We show that there are graphs of maximum degree ∆ that
require Ω(∆2−1/pp ln−1/p ∆) colors in any p-centered coloring, thus matching their upper bound up to a logarithmic
factor.
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1 Introduction
Given a graphG and an integer p, a coloring f : V (G)→ N is p-centered if for every connected subgraph
H ofG, either f uses more than p colors onH (i.e., |f(V (H))| > p) or there is a color that appears exactly
once in H (i.e., there exists i ∈ N such that |f−1(i) ∩ V (H)| = 1).

The notion of p-centered colorings plays a crucial role in the theory of sparse graphs. First, a p-centered
coloring of a graph G with small number of colors is very useful in algorithm design, for example in the
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task of finding or counting small subgraphs [11]. Second, a classic result shows that a graph class has
bounded expansion (in the sense of Nešetřil and Ossona de Mendez [10]) if and only if for every p ∈ N
there exists M(p) such that every graph G admits a p-centered coloring with at most M(p) colors [9].

A recent experimental study [11] shows that the existing algorithms that find p-centered colorings find
colorings with too many colors for the subsequent algorithms to be efficient. This motivated a number of
recent theoretical results trying to establish better upper and lower bounds on the number of colors needed
for a p-centered coloring for various classes of sparse graphs [3, 7, 13]. In this note, we contribute two
lower bounds to this direction.

Superpolynomial lower bound in graph classes of polynomial expansion. A minor model of a graph
H in a graph G is a collection (Ih)h∈V (H) of vertex-disjoint connected subgraphs of G such that h1h2 ∈
E(H) implies that there is an edge of G with one endpoint in Ih1 and one endpoint in Ih2 . Fix an integer
r ≥ 0. A minor model is r-shallow if every graph Ih is of radius at most r. For a graph G, by ∇r(G)
we denote the maximum density of r-shallow minors of G, that is, the maximum ratio |E(H)|/|V (H)|
over all graphs H that admit an r-shallow minor model in G. For a graph class G, we denote ∇r(G) =
sup{∇r(G) | G ∈ G}. By definition, G is of bounded expansion if for every r ≥ 0 the value ∇r(G) is
finite.

The class G is of polynomial expansion if there exists a polynomial q such that∇r(G) ≤ q(r) for every
r ≥ 0. The notion of polynomial expansion turned out to be pivotal for approximation algorithms: a
subgraph-closed graph class is of polynomial expansion if and only if it admits strongly sublinear separa-
tors [4] and such separators allow approximation schemes via local search for a number of optimization
problems [8]. It is natural to ask what other properties one can infer about graph classes of polynomial
expansion, and in particular whether they admit p-centered colorings with a number of colors polynomial
in p. Pilipczuk and Siebertz [13] recently proved that such a polynomial upper bound holds in the special
case of graphs excluding a fixed minor, which motivates our investigation.

In [7] an intricate example of a graph class with polynomial expansion is shown to have super-polynomial
(in the radius) weak coloring numbers. (For precise definitions, we refer to the textbook [10] or the recent
lecture notes [12].) In Section 2 we show that the same graph class requires a super-polynomial (in p)
number of colors for a p-centered coloring. More precisely, we show the following.

Theorem 1.1. There exists a graph class G and a constant c > 0 such that ∇r(G) ≤ r + 2 for every
integer r ≥ 0, but for every integer p ≥ 1 there isG ∈ G such that every p-centered coloring ofG requires
at least 2cp

1/2

colors.

The proof of Theorem 1.1 builds substantially on a recent lower bound of [3] for graphs of bounded
treewidth.

We remark here that if G is of polynomial expansion, then there exists a polynomial q such that for
every G ∈ G and p ≥ 1 there exists a p-centered coloring of G with at most 22q(p) colors. See Chapter 2
of the lecture notes [12] for an exposition.

Lower bound for graphs of bounded degree. A recent breakthrough result of Dębski, Felsner, Micek,
and Schröder [3] asserts that graphs of bounded degree require much less colors for a p-centered coloring
than was anticipated.

Theorem 1.2 ([3]). There exists a constant C > 0 such that for every integers ∆ ≥ 1 and p ≥ 1, every
graph G of maximum degree at most ∆ admits a p-centered coloring with at most C ·∆2−1/p · p colors.
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In Section 3 we show that the dependency on p and ∆ in Theorem 1.2 is optimal up to a logarithmic
factor in ∆.

Theorem 1.3. There exists a constant c > 0 such that for every integer p ≥ 1 there exists ∆p such that
for all ∆ ≥ ∆p there exists a graph G of maximum degree at most ∆ such that every p-centered coloring
of G requires at least c ·∆2−1/pp ln−1/p ∆ colors.

We remark that this lower bound is obvious for p = 1, and was previously known for p = 2 [5].
Whether the ln−1/p ∆ factor is necessary is an open problem.

2 Graphs of polynomial expansion
For a graph G and an integer t, let G(t) be the graph obtained from G by subdividing every edge t times,
that is, replacing every edge of G with path of length t + 1 (with t internal vertices). The newly inserted
vertices are called the fresh vertices and the vertices of G are called the root vertices of G(t).

For a graphG, let tw(G) be the treewidth ofG. Grohe et al. [7] observed that the class G(6tw) consisting
of the graph G(6tw(G)) for all graphs G has polynomial expansion.

Theorem 2.1 ([7]). For every G ∈ G(6tw) and integer r ≥ 0,∇r(G) ≤ r + 2.

They also observed that G(6tw) admits only superpolynomial bounds for weak coloring numbers. We
complete the analysis by showing that graphs in G(6tw) require a superpolynomial number of colors (in p)
for p-centered colorings.

Theorem 2.2. There exists a constant c > 0 such that for every integer p ≥ 1 there is G ∈ G(6tw) such
that every p-centered coloring of G requires at least 2cp

1/2

colors.

This section is devoted to the proof of Theorem 2.2, as it immediately implies Theorem 1.1. The
construction is strongly based on a related lower bound of Dębski et al. [3] that showed that for every
integers p, t ≥ 1 there is a graph Gp,t of treewidth t that requires

(
p+t
t

)
colors in any p-centered coloring.

We slightly inflate their construction and show that, after the inflation, G(6t)
p,t also requires roughly

(
p+t
t

)
colors in any p′-centered coloring, for some p′ slightly larger than p.

The construction is parameterized by four integers p ≥ 1, t ≥ 1, n1 ≥ 2, and n2 ≥ 2. We inductively
define graphs Gπ,τ for 0 ≤ π ≤ p and 0 ≤ τ ≤ t as follows. In the base case, G0,τ and Gπ,0 are defined
to be edgeless graphs on 2nt+1

1 · n6t2

2 vertices. For 1 ≤ π ≤ p and 1 ≤ τ ≤ p, the graph Gπ,τ consists
of a copy Gπ,τ,⊥ of Gπ−1,τ and, for every u ∈ V (Gπ,τ,⊥), a copy Gπ,τ,u of Gπ,τ−1 that is made fully
adjacent to u. The construction of Gπ,τ differs from the corresponding construction of [3] only in the
base case: we choose much larger independent sets to start with. It is easy to see (and a formal argument
can be found in [3]) that tw(Gπ,τ ) = τ when π ≥ 1. In what follows we study p′-centered colorings of
G

(6t)
p,t for some integer p′ slightly larger than p.
It will be convenient to treat root and fresh vertices separately and assign colors from disjoint palletes

to them. We say that f is an (n1, n2)-coloring of G(6t)
p,t if its codomain is a union of two disjoint sets

A1 and A2 with |A1| = n1 and |A2| = n2 such that root vertices get assigned colors from A1 and fresh
vertices get assigned colors from A2. A (n1, n2)-coloring f is (p1, p2)-centered if for every connected
subgraph H of G(6t)

p,t , either f attains more than p1 colors of A1 on root vertices of H or f attains more
than p2 colors of A2 on fresh vertices of H , or there is a vertex of H of unique color, that is, a color i with
|f−1(i) ∩ V (H)| = 1. We prove the following statement.
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Lemma 2.3. For every integers p, t, n2 ≥ 1, if we set n1 =
(
p+t
p

)
, then every (3p+2, 18tp+6t)-centered

(n1, n2)-coloring of G(6t)
p,t uses all n1 colors of A1 in its range.

To see why Lemma 2.3 implies Theorem 2.2, set t = p and n2 = n1 =
(
p+t
p

)
and assume that

G := G
(6p)
p,p admits a (18p2 + 9p + 2)-centered coloring f with a set A of at most

(
p+t
p

)
colors. Let

Ai = {i} × A for i = 1, 2 and let f ′(v) = (1, f(v)) ∈ A1 for a root vertex v and f ′(v) = (2, f(v)) for
a fresh vertex v. Then f ′ is a (n1, n2)-coloring. Furthermore, f ′ is (3p + 2, 18tp + 6t)-centered: every
connected subgraph of G that uses at most 3p + 2 colors from A1 and at most 18tp + 6t colors from A2

uses at most (18p2+9p+2) colors in total and thus admits a vertex of unique color as f is (18p2+9p+2)-
centered. By Lemma 2.3, f ′ uses all colors of A1. Hence, f uses at least

(
p+t
p

)
=
(

2p
p

)
≥ 2p colors. This

finishes the proof of Theorem 2.2, assuming Lemma 2.3.
It remains to prove Lemma 2.3. To this end, we need a few definitions. Following [3], for a color

i ∈ A1 and integers k1 and k2, a connected subgraph H of G is an i-threat of load (k1, k2) if i is the only
color that appears exactly once on H and at most k1 colors of A1 and at most k2 colors of A2 appear on
vertices of H . We prove inductively the following claim.

Lemma 2.4. For every 0 ≤ π ≤ p and 0 ≤ τ ≤ t and any copy G′ of G(6t)
π,τ in G = G

(6t)
p,t there exist a

set X ⊆ V (G′) of root vertices of size 2(n1n
6t
2 )t−τ and a set I ⊆ A1 of size

(
π+τ
τ

)
such that for every

x ∈ X and i ∈ I there exists an i-threat Hx,i of load (π + 1, 6tπ) that contains x.

Proof: We prove the lemma by induction on π + τ . For the base case, if π = 0 or τ = 0, Gπ,τ is an
edgeless graph with 2nt+1

1 n6t2

2 root vertices. Since f is an (n1, n2)-coloring, for every copy G′ of G(6t)
π,τ

in G, there is a color i ∈ A1 that is attained on a set X of at least 2(n1n
6t
2 )t vertices. Since {x} is an

i-threat of load (1, 0) for every x ∈ X , the claim holds.
Consider now the case π, τ ≥ 1 and let G′ be a copy of G(6t)

π,τ in G. We apply the induction hypothesis
to G(6t)

π,τ,⊥ (isomorphic to G(6t)
π−1,τ ), obtaining a set I⊥ of size

(
π−1+τ

τ

)
and a set X⊥ of root vertices. Pick

arbitrary x ∈ X⊥ and consider the graph G(6t)
π,τ,x, which is isomorphic to G(6t)

π,τ−1. Applying again the
induction hypothesis to this set, we obtain a set Ix of size

(
π+τ−1
τ−1

)
and a set Xx of root vertices.

With every y ∈ Xx we associate a tuple φ(y) which consists of f(y) and the sequence of colors of
the 6t fresh vertices on the path between y and x. Since there are n1n

6t
2 possible values of φ(y) and

|Xx| = 2(n1n
6t
2 )t−(τ−1), there exists a set X ⊆ Xx of size 2(n1n

6t
2 )t−τ such that φ is constant on X .

Assume there exists i ∈ I⊥∩Ix. Pick two distinct vertices y1, y2 ∈ X (note that |X| ≥ 2) and consider
a subgraph H of G′ that consists of the i-threat Hi,x of load (π, 6t(π − 1)) in G(6t)

π,τ,⊥, the i-threat Hi,y1

of load (π + 1, 6tπ) and the i-threat Hi,y2 of load (π + 1, 6tπ) in G(6t)
π,τ,x and the paths between x and y1

and y2. From the loads we infer that on H the coloring f attains at most 3π + 2 ≤ 3p + 2 colors from
A1 and at most 18tπ + 6t ≤ 18tp+ 6t colors from A2. However, since φ(y1) = φ(y2), H has no unique
color. This is a contradiction with the properties of f . Hence, I⊥ ∩ Ix = ∅.

Let I = I⊥ ∪ Ix. We have |I| =
(
π−1+τ

τ

)
+
(
π+τ−1
τ−1

)
=
(
π+τ
τ

)
. It remains to show that for every i ∈ I

and y ∈ X the graph G′ contains an i-threat of load (π + 1, 6tπ). This is immediate for i ∈ Ix from the
properties of Ix and Xx ⊇ X . For i ∈ I⊥, consider the i-threat Hi,x of load (π, 6t(π − 1)) in G(6t)

π,τ,⊥.
Define H to be Hi,x extended with a path from x to y and x to y′ for some y′ ∈ X , y 6= y′. Then, H
is connected, contains y, and is an i-threat of load (π + 1, 6tπ) as desired. This finishes the proof of the
lemma.
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By Lemma 2.4, in G = G
(6t)
p,t we obtain a set I ⊆ A1 of size

(
p+t
t

)
and a set X of size 2. The existence

of the corresponding threats in G ensure that f attains at least
(
p+t
t

)
colors on root vertices. This finishes

the proof of Lemma 2.3 and of Theorem 2.2.

3 Bounded degree graphs
In this section we prove Theorem 1.3. The proof follows the same strategy as the current best lower
bounds for acyclic and star colorings for graphs with bounded degrees [1, 5].

Note that Theorem 1.3 is obvious for p = 1. Fix p ≥ 2 and choose n ∈ N large enough with respect to
p. Define

qn := ((12e/p)pn1−p lnn)
1

2p−1

We will show that the Erdős-Rényi random graph G(n, qn) satisfies the desired lower bound with high
probability. Denote by dn the maximum degree of G(n, qn). As nqn/ lnn → ∞, standard results on
Random Graph Theory (see e.g. [6, Theorem 3.4]) imply that

P[nqn/2 ≤ dn ≤ 2nqn] = 1− o(1). (1)

All the asymptotic notations in this section refer to n→∞. If dn ≤ 2nqn, then

dn ≤ 2

(
12en

p

) p
2p−1

(lnn)
1

2p−1

Additionally, if dn ≥ nqn/2, then for large n we have n ≤ d2
n and

n ≥ 2−
2p−1
p

p

12e
d2−1/p
n (lnn)−1/p ≥ p

48e
d2−1/p
n (ln dn)−1/p.

We will show that, with high probability, G(n, qn) has no p-centered coloring using at most n/2 colors.
Together with (1), this gives the existence of a graph satisfying the theorem for c = 1

96e .
Consider a coloring of the vertex set of G(n, qn) using at most n/2 colors and let V1, . . . , Vn/2 be the

(possibly empty) color classes. For the sake of simplicity, we may assume that n is multiple of 4. We
can select m = n/4 disjoint subsets U1, . . . , Um such that for every i ∈ [m] we have Ui ⊆ Vj for some
j ∈ [n/2] and |Ui| = 2. Denote Ui = {xi, yi}. Let S be the set of ordered subsets s = (s1, . . . , sp) ⊆ [m]
and let Σ be the set of permutations σ of length p satisfying σ(p) = 1. To each (s, σ) ∈ S×Σ we associate
the following edge-set:

Es,σ = {xsixsi+1
: i ∈ [p− 1]} ∪ {xs1ysσ(1)} ∪ {ysσ(i)ysσ(i+1)

: i ∈ [p− 1]}.

The edges in Es,σ span a path of length 2p − 1, with endpoints xsp and ysσ(p) . By the choice of σ, the
p-th and (2p)-th vertices in the path, belong to the set Us1 .

Let E be the edge-set of the complete graph on n vertices, and let Eqn ⊆ E be the random set obtained
by adding each element of E independently with probability qn, i.e. the edge-set of G(n, qn). For each
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(s, σ) ∈ S × Σ, consider the event As,σ = [Es,σ ⊆ Eqn ]. Set

X =
∑

(s,σ)∈S×Σ

1As,σ

µ = E[X] =
∑

(s,σ)∈S×Σ

P[As,σ]

∆ =
∑

As,σ∼As′,σ′

P[As,σ ∩As′,σ′ ]

where we write As,σ ∼ As’,σ′ if Es,σ ∩ Es’,σ′ 6= ∅.
Janson’s inequality (see e.g. [2, Theorem 8.1.1]) states that

P[X = 0] ≤ exp{−µ+ ∆/2}. (2)

We have

µ = (m)p(p− 1)!q2p−1
n ≥ 1

2
mp(p− 1)!q2p−1

n ≥ 1

2p
(
np

4e
)pq2p−1

n =
3p

2p
n lnn ≥ (3/2)n lnn,

where we used that (m)p ≥ mp/2 holds for m sufficiently large with respect to p, and that p! ≥ (p/e)p.
For any s, s′ ∈ S , we use s ∩ s′ to denote the intersection of the ordered sets, as unordered sets.

If As,σ ∼ As′,σ′ then necessarily |s ∩ s′| ≥ 2. In order to bound ∆ from above, we will count the
contribution of all pairs of events whose sequences intersect in at least two elements. For any 2 ≤ i ≤ p
we have

|{((s, σ), (s′, σ′)) ∈ (S × Σ)2 : |s ∩ s′| = i}| =
(
m

i

)(
m− i
p− i

)(
m− p
p− i

)
(p!(p− 1)!)2 = O(n2p−i).

We claim that if (s, σ) 6= (s′, σ′), then |Es,σ ∩ Es′,σ′ | ≤ 2|s ∩ s′| − 2 and so P(As,σ ∩ As′,σ′) ≤
q

4p−2|s∩s′|
n . Clearly, we have that |Es,σ ∩ Es′,σ′ | ≤ 2|s ∩ s′| − 1 since the intersection spans a collection

of paths. In particular, |Es,σ ∩ Es′,σ′ | = 2|s ∩ s′| − 1 only if Es,σ ∩ Es′,σ′ spans a path containing the
edge xs1ysσ(1) . As σ(p) = 1, we have sσ(1), sσ(p) ∈ s ∩ s′, implying that si ∈ s ∩ s′ for every i ∈ [p], or
equivalently, |s ∩ s′| = p. In such a case, the only way that |Es,σ ∩ Es′,σ′ | = 2p − 1 is that s = s′ and
σ = σ′.

Note that nq2
n →∞. It follows that

∆ = O

(
p∑
i=2

n2p−iq4p−2i
n

)
= O((nq2

n)2p−2) = O(n1− 1
2p−1 (lnn)

4p−4
2p−1 ) = o(µ).

Now we can apply (2) and obtain

P[X = 0] ≤ exp{−µ+ ∆/2} = o(n−n).

Since there are at most nn/2 colorings of the vertex set with at most n/2 colors, the probability that at
least one of them is p-centered is, by a union bound, o(1), concluding the proof of Theorem 1.3.
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[10] J. Nešetřil and P. Ossona de Mendez. Sparsity - Graphs, Structures, and Algorithms, volume 28 of
Algorithms and combinatorics. Springer, 2012.

[11] M. P. O’Brien and B. D. Sullivan. Experimental evaluation of counting subgraph isomorphisms in
classes of bounded expansion. arXiv:1712.06690.

[12] M. Pilipczuk, M. Pilipczuk, and S. Siebertz. Sparsity. lecture notes. https://www.mimuw.
edu.pl/~mp248287/sparsity2/, 2019. Lecture notes from a course at University of War-
saw.

[13] M. Pilipczuk and S. Siebertz. Polynomial bounds for centered colorings on proper minor-closed
graph classes. In T. M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1501–
1520. SIAM, 2019. arXiv:1807.03683.

http://arxiv.org/abs/1907.04586
https://arxiv.org/abs/1712.06690
https://www.mimuw.edu.pl/~mp248287/sparsity2/
https://www.mimuw.edu.pl/~mp248287/sparsity2/
https://arxiv.org/abs/1807.03683

	1 Introduction
	2 Graphs of polynomial expansion
	3 Bounded degree graphs

