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Given an undirected graph G = (V,E) with a nonnegative edge length function and an integer p, 0 < p < |V |, the

p-centdian problem is to find p vertices (called the centdian set) of V such that the eccentricity plus median-distance

is minimized, in which the eccentricity is the maximum (length) distance of all vertices to their nearest centdian set

and the median-distance is the total (length) distance of all vertices to their nearest centdian set. The eccentricity plus

median-distance is called the centdian-distance. The purpose of the p-centdian problem is to find p open facilities

(servers) which satisfy the quality-of-service of the minimum total distance (median-distance) and the maximum

distance (eccentricity) to their service customers, simultaneously. If we converse the two criteria, that is given the

bound of the centdian-distance and the objective function is to minimize the cardinality of the centdian set, this

problem is called the converse centdian problem. In this paper, we prove the p-centdian problem is NP-Complete.

Then we design the first non-trivial brute force exact algorithms for the p-centdian problem and the converse centdian

problem, respectively. Finally, we design two approximation algorithms for both problems.

Keywords: combinatorial optimization, computational complexity, approximation algorithm, NP-Complete; network

location, p-centdian problem, converse centdian problem

1 Introduction

The p-center problem [20, 30, 51] and p-median problem [20, 31, 51] are fundamental problems in graph

theory and operations research. Let G = (V,E, ℓ) be an undirected graph with ℓ : E → R+ on the

edges. Given a vertex set V ′ ⊂ V , for each vertex v ∈ V , we let d(v, V ′) denote the shortest distance

from v to V ′ (i.e., d(v, V ′) = minu∈V ′ d(u, v), in which d(u, v) is the length of the shortest path of

G from u to v). The eccentricity of a vertex set V ′ is defined as the maximum distance of d(v, V ′)
for all v ∈ V , denoted by £C(V

′) (i.e., £C(V
′) = maxv∈V d(v, V

′)). The median-distance £M (V ′)
of V ′ denotes the total distance of d(v, V ′) for all v in V (i.e., £M (V ′) =

∑

v∈V d(v, V ′)). Given

an undirected complete graph G = (V,E, ℓ) with a nonnegative edge length function ℓ and an integer
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p, 0 < p < |V |, the p-center problem (pCP) (respectively, the p-median problem (pMP)) is to find

a vertex set V ′ in V , |V ′| = p, such that the eccentricity (respectively, the median-distance) of V ′ is

minimized [20, 30, 31, 51]. Both problems had been shown to be NP-Complete [16, 30, 31]. Hence,

many approximation algorithms [3, 18, 19, 23, 43, 47] and inapproximability results [24, 26, 27] had

been proposed for both problems. These two problems have many applications in the network location,

clustering, and social networks [1, 8, 13, 14, 15, 20, 23, 30, 31, 38, 40, 45, 46, 48, 49, 51].

Given a set of customers on the network, the network location theory is concerned with the optimal lo-

cations of new facilities (servers) to minimize transportation distances (costs) of serving these customers

and consider the population density area. The most fundamental problems of the network location theory

are the pCP and the pMP, respectively. The pCP is suitable for emergency services where the objective

is to have the farthest customers as close as possible to their facility centers. But this solution of the pCP

may cause a substantial increase in total distance (cost), thus this result takes a huge loss of the spatial

efficiency. The pMP is suitable for locating facilities providing a routine service, by minimizing the aver-

age distances from customers to these selected facilities. The solution of the pMP is beneficial in serving

centrally located and high-population density areas but sacrifices the remote and low-population density

areas [41, 42, 50]. Motivated by the application of finding p open facilities (servers) which satisfy the

quality-of-service of the minimum total distance (median-distance) and the maximum distance (eccen-

tricity) to their service customers, simultaneously [21, 22, 25, 41, 42, 50], Halpern [21, 22] introduced a

convex combination of the 1CP and the 1MP, which he called the 1-centdian problem. Hooker et al. [25]

studied the generalization of the 1-centdian problem, called the p-centdian problem. Given an undirected

complete graph G = (V,E, ℓ) with a nonnegative edge length function ℓ, a real number λ, 0 ≤ λ ≤ 1,

and an integer p, 0 < p < |V |, the p-centdian problem (pDP) is to find a vertex set V ′ in V , |V ′| = p, such

that the λ£C(V
′) + (1 − λ)£M (V ′) is minimized [25]. The vertex set V ′ is called the centdian set and

λ£C(V
′)+(1−λ)£M (V ′) is called the centdian-distance. If the centdian set can be the continuum set of

points on the edges of G, Hooker et al. [25] proposed the possible centdian set for the pDP. Perez-Brito et

al. [41] fixed the flaw of Hooker et al. [25] theorem for the pDP. Tamir et al. [50] presented a polynomial

time exact algorithm for the pDP on trees. Ben-Moshe et al. [6] gave O(|V |log|V |) time exact algorithms

for the 1DP on cycle graphs and cactus graphs, respectively. If the induced subgraph by the centdian

set is connected, Nguyen et al. [39] proposed a linear time algorithm for the pDP on unweighted block

graphs and proved the problem is NP-Complete on weighted block graphs. If λ = 0, the pDP is equal

to the pMP, and however λ = 1 the pDP is equal to the pCP. Hence, it is not hard to see that the pDP is

NP-hard. However, it is still unclear whether there exists a polynomial time deterministic approximation

algorithm for the pDP. Given an undirected graph G = (V,E) and two independent minimization criteria

with a bound on the first criterion, a generic bicriteria network design problem involves the minimization

of the second criterion but satisfies the bound on the first criterion among all possible subgraphs from

G [37]. Many multiple criteria problems had been studied [9, 17, 29, 34, 37]. Clearly, the pCP, pMP, and

pDP are one kind of bicriteria network design problems. The first criterion is the cardinality of the vertex

set V ′ and the second is the eccentricity, median-distance, and centdian-distance, respectively. Hence, if

we converse the two criteria, that is given the bound of the eccentricity from each vertex to V ′ and the

objective function is to minimize the cardinality of the V ′, this problem is called the converse p-center

problem (also called the balanced p-center problem) [4, 5, 16]. Given a graph G = (V,E, ℓ) with a

nonnegative edge length function ℓ and an integer U , U > 0, the converse p-center problem is to find a

vertex set V ′ in V with minimum cardinality such that the eccentricity of V ′ is at most U [4, 5, 16]. This

problem had been shown to be NP-Complete [16] and a (logU + 1)-approximation algorithm had been
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proposed [4, 5]. However, the converse version of the p-centdian problem is undefined. Hence, we present

the converse version of the p-centdian problem, called the converse centdian problem. Given a graph

G = (V,E, ℓ) with a nonnegative edge length function ℓ and two integers λ and U , 0 ≤ λ ≤ 1, U > 0,

the converse centdian problem (CDP) is to find a vertex set V ′ in V with minimum cardinality such that

λ£C(V
′) + (1− λ)£M (V ′) of V ′ is at most U . In this paper, we focus on a special case of the centdian-

distance for the pDP (respectively, CDP) : £C(V
′)+£M(V ′) and discuss the complexity, the non-trivial

brute force exact algorithms, and the approximation algorithms for the pDP and CDP, respectively. First,

we prove that the pDP is NP-Complete even when the centdian-distance is £C(V
′) +£M (V ′). Then we

present the first non-trivial brute force exact algorithms for the pDP and CDP, respectively. Finally, we

design a (1 + ǫ)-approximation algorithm for the pDP satisfying the cardinality of the centdian set is less

than or equal to (1 + 1/ǫ)(ln|V |+1)p and a (1 + 1/ǫ)(ln|V |+1)-approximation algorithm for the CDP

satisfying the centdian-distance is less than or equal to (1 + ǫ)U , in which ǫ > 0, respectively.

The rest of this paper is organized as follows. In Section 2, some definitions and notations are given. In

Section 3, we prove that the pDP is NP-Complete even when the centdian-distance is £C(V
′)+£M (V ′).

In Section 4, we present non-trivial brute force exact algorithms for the pDP and CDP, respectively. In

Section 5, we design a (1 + ǫ)-approximation algorithm for the pDP satisfying the cardinality of the

centdian set is less than or equal to (1+1/ǫ)(ln|V |+1)p. In Section 6, we design a (1+1/ǫ)(ln|V |+1)-
approximation algorithm for the CDP satisfying the centdian-distance is less than or equal to (1 + ǫ)U ,

in which ǫ > 0. Finally, we make a conclusion in Section 7.

2 Preliminaries

In this paper, a graph is simple, connected and undirected. By G = (V,E, ℓ), we denote a graph G
with vertex set V , edge set E, and edge length function ℓ. The edge length function is assumed to be

nonnegative. We use |V | to denote the cardinality of vertex set V . Let (v, v′) denote an edge connecting

two vertices v and v′. For any vertex v ∈ V is said to be adjacent to a vertex v′ ∈ V if vertices v and v′

share a common edge (v, v′).

Definition 1: For u, v ∈ V , SP (u, v) denotes a shortest path between u and v on G. The shortest path

length is denoted by d(u, v) =
∑

e∈SP (u,v) ℓ(e).

Definition 2: Let H be a vertex set of V . For a vertex v ∈ V , we let d(v,H) denote the shortest distance

from v to H , i.e., d(v,H) = minh∈H{d(v, h)}.

Definition 3: Let H be a vertex set of V . The eccentricity of H , denoted by £C(H), is the maximum

distance of d(v,H) for all v ∈ V , i.e., £C(H) = maxv∈V d(v,H).

Definition 4: Let H be a vertex set of V . The median-distance of H , denoted by £M (H), is the the total

distance of d(v,H) for all v ∈ V , i.e., £M (H) =
∑

v∈V d(v,H).

pCP (p-center problem) [20, 30, 51]

Instance: A connected, undirected, complete graph G = (V,E, ℓ) and an integer p > 0.

Question: Find a vertex set V ′, |V ′| = p, such that the eccentricity of V ′ is minimized.

pMP (p-median problem) [20, 31, 51]
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Fig. 1: An instance: complete graph G = (V,E, ℓ), p = 2 and U = 117.

Instance: A connected, undirected, complete graph G = (V,E, ℓ) and an integer p > 0.

Question: Find a vertex set V ′, |V ′| = p, such that the median-distance of V ′ is minimized.

pDP (p-centdian problem) [25]

Instance: A connected, undirected, complete graph G = (V,E, ℓ) and an integer p > 0.

Question: Find a vertex set V ′, |V ′| = p, such that £C(V
′) +£M (V ′) of V ′ is minimized.

For the pDP, we have two criteria. The first criterion is the cardinality of the vertex set V ′ and the

second is the £C(V
′) + £M (V ′). The vertex set V ′ is called the centdian set and £C(V

′) + £M (V ′)
is called the centdian-distance. Hence, we can converse the two criteria, that is given the bound of the

centdian-distance of the centdian set and the objective function is to minimize the cardinality of the

centdian set.

CDP (converse centdian problem)

Instance: A connected, undirected graph G = (V,E, ℓ) and an integer U > 0.

Question: Find a vertex set V ′ with £C(V
′) + £M (V ′) ≤ U such that the cardinality of the V ′ is

minimized.

The following examples illustrate the pDP and the CDP. Consider the instance shown in Fig. 1, in which

the graph G = (V,E, ℓ) and integers p = 2 and U = 117. An optimal solution of G for the pDP is shown

in Fig. 2, in which the centdian-distance is 252 An optimal solution of G for the CDP is shown in Fig. 3,

in which the centdian set is {A,B,D}.
In this paper, we will prove that the pDP is NP-Complete by a reduction from the dominating set

problem [7, 11, 44, 52] to the pDP. Hence, we review the definition of the dominating set problem. A

dominating set of G, denoted by Z , is a subset of V such that each vertex in V \ Z is adjacent to a vertex

in Z [7, 11, 44, 52].
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Fig. 2: The optimal solution {B,C} for the 2DP. (Note that £C({B,C}) +£M ({B,C}) = 252)

Fig. 3: The optimal solution {A,B,D} for the CDP. (Note that £C({A,B,D}) +£M ({A,B,D}) = 117)

DSP (dominating set problem) [7, 11, 44, 52]

Instance: A connected, undirected graph G = (V,E).

Question: Find a dominating set Z ′ with minimum cardinality.

Note that the DSP had been shown to be NP-Complete [16].

Since our approximation algorithm for the pDP is based on the set cover problem [10, 28, 36]. We

also review the definition of the set cover problem. Given a finite set U of elements and a collection S of

(non-empty) subsets of U . A set cover [10, 28, 36] is to find a subset S ′ ⊆ S such that every element in

U belongs to at least one element of S ′.

SCP (Set cover problem) [10, 28, 36]

Instance: A finite set U of elements, a collection S of (non-empty) subsets of U .

Question: Find a set cover S ′′ such that the number of sets in S ′′ is minimized.

3 Hardness Result for the pDP

In this section, we prove that the pDP is NP-Complete. We transform the DSP to the pDP by the reduction.

Hence we need to define pDP and DSP decision problems.

pDP Decision Problem
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Instance: A connected, undirected complete graph G = (V,E, ℓ) and two integers p > 0 and U > 0.

Question: Does there exist a vertex set V ′, |V ′| = p, such that £C(V
′) +£M (V ′) ≤ U?

DSP Decision Problem

Instance: A connected, undirected graph G = (V,E), and a positive integer κ.

Question: Does there exist a dominated set Z such that |Z| is less than or equal to κ?

Theorem 1: The pDP decision problem is NP-Complete.

Proof: First, it is easy to see that the pDP decision problem is in NP. Then we show the reduction: the

transformation from the DSP decision problem to the pDP decision problem.

Let a graph G = (V,E) and a positive integer κ be an instance of the DSP decision problem. We

transform it into an instance of the pDP decision problem, say G = (V ,E, ℓ) and two positive integers p
and U , as follows.

V = V .

E = E.

For each edge (u, v) ∈ E,

ℓ(u, v) =

{

1, if (u, v) ∈ E
d(u, v), otherwise.

(1)

U = |V | − κ+ 1 and p = κ.

Now, we show that there is a dominating set Z such that |Z| is κ if and only if there is a vertex set V ′

in G such that the |V ′| is p and £C(V ′) +£M (V ′) is U .

(Only if) If there exists a dominating set Z in G and the cardinality of Z is at most κ. Then we choice

the corresponding vertex set V ′ in G of the dominating set Z in G. Hence, we have £C(V ′) = 1 and

£M (V ′) = |V | − κ. (If) If there exists a vertex set V ′ in G such that |V ′| is p and £C(V ′) +£M (V ′) is

U . Clearly, each vertex v in V \ V ′, d(v, V ′) = 1, otherwise £C(V ′) + £M (V ′) > U = |V | − p + 1.

Hence, we choice the corresponding vertex set Z in G of the vertex set V ′ in G and Z is a dominating set

in G with |Z| = p. ✷

4 Exact Algorithms for the pDP and CDP

In this section, we show integer programmings to solve the pDP and CDP, respectively. We combine the

integer programmings for the pMP and pCP by [13]. Given an undirected complete graph G = (V,E, ℓ)
with a nonnegative edge length function ℓ, the pDP can be formulated as an integer programming (I) as

follows.
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minimize
∑

i∈V

∑

j∈V

d(i, j)xi,j + C (2)

subject to
∑

j∈V

xi,j = 1, ∀i ∈ V (3)

∑

j∈V

yj = p (4)

xi,j ≤ yj , ∀i, j ∈ V (5)
∑

j∈V

d(i, j)xi,j ≤ C, ∀i ∈ V (6)

xi,j , yj ∈ {0, 1} (7)

C ≥ 0, (8)

where the variable yj = 1 if and only if vertex j is chosen as a centdian, and the variable xi,j = 1 if and

only if yj = 1 and vertex i is assigned to vertex j, and C is a feasible eccentricity. For completeness, we

list the exact algorithm for the pDP as follows.

Algorithm OPT-pDP

Input: A connected, undirected complete graph G = (V,E, ℓ) with a nonnegative length function ℓ on

edges and an integer p > 0.

Output: A vertex set Popt with |Popt| = p.

1. Use the integer programming (I) to find all yj = 1 and put the corresponding vertex j of yj to Popt.

2. Return Popt.

It is easy to show that Algorithm OPT-pDP is an exact algorithm for the pDP. However, to solve an

integer programming is NP-hard [12, 16]. Hence, next section we show (1 + ǫ)-approximation algorithm

for the pDP satisfying the cardinality of centdian set is less than or equal to (1+ 1/ǫ)(ln|V |+1)p, ǫ > 0.

Next, we modify integer programming (I) to design another integer programming (II) for the CDP

with an integer U as follows.

minimize
∑

j∈V

yj (9)

subject to
∑

j∈V

xi,j = 1, ∀i ∈ V (10)
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∑

i∈V

∑

j∈V

d(i, j)xi,j + C ≤ U (11)

xi,j ≤ yj , ∀i, j ∈ V (12)
∑

j∈V

d(i, j)xi,j ≤ C, ∀i ∈ V (13)

xi,j , yj ∈ {0, 1} (14)

C ≥ 0. (15)

For completeness, we list the exact algorithm for the CDP as follows.

Algorithm OPT-CDP

Input: A connected, undirected complete graph G = (V,E, ℓ) with a nonnegative length function ℓ on

edges and an integer U > 0.

Output: A vertex set Popt with £C(Popt) +£M (Popt) ≤ U .

1. Use the integer programming (II) to find all yj = 1 and put the corresponding vertex j of yj to Popt.

2. Return Popt.

5 An Approximation Algorithm for the pDP

In this section, we show (1+ǫ)-approximation algorithm for the pDP satisfying the cardinality of centdian

set is less than or equal to (1 + 1/ǫ)(ln|V |+ 1)p, ǫ > 0. First, we relax the integer programming (I) for

the pDP to the linear programming (IL) to solve the pDP called the fractional pDP as follows.

minimize
∑

i∈V

∑

j∈V

d(i, j)xi,j + C (16)

subject to
∑

j∈V

xi,j = 1, ∀i ∈ V (17)

∑

j∈V

yj = p (18)

xi,j ≤ yj , ∀i, j ∈ V (19)
∑

j∈V

d(i, j)xi,j ≤ C, ∀i ∈ V (20)

0 ≤ xi,j , yj ≤ 1 (21)

C ≥ 0. (22)
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The main difference between IL and I is that yj and xi,j can take rational values between 0 and 1 for IL.

Let ỹ and x̃ be the output values of the linear programming IL. Then it is clear that the centdian-distance

of the optimal solution for the fractional pDP is a lower bound on the centdian-distance of the optimal

solution for the pDP. Moreover, the linear programming can be solved in polynomial time [32, 33].

Lemma 2: Given a solution ỹ = {ỹ1, ỹ2, . . . , ỹ|V |} for the fractional pDP, we can determine the optimal

fractional values for x̃i,j .

Proof: Similar with [2], for each i ∈ V , we sort d(i, j), j ∈ V , so that d(i, j1(i)) ≤ d(i, j2(i)) ≤ . . . ≤

d(i, j|V |(i)) and let s be a value such that
∑s−1

k=1 ỹjk(i) ≤ 1 ≤
∑s

k=1 ỹjk(i). Then let x̃i,j = ỹj for each

j = j1(i), j2(i), . . . , js−1(i), x̃i,js(i) = 1−
∑s−1

k=1 ỹjk(i), and otherwise x̃i,j = 0. ✷

Given a fractional solution x̃i,j , for each i ∈ V , let D̃(i) =
∑

j∈V d(i, j)x̃i,j be the distance of

assigning vertex i to its fractional centdian. Given ǫ > 0, we also let the neighborhood set N(i) of vertex

i be N(i) = {j ∈ V |d(i, j) ≤ (1 + ǫ)D̃(i)}.

Lemma 3: [35] For each i ∈ V and ǫ > 0, we have
∑

j∈N(i) ỹj ≥
∑

j∈N(i) x̃i,j > ǫ/(1 + ǫ).

Then we transform the pDP to the SCP. An instance of SCP contains a finite set U of elements, a

collection S of (non-empty) subsets of U . We let each vertex i ∈ V correspond to each element in U , and

each vertex j ∈ V with ỹj > 0 correspond to each set in S, respectively. Then for each vertex i ∈ V , if

j ∈ N(i), then the corresponding element of i in U belongs to the corresponding set of j in S.

Then we use the greedy approximation algorithm for the SCP whose approximation ratio is (ln |U| +
1) [10, 28, 36] to find a set cover of U and S. Let ASCP be the greedy approximation algorithm for

the SCP. Finally, output the corresponding vertex set for the output set by ASCP . Given a graph G =
(V,E, ℓ), let PAPX be a vertex set in G. Initially, PAPX is empty. Now, for clarification, we describe the

(1 + ǫ)-approximation algorithm for the pDP as follows.

Algorithm APX-pDP

Input: A connected, undirected complete graph G = (V,E, ℓ) with a nonnegative length function ℓ on

edges, an integer p > 0, and a real number ǫ, 0 < ǫ < 1.

Output: A vertex set PAPX with |PAPX | ≤ (1 + 1/ǫ)(ln|V |+ 1)p.

1. Let PAPX ← ∅.

2. Use linear programming (IL) to solve the fractional pDP and find the fractional solutions ỹ and x̃.

3. For each i ∈ V , compute D̃(i) and find its neighborhood set N(i) = {j ∈ V |d(i, j) ≤ (1 + ǫ)D̃(i)}.

4. For each i ∈ V do

create an element ui in U .

end for

5. For each j ∈ V with ỹj > 0 do

create a subset Sj = {ui| if j ∈ N(i)} of U in S.
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end for

6. Use the greedy approximation algorithm ASCP for the SCP to find a set cover S ′ of the instance U and

S. Let yj = 1 if Sj ∈ S ′, and then xi,j = 1 if set Sj ∈ S ′ and ui is covered by Sj , and otherwise

is 0.

7. Let PAPX be the corresponding vertex set of S ′.

The result of this section is summarized in the following theorem.

Theorem 4: Algorithm APX-pDP is a (1+ǫ)-approximation algorithm for the pDP satisfying |PAPX | ≤
(1 + 1/ǫ)(ln|V |+ 1)p, in which ǫ > 0.

Proof: Let POPT be the optimal solution for the pDP. Clearly, by Step 5 and Step 6, a subset Sj contains

the element ui in U if d(i, j) ≤ (1 + ǫ)D̃(i), where i is the corresponding vertex of ui and j is the

corresponding vertex of Sj , and each i ∈ V ,
∑

j∈V d(i, j)xi,j ≤ (1 + ǫ)D̃(i) Hence, we have

£M (PAPX) +£C(PAPX) ≤
∑

i∈V

∑

j∈V

d(i, j)xi,j +max
i∈V

∑

j∈V

d(i, j)xi,j

≤
∑

i∈V

(1 + ǫ)D̃(i) + max
i∈V

(1 + ǫ)D̃(i)

≤ (1 + ǫ)£M (POPT ) + (1 + ǫ)£C(POPT ),

since the centdian-distance of the fractional pDP is a lower bound on the centdian-distance of the optimal

solution for the pDP.

Then we show |PAPX | ≤ (1 + 1/ǫ)(ln|V | + 1)p. By [35] and Lemma 3, we have the cardinality of

set for the optimal fractional cover is less than (1 + 1/ǫ)p and the cardinality of set by the output of the

greedy algorithm is at most (ln |U|+ 1) [10, 36] of the cardinality of set for the optimal fractional cover.

Immediately, we have |PAPX | ≤ (1 + 1/ǫ)(ln|V |+ 1)p. ✷

6 An Approximation Algorithm for the CDP

In this section, we show a (1 + 1/ǫ)(ln|V | + 1)-approximation algorithm for the CDP satisfying the

centdian-distance is less than or equal to (1+ ǫ)U , ǫ > 0. We only run Algorithm APX-pDP for the pDP,

for p = 1 to |V | and find the first centdian set such its centdian-distance is less than or equal to (1 + ǫ)U .

For the completeness, we describe the approximation algorithm for the CDP and obtain the centdian

set Pγ as follows.

Algorithm APX-CDP

Input A connected, undirected complete graph G = (V,E, ℓ) with a nonnegative length function ℓ on

edges, an integer U > 0 and a real number ǫ, 0 < ǫ < 1.

Output: A vertex set Pγ with £C(Pγ) +£M (Pγ) ≤ (1 + ǫ)U .
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1. Let p = 1 and Pγ ← ∅.

2. Use Algorithm APX-pDP to find a vertex set Pp that satisfies Theorem 4.

3. If £C(Pp) +£M (Pp) > (1 + ǫ)U then

Let p = p+ 1 and go to step 2.

4. Let Pγ ← Pp.

Theorem 5: Algorithm APX-CDP is a (1 + 1/ǫ)(ln|V | + 1)-approximation algorithm for the CDP

satisfying the centdian-distance is less than or equal to (1 + ǫ)U , in which ǫ > 0.

Proof:

Let P ′ be the centdian set of optimal solutions for the CDP with an integer U . We have £C(P
′) +

£M (P ′) ≤ U . Let P ′′ (respectively, P γ) be the centdian set of optimal solutions for the pDP with

p = |P ′| (respectively, p = γ). Clearly, £C(P
′′) + £M (P ′′) ≤ £C(P

′) + £M (P ′) ≤ U . If p = |P ′′|,
Algorithm APX-CDP returns a centdian set P|P ′′| such that £C(P|P ′′|)+£M (P|P ′′|) ≤ (1+ǫ)£C(P

′′)+
£M (P ′′) ≤ (1+ ǫ)U . Since Algorithm APX-CDP returns the first centdian set such its centdian-distance

is less than or equal to (1 + ǫ)U , we have that γ is less than or equal to |P ′′|. By Theorem 4, we have

|Pγ | ≤ (1 + 1/ǫ)(ln|V |+ 1)γ ≤ (1 + 1/ǫ)(ln|V |+ 1)|P ′′| = (1 + 1/ǫ)(ln|V |+ 1)|P ′|,

and

£C(Pγ) +£M (Pγ) ≤ (1 + ǫ)(£C(P
γ) +£M (P γ))

≤ (1 + ǫ)(£C(P
′′) +£M (P ′′))

≤ (1 + ǫ)(£C(P
′) +£M (P ′))

≤ (1 + ǫ)U.

✷

7 Conclusion

In this paper, we have investigated the pDP and the CDP and prove that these problems are NP-Complete

even when the centdian-distance is £C(V
′) + £M (V ′). Then we have presented non-trivial brute

force exact algorithms for the pDP and the CDP, respectively. Moreover, we have designed a (1 + ǫ)-
approximation algorithm for the pDP satisfying the cardinality of the centdian set is less than or equal

to (1 + 1/ǫ)(ln|V | + 1)p and a (1 + 1/ǫ)(ln|V | + 1)-approximation algorithm for the CDP satisfying

the centdian-distance is less than or equal to (1 + ǫ)U , in which ǫ > 0. It would be interesting to find

approximation complexities for the pDP and the CDP. Another direction for future research is whether the

pDP has a polynomial time exact algorithm for some special graphs.
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