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We give three applications of a recently-proven “Decomposition Lemma,” which allows one to count preimages of
certain sets of permutations under West’s stack-sorting map s. We first enumerate the permutation class

s−1(Av(231, 321)) = Av(2341, 3241, 45231),

finding a new example of an unbalanced Wilf equivalence. This result is equivalent to the enumeration of per-
mutations sortable by B ◦s, where B is the bubble sort map. We then prove that the sets s−1(Av(231, 312)),
s−1(Av(132, 231)) = Av(2341, 1342, 3241, 3142), and s−1(Av(132, 312)) = Av(1342, 3142, 3412, 3421) are
counted by the so-called “Boolean-Catalan numbers,” settling a conjecture of the current author and another conjec-
ture of Hossain. This completes the enumerations of all sets of the form s−1(Av(τ (1), . . . , τ (r))) for {τ (1), . . . , τ (r)}
⊆ S3 with the exception of the set {321}. We also find an explicit formula for |s−1(Avn,k(231, 312, 321))|, where
Avn,k(231, 312, 321) is the set of permutations in Avn(231, 312, 321) with k descents. This allows us to prove a
conjectured identity involving Catalan numbers and order ideals in Young’s lattice.

Keywords: Permutation pattern; stack-sorting; bubble sort; Pop-stack-sorting; unbalanced Wilf equivalence.

1 Introduction
1.1 Background
We use the word “permutation” to refer to an ordering of a set of positive integers written in one-line
notation. Let Sn denote the set of permutations of the set [n]. If π is a permutation of length n, then the
standardization of π is the permutation in Sn obtained by replacing the ith-smallest entry in π with i for
all i. We say a permutation is standardized if it is equal to its standardization.

Definition 1.1. Given τ ∈ Sm, we say a permutation σ = σ1 · · ·σn contains the pattern τ if there exist
indices i1 < · · · < im in [n] such that the standardization of σi1 · · ·σim is τ . We say σ avoids τ if it does
not contain τ . Let Av(τ (1), τ (2), . . .) denote the set of standardized permutations that avoid the patterns
τ (1), τ (2), . . . (this list of patterns could be finite or infinite). A set of the form Av(τ (1), τ (2), . . .) is called
a permutation class. Let Avn(τ

(1), τ (2), . . .) = Av(τ (1), τ (2), . . .) ∩ Sn.
∗The author was supported by a Fannie and John Hertz Foundation Fellowship and an NSF Graduate Research Fellowship.
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The investigation of permutation patterns began with Knuth’s analysis of a certain “stack-sorting algo-
rithm” [38]. This analysis also marked the first use of what is now called the “kernel method,” a powerful
enumerative tool that we employ throughout this article (see [4, 12, 13, 42] for more information about
this technique). In his dissertation, West [47] defined a deterministic variant of Knuth’s algorithm. This
variant is a function, which we call the “stack-sorting map” and denote by s, that sends permutations to
permutations. The map s sends the empty permutation to itself. To define s(π) when π is a nonempty
permutation, we write π = LnR, where n is the largest entry in π. We then let s(π) = s(L)s(R)n. For
example,

s(14253) = s(142) s(3) 5 = s(1) s(2) 4 3 5 = 12435.

There is now a large amount of literature concerning the stack-sorting map [7–11, 14–18, 21–35, 40, 43,
46–48].

We say a permutation π is t-stack-sortable if st(π) is an increasing permutation, where st denotes the
t-fold iterate of s. LetWt(n) be the set of t-stack-sortable permutations in Sn, and let Wt(n) = |Wt(n)|.
Knuth initiated the study of pattern avoidance and the study of stack-sorting (and introduced the kernel
method) with the following theorem.

Theorem 1.1 ([38]). A permutation is 1-stack-sortable if and only if it avoids the pattern 231. Further-
more, W1(n) = |Avn(231)| = Cn, where Cn = 1

n+1

(
2n
n

)
is the nth Catalan number.

In his dissertation, West conjectured that W2(n) =
2

(n+1)(2n+1)

(
3n
n

)
. Zeilberger [48] later proved this

formula, and other proofs have emerged over the past few decades [22, 24, 32–35]. Some authors have
investigated the enumeration of 2-stack-sortable permutations according to various statistics [8, 14, 16,
24, 32]. There is little known about t-stack-sortable permutations when t ≥ 3. The best known upper
bound in general is given by the estimate Wt(n) ≤ (t + 1)2n. The current author [28] proved that
lim
n→∞

W3(n)
1/n < 12.53296 and lim

n→∞
W4(n)

1/n < 21.97225. Recently, Bóna [9] reproved the first of
these two estimates.

Even more recently, the current author [24] proved a certain “Decomposition Lemma” and used it to
give a new proof of Zeilberger’s formula for W2(n) that generalizes in order to count 2-stack-sortable
permutations according to their number of descents and number of peaks. The proof also generalizes
to the setting of 3-stack-sortable permutations, yielding a recurrence that generates the numbers W3(n)
(more generally, it gives a recurrence for W3(n, k, p), the number of 3-stack-sortable permutations of
length n with k descents and p peaks). This allowed the author to shed light on several conjectures of
Bóna concerning 3-stack-sortable permutations, disproving one of them.

West [47] defined the fertility of a permutation π to be |s−1(π)|, the number of preimages of π under
s. He then went through a great deal of effort to compute the fertilities of the permutations of the forms

23 · · · k1(k + 1) · · ·n, 12 · · · (k − 2)k(k − 1)(k + 1) · · ·n, and k12 · · · (k − 1)(k + 1) · · ·n.

The fact that these permutations are of such specific forms indicates the difficulty of computing fertili-
ties. Bousquet-Mélou [15] found a method for determining whether or not a given permutation is sorted,
meaning that its fertility is positive. She asked for a general method for computing the fertility of any
given permutation. The current author achieved this in even greater generality in [27–29] using new com-
binatorial objects called “valid hook configurations.” He and others have applied this method in order to
prove several results about fertilities of permutations, many of which link the stack-sorting map to other
fascinating combinatorial objects and sequences [23–31, 40, 43].
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Define the fertility of a set A of permutations to be |s−1(A)|. In [29], the current author computed
the fertilities of many sets of the form Avn(τ

(1), . . . , τ (r)) for τ (1), . . . , τ (r) ∈ S3. He also refined these
enumerative results according to the statistics that count descents and peaks. Investigations of preimages
of permutation classes appeared earlier in [16] and [21] and appeared more recently in [26]; this line
of work is motivated by the observations that W1(n) = s−1(Avn(21)) and W2(n) = s−1(Avn(231)).
Further motivation comes from the fact that preimages of permutation classes under s are often themselves
permutation classes. For example, s−1(Av(321)) = Av(34251, 35241, 45231). Our goal in the present
article is to compute fertilities of some sets of permutations that were not completed in [29]. We do this
via the Decomposition Lemma, which, when combined with generating function tools such as the kernel
method, gives a unified technique for computing fertilities.

1.2 Summary of Main Results
Section 2 is brief; its purpose is simply to state the Decomposition Lemma. In Section 3, we use the
Decomposition Lemma to prove that∑

n≥0

|s−1(Avn(231, 321))|xn =
1

1− xC(xC(x))
,

where C(x) =
1−
√
1− 4x

2x
is the generating function of the Catalan numbers. This proves Conjec-

ture 12.3 from [29]. This is notable because

s−1(Av(231, 321)) = Av(2341, 3241, 45231).

Callan [20] proved that
1

1− xC(xC(x))
is the generating function of the permutation class

Av(4321, 4213), and Bloom and Vatter [6] later reproved this result with a clearer bijection. The authors
of [39] showed that this expression is also the generating function for Av(2413, 2431, 23154), which
means that Av(4321, 4213) and Av(2413, 2431, 23154) form a pair of “unbalanced” Wilf equivalent
permutation classes. The first naturally-occurring unbalanced Wilf equivalent pairs of finitely-based(i)

permutation classes were found only recently [5, 19]. Our theorem proves that Av(2341, 3241, 45231) is
also Wilf equivalent to Av(4321, 4213) and Av(2413, 2431, 23154), providing yet another example of a
pair of unbalanced Wilf equivalent finitely-based classes.

Another motivation for the results of Section 3 comes from the study of the bubble sort map B. This
map sends the empty permutation to itself. If π = LnR, where n is the largest entry of π, then B(π) =
B(L)Rn. The article [1] investigates permutations sortable via s ◦B, showing that

(s ◦B)−1(123 · · ·n) = Avn(3241, 2341, 4231, 2431).

Therefore, it is natural to ask about permutations that are sortable by B ◦s. It is known (see [1]) that
B−1(123 · · ·n) = Avn(231, 321), so it follows from the main result of Section 3 that

(B ◦s)−1(123 · · ·n) = Avn(2341, 3241, 45231)

(i) We say a permutation class is finitely-based if it is of the form Av(τ (1), . . . , τ (r)), where the list τ (1), . . . , τ (r) is finite.
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and that ∑
n≥0

|(B ◦s)−1(123 · · ·n)|xn =
1

1− xC(xC(x))
.

In Section 4, we consider the chain of equalities∑
n≥1

|s−1(Avn(132, 312))|xn =
∑
n≥1

|s−1(Avn(231, 312))|xn =
∑
n≥1

|s−1(Avn(132, 231))|xn

=
1− 2x−

√
1− 4x− 4x2

4x
.

The first of these equalities was proven in [29], while the second was proven in [26]. We use the Decom-
position Lemma to prove the third equality, completing the chain and proving a conjecture from [29]. Let
us also remark that s−1(Av(231, 312)) is the set of permutations that are sortable via one iteration of the
map Pop ◦ s, where Pop is the pop-stack-sorting map (see [2] and the references therein). Therefore, this
theorem answers a deterministic variant of one of the problems considered in [44].

The expression
1− 2x−

√
1− 4x− 4x2

4x
is the generating function of OEIS sequence A071356 [41].

Hossain [36] has named these numbers “Boolean-Catalan numbers” and has discussed several interesting
combinatorial properties that they enjoy. The above chain of inequalities is important because one can
show that

s−1(Av(132, 231)) = Av(2341, 1342, 3241, 3142)

and
s−1(Av(132, 312)) = Av(1342, 3142, 3412, 3421),

where the underlines are used to represent so-called “vincular patterns” (defined in Section 4). Therefore,
we are able to use the stack-sorting map as a tool in order to enumerate sets of permutations avoiding
certain vincular patterns. This is particularly noteworthy in the case of the set s−1(Av(132, 231)) =
Av(2341, 1342, 3241, 3142). Indeed, Hossain [37] conjectured that this set of permutations is enumerated
by the Boolean-Catalan numbers. As far as we are aware, there is no known proof of this fact that does
not make use of the stack-sorting map.

Applying the Decomposition Lemma yet again in Section 5, we prove that

|s−1(Avn,k(231, 312, 321))| =
1

n+ 1

(
n− k − 1

k

)(
2n− 2k

n

)
,

where Avn,k(231, 312, 321) is the set of permutations in Avn(231, 312, 321) with k descents. This yields
a new proof of Theorem 6.2 from [29]. It also allows us to prove Conjecture 6.1 from that same article,
which is an identity involving Catalan numbers and orderings on integer compositions and partitions.

There are 64 subsets {τ (1), . . . , τ (r)} of S3; for each one, we have the problem of enumerating the
permutations in s−1(Av(τ (1), . . . , τ (r))). Many of these enumerations were accomplished in [16, 29, 38,
48]. The main results of Sections 3 and 4 below finish the last remaining cases with the single exception
of the set {321}.
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Remark 1.1. The permutation classes Av(231, 321), Av(132, 231), and Av(231, 312, 321) have very
simple descriptions, so one might think that the enumerations of their preimages under s could be com-
puted directly and easily without additional tools. This is not the case. As mentioned above, even com-
puting the fertilities of extremely simple permutations like 23 · · · k1(k+1) · · ·n takes some work without
the Decomposition Lemma or valid hook configurations. Even with the machinery of valid hook configu-
rations, the author could not figure out how to compute these fertilities in the paper [29].

1.3 General Proof Strategy
The tail length of a permutation π = π1 · · ·πn ∈ Sn, denoted tl(π), is the largest integer ` ∈ {0, . . . , n}
such that πi = i for all i ∈ {n − ` + 1, . . . , n}. Our strategy for proving the results in Sections 3–5 is
to use the Decomposition Lemma in order to count various sets of permutations according to the statistic
tls defined by tls(π) = tl(s(π)). One interesting property of this statistic is that it is closely related to
the statistic zeil that Zeilberger used when he counted 2-stack-sortable permutations. For σ ∈ Sn, zeil(σ)
is the largest positive integer m such that n, n − 1, . . . , n −m + 1 appear in decreasing order in σ. It is
proven in [26] that

zeil(σ) = min{rmax(σ), tls(σ)},

where rmax(σ) is the number of right-to-left maxima of σ. Our enumerations according to the statistic tls
will yield generating function equations involving catalytic variables that we can remove using the kernel
method.

2 The Decomposition Lemma
A descent of a permutation π = π1 · · ·πn is an index i ∈ [n − 1] such that πi > πi+1. The plot of π is
the diagram showing the points (i, πi) for all i ∈ [n]. For example, the image on the left in Figure 1 is
the plot of 31542678. A hook of a permutation is obtained by starting at a point (i, πi) in the plot of π,
drawing a vertical line segment moving upward, and then drawing a horizontal line segment to the right
that connects with a point (j, πj). This only makes sense if i < j and πi < πj . The point (i, πi) is called
the southwest endpoint of the hook, while (j, πj) is called the northeast endpoint. Let SWi(π) be the set
of hooks of π with southwest endpoint (i, πi). The right image in Figure 1 shows a hook of 31542678.
This hook is in SW3(31542678) because its southwest endpoint is (3, 5).

2
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Fig. 1: The left image is the plot of 31542678. The right image shows this plot along with a single hook.

As mentioned above, the tail length tl(π) of a permutation π = π1 · · ·πn ∈ Sn is the largest integer
` ∈ {0, . . . , n} such that πi = i for all i ∈ {n − ` + 1, . . . , n}. The tail of π is the sequence of points
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(n− tl(π) + 1, n− tl(π) + 1), . . . , (n, n) in the plot of π. For example, the tail length of the permutation
31542678 shown in Figure 1 is 3, and the tail of this permutation is (6, 6), (7, 7), (8, 8). We say a descent
d of π is tail-bound if every hook in SWd(π) has its northeast endpoint in the tail of π. The tail-bound
descents of 31542678 are 3 and 4.

Suppose H is a hook of a permutation π = π1 · · ·πn with southwest endpoint (i, πi) and northeast
endpoint (j, πj). Let πHU = π1 · · ·πiπj+1 · · ·πn and πHS = πi+1 · · ·πj−1. The permutations πHU and πHS
are called the H-unsheltered subpermutation of π and the H-sheltered subpermutation of π, respectively.
For example, if π = 31542678 and H is the hook shown on the right in Figure 1, then πHU = 3158 and
πHS = 426. Note that the northeast endpoint of the hook does not contribute to either the unsheltered
subpermutation nor the sheltered subpermutation. In all of the cases we consider in this paper, the plot of
πHS lies completely below the hook H in the plot of π (it is “sheltered” by the hook H).

Lemma 2.1 (Decomposition Lemma, [24]). If d is a tail-bound descent of a permutation π ∈ Sn, then

|s−1(π)| =
∑

H∈SWd(π)

|s−1(πHU )| · |s−1(πHS )|.

3 Enumerating s−1(Av(231, 321))
In his dissertation, West [47] proved that a permutation is in s−1(Av(231)) (that is, it is 2-stack-sortable)
if and only if it avoids the pattern 2341 and avoids any 3241 pattern that is not part of a 35241 pattern. As
mentioned in the introduction, s−1(Av(321)) = Av(34251, 35241, 45231). Combining these two facts,
it is straightforward to check that

s−1(Av(231, 321)) = Av(2341, 3241, 45231). (1)

In this section, we use the Decomposition Lemma to prove the following theorem.

Theorem 3.1. We have ∑
n≥0

|s−1(Avn(231, 321))|xn =
1

1− xC(xC(x))
,

where C(x) =
1−
√
1− 4x

2x
is the generating function of the sequence of Catalan numbers.

This is notable because it tells us that we can use the stack-sorting map and the Decomposition Lemma
as tools in order to enumerate the permutation class Av(2341, 3241, 45231), which, as far as we are

aware, has not been enumerated yet. As mentioned in the introduction,
1

1− xC(xC(x))
is also the

generating function of the sequence that enumerates the permutation classes Av(4321, 4213) [6, 20] and
Av(2413, 2431, 23145) [39]. In particular, Theorem 3.1 tells us that the permutation classes

Av(4321, 4213) and Av(2341, 3241, 45231)

form a new example of an unbalanced Wilf equivalence, as defined in [5, 19].

Proof of Theorem 3.1: Let

D`(n) = {π ∈ Avn+`(231, 321) : tl(π) = `} and D≥`(n) = {π ∈ Avn+`(231, 321) : tl(π) ≥ `}.
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Let B`(n) = |s−1(D`(n))| and B≥`(n) = |s−1(D≥`(n))|.
Suppose π ∈ D`(n+1) is such that πn+1−i = n+1 (see Figure 2). Note that n+1− i is a tail-bound

descent of π because every point in the plot of π that is higher than (n + 1 − i, n + 1) is in the tail of
π. The Decomposition Lemma tells us that |s−1(π)| is equal to the number of triples (H,µ, λ), where
H ∈ SWn+1−i(π), µ ∈ s−1(πHU ), and λ ∈ s−1(πHS ). Choosing H amounts to choosing the number
j ∈ {1, . . . , `} such that the northeast endpoint of H is (n + 1 + j, n + 1 + j). The permutation π and
the choice of H determine the permutations πHU and πHS . On the other hand, the choices of H and the
permutations πHU and πHS uniquely determine π. It follows that B`(n + 1), which is the number of ways
to choose an element of s−1(D`(n + 1)), is also the number of ways to choose j, the permutations πHU
and πHS , and the permutations µ and λ. Let us fix a choice of j.

Fig. 2: An example of a permutation π ∈ D5(9) and a hook H with i = 4 and j = 2 (in the notation of
the proof of Theorem 3.1).

Because π avoids 231, πHU must be a permutation of the set

{1, . . . , n− i} ∪ {n+ 1} ∪ {n+ 2 + j, . . . , n+ `+ 1},

while πHS must be a permutation of {n − i + 1, . . . , n + j} \ {n + 1}. In fact, πHS is the increasing
permutation of the (i + j − 1)-element set {n − i + 1, . . . , n + j} \ {n + 1} because π avoids 321.
According to Theorem 1.1, there are Ci+j−1 choices for λ. Choosing πHU is equivalent to choosing its
standardization, which is an element of D≥`−j+1(n− i). Any element of D≥`−j+1(n− i) can be chosen
as the standardization of πHU . Also, πHU has the same fertility as its standardization. Combining these
facts, we find that the number of choices for πHU and µ is |s−1(D≥`−j+1(n− i))| = B≥`−j+1(n− i). We
obtain the recurrence relation

B`(n+ 1) =

n∑
i=1

∑̀
j=1

Ci+j−1B≥`−j+1(n− i). (2)
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Let
G`(x) =

∑
n≥0

B≥`(n)x
n and I(x, y) =

∑
`≥0

G`(x)y
`.

Note that
G`(0) = B≥`(0) = |s−1(123 · · · `)| = C`

by Theorem 1.1. Our goal is to understand the generating function

I(x, 0) = G0(x) =
∑
n≥0

B≥0(n)x
n =

∑
n≥0

|s−1(Avn(231, 321))|xn.

The recurrence (2) tells us that

∑
n≥0

B`(n+ 1)xn =
∑̀
j=1

∑
n≥0

n∑
i=1

Ci+j−1B≥`−j+1(n− i)xn =
∑̀
j=1

∑
i≥1

Ci+j−1x
i

G`−j+1(x),

so ∑
`≥0

∑
n≥0

B`(n+ 1)xny` =
∑
`≥0

∑̀
j=1

∑
i≥1

Ci+j−1x
i

G`−j+1(x)y
`

=

∑
j≥1

∑
i≥1

Ci+j−1x
iyj−1

 (I(x, y)− I(x, 0)) = x
C(x)− C(y)

x− y
(I(x, y)− I(x, 0)). (3)

On the other hand,∑
`≥0

∑
n≥0

B`(n+ 1)xny` =
∑
`≥0

∑
n≥0

B≥`(n+ 1)xny` −
∑
`≥0

∑
n≥0

B≥`+1(n)x
ny`

=
1

x

∑
`≥0

(G`(x)− C`)y` −
1

y

∑
`≥0

G`+1(x)y
`+1 =

I(x, y)− C(y)
x

− I(x, y)− I(x, 0)
y

. (4)

Combining (3) and (4) and rearranging terms, we get the equation

x(I(x, y)− I(x, 0))
(
x
C(x)− C(y)

x− y
− 1

x
+

1

y

)
= I(x, 0)− C(y). (5)

We now employ the kernel method (see [4,12,13,42] for more on this method). There is a unique power

series Y = Y (x) such that Y (x) = x+O(x2) and x
C(x)− C(Y )

x− Y
− 1

x
+

1

Y
= 0. Substituting this into

(5), we find that I(x, 0) = C(Y ). For ease of notation, let u = I(x, 0) and v =
1

1− xC(xC(x))
. We

wish to show that u = v.

Combining the equation x
C(x)− C(Y )

x− Y
− 1

x
+

1

Y
= 0 with the standard Catalan functional equation

Y C(Y )2 + 1− C(Y ) = 0 yields

u = C(Y ) = C(x) +
(x− Y )2

x2Y
= C(x) +

(x− u−1
u2 )2

x2 u−1u2

.
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If we solve for C(x) and use the functional equation xC(x)2 + 1− C(x) = 0, we obtain

x

(
u−

(x− u−1
u2 )2

x2 u−1u2

)2

+ 1−
(
u−

(x− u−1
u2 )2

x2 u−1u2

)
= 0.

We can simplify this last equation to find that Q(u, x)
1− u+ xu2

x3u4(u− 1)2
= 0, where Q is the polynomial

given by

Q(a, x) = 1− 3a+ (3 + 2x)a2 + (−1− 4x+ 2x2)a3 + (2x− 2x2 + x3)a4. (6)

It is easy to see that 1− u+ xu2 6= 0, so Q(u, x) = 0.

We have 1− 1

v
= xC(xC(x)), so

C(x)

(
1− 1

v

)2

= x2C(x)C(xC(x))2 = x(C(xC(x))− 1),

where the last equality follows from the Catalan functional equation. This means that

1− x− C(x)
(
1− 1

v

)2

= 1− xC(xC(x)) = 1

v
.

It follows that C(x) =
1− 1

v − x
(1− 1

v )
2

, so we can use the Catalan functional equation to find that

x

(
1− 1

v − x
(1− 1

v )
2

)2

+ 1−
1− 1

v − x
(1− 1

v )
2

= 0.

After simplifying this equation, we find thatQ(v, x) 1
(v−1)4 = 0, whereQ is the polynomial in (6). Hence,

Q(v, x) = 0.
We now know thatQ(u, x) = Q(v, x) = 0. There are four Laurent seriesF (x) satisfyingQ(F (x), x)=

0, but only one satisfies F (x) = 1 + x+O(x2). This proves that u = v, as desired.

Remark 3.1. Now that we have determined I(x, 0), one could use (5) to find the bivariate generating
function I(x, y), which counts the permutations in the set

s−1(Av(231, 321)) = Av(2341, 3241, 45231)

according to length and an additional statistic.

As mentioned in the introduction, Theorem 3.1 is equivalent to the enumeration of permutations that
are sortable via the map B ◦s, where B is the bubble sort map.
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4 Enumerating s−1(Av(132, 231))

Many analogues and generalizations of classical permutation patterns have emerged over the past few
decades. One of the most notable notions is that of a “vincular pattern,” which appeared first in [3]
and has garnered a large amount of attention ever since. We refer the reader to the survey [45] and the
references therein for further background. A vincular pattern is a permutation pattern in which some
consecutive entries can be underlined. We say a permutation contains a vincular pattern if it contains an
occurrence of the permutation pattern in which underlined entries are consecutive. For example, saying
that a permutation σ = σ1 · · ·σn contains the vincular pattern 3241 means that there are indices i1 <
i2 < i3 < i4 such that σi4 < σi2 < σi1 < σi3 and i2 = i1 + 1. We say a permutation avoids a vincular
pattern τ if it does not contain τ . Let Av(τ (1), τ (2), . . .) be the set of standardized permutations avoiding
the vincular patterns τ (1), τ (2), . . ., and let Avn(τ (1), τ (2), . . .) = Av(τ (1), τ (2), . . .) ∩ Sn.

There are many fascinating combinatorial properties of the OEIS sequence A071356 [41]; several are
listed in [36], where the numbers in this sequence are named “Boolean-Catalan numbers.” One can define
this sequence via its generating function

1− 2x−
√
1− 4x− 4x2

4x
.

Hossain [37] has conjectured that the Boolean-Catalan numbers enumerate the permutations in

Av(2341, 1342, 3241, 3142).

We will see that this set is precisely s−1(Av(132, 231)). We will then enumerate these permutations via
the Decomposition Lemma, proving Hossain’s conjecture. It is interesting that the only known proof of
this conjecture makes heavy use of the stack-sorting map.

The main theorem of this section is the following.

Theorem 4.1. We have∑
n≥1

|s−1(Avn(132, 312))|xn =
∑
n≥1

|s−1(Avn(231, 312))|xn =
∑
n≥1

|s−1(Avn(132, 231))|xn

=
1− 2x−

√
1− 4x− 4x2

4x
.

This theorem settles Conjecture 10.1 from [29]. Before proving it, we show how to deduce from it the
following corollary, part of which settles Hossain’s conjecture.

Corollary 4.1. We have∑
n≥1

|Avn(2341, 1342, 3241, 3142)|xn =
∑
n≥1

|Avn(1342, 3142, 3412, 3421)|xn

=
1− 2x−

√
1− 4x− 4x2

4x
.
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Proof: This corollary will follow immediately from Theorem 4.1 if we can show that

s−1(Av(132, 231)) = Av(2341, 1342, 3241, 3142)

and
s−1(Av(132, 312)) = Av(1342, 3142, 3412, 3421).

We prove the first of these equalities, the proof of the second is similar. If σ contains 2341 or 3241, then
it follows from West’s characterization of 2-stack-sortable permutations (mentioned at the start of Section
3) that s(σ) contains 231. It is also straightforward to check that s(σ) contains 132 if σ contains 1342 or
3142. This proves the containment

s−1(Av(132, 231)) ⊆ Av(2341, 1342, 3241, 3142).

Now suppose s(σ) contains either 132 or 231. We want to prove that σ contains one of the vincular
patterns 2341, 1342, 3241, 3142. We will assume that σ avoids 2341, 1342, 3241 and prove that it contains
3142. Let us first assume s(σ) contains 231. Using West’s characterization of 2-stack-sortable permuta-
tions and the assumption that σ avoids 2341, we see that σ contains a 3241 pattern that is not part of a
35241 pattern. Therefore, there are indices i1 < i2 < i3 < i4 such that σi4 < σi2 < σi1 < σi3 and such
that no entry lying between σi1 and σi2 is larger than σi3 . We may assume that among all such choices
for i1, i2, i3, i4, we have made a choice that minimizes i2 − i1. Because σ avoids 3241, i2 ≥ i1 + 2. Our
choice of i1, i2, i3, i4 guarantees that σi1+1 < σi3 . One can check that the minimality of i2 − i1 forces
σi1+1 < σi4 . However, this means that the standardization of σi1+1σi2σi3σi4 is 1342, contradicting our
assumption that σ avoids 1342. This shows that s(σ) avoids 231, so it must contain 132.

One can show [21, 29] that a permutation is in s−1(Av(132)) if and only if it avoids the pattern 1342
and avoids any 3142 pattern that is not part of either a 34152 pattern or a 35142 pattern. Since we are
assuming that s(σ) contains 132 and that σ avoids 1342, σ must contain a 3142 pattern that is not part
of either a 34152 pattern or a 35142 pattern. This means that there are indices i1 < i2 < i3 < i4 such
that σi2 < σi4 < σi1 < σi3 and such that no entry lying between σi1 and σi2 is larger than σi1 . We may
assume that among all such choices for i1, i2, i3, i4, we have made a choice that minimizes i2−i1. In fact,
one can show that this minimality assumption forces i2 − i1 = 1. Hence, σi1σi2σi3σi4 is an occurrence
of the vincular pattern 3142 in σ.

In the following proof, we recycle our notation from the proof of Theorem 3.1 in Section 3. This is
meant to elucidate the parallels between the proofs.

Proof of Theorem 4.1: The first and second equalities in Theorem 4.1 were proven in [29] and [26],
respectively, so we need only prove the last equality. Let

D`(n) = {π ∈ Avn+`(132, 231) : tl(π) = `} and D≥`(n) = {π ∈ Avn+`(132, 231) : tl(π) ≥ `}.

Let B`(n) = |s−1(D`(n))| and B≥`(n) = |s−1(D≥`(n))|.
Suppose n ≥ 1 and π ∈ D`(n + 1) (see Figure 3). Using the fact that π avoids 132 and 231 and

has tail length ` < n + ` + 1, we easily find that π1 = n + 1 and that 1 is a tail-bound descent of π.
The Decomposition Lemma tells us that |s−1(π)| is equal to the number of triples (H,µ, λ), where H ∈
SW1(π), µ ∈ s−1(πHU ), and λ ∈ s−1(πHS ). Choosing H amounts to choosing the number j ∈ {1, . . . , `}
such that the northeast endpoint of H is (n + 1 + j, n + 1 + j). The permutation π and the choice of
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H determine the permutations πHU and πHS . On the other hand, the choices of H and the permutations
πHU and πHS uniquely determine π. It follows that B`(n + 1), which is the number of ways to choose an
element of s−1(D`(n + 1)), is also the number of ways to choose j, the permutations πHU and πHS , and
the permutations µ and λ. Let us fix a choice of j.

Fig. 3: An example of a permutation π ∈ D5(9) and a hook H with j = 2 (in the notation of the proof of
Theorem 4.1).

The permutation πHU must be the increasing permutation (n+ 1)(n+ 2 + j) · · · (n+ `+ 1) of length
`− j+1. By Theorem 1.1, there are C`−j+1 choices for µ. Now, πHS is a permutation of the (n+ j− 1)-
element set {1, . . . , n+ j} \ {n+ 1}, so choosing πHS is equivalent to choosing its standardization. This
standardization is in D≥j−1(n). Any element of D≥j−1(n) can be chosen as the standardization of πHS .
Also, πHS has the same fertility as its standardization. Combining these facts, we find that the number of
choices for πHS and λ is |s−1(D≥j−1(n))| = B≥j−1(n). We obtain the recurrence relation

B`(n+ 1) =
∑̀
j=1

C`−j+1B≥j−1(n) for n ≥ 1. (7)

Let
G`(x) =

∑
n≥0

B≥`(n)x
n and I(x, y) =

∑
`≥0

G`(x)y
`.

Note that
G`(0) = B≥`(0) = |s−1(123 · · · `)| = C`

by Theorem 1.1. Let C(x) =
∑
n≥0 Cnx

n =
1−
√
1− 4x

2x
be the generating function of the sequence

of Catalan numbers. Since B≥0(n) = |s−1(Avn(132, 231))|, our goal is to understand the generating
function

I(x, 0)− 1 = G0(x)− 1 =
∑
n≥0

B≥0(n)x
n − 1 =

∑
n≥1

|s−1(Avn(132, 231))|xn.
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Note that B`(1) = 0 because there are no permutations of length ` + 1 with tail length `. Therefore,
the recurrence (7) tells us that

∑
n≥0

B`(n+1)xn =
∑
n≥1

B`(n+1)xn =
∑̀
j=1

C`−j+1

∑
n≥1

B≥j−1(n)x
n =

∑̀
j=1

C`−j+1(Gj−1(x)−Cj−1).

Consequently,

∑
`≥0

∑
n≥0

B`(n+ 1)xny` =
∑
`≥0

∑̀
j=1

C`−j+1(Gj−1(x)− Cj−1)y` = (C(y)− 1)(I(x, y)− C(y)). (8)

On the other hand,∑
`≥0

∑
n≥0

B`(n+ 1)xny` =
∑
`≥0

∑
n≥0

B≥`(n+ 1)xny` −
∑
`≥0

∑
n≥0

B≥`+1(n)x
ny`

=
1

x

∑
`≥0

(G`(x)− C`)y` −
1

y

∑
`≥0

G`+1(x)y
`+1 =

I(x, y)− C(y)
x

− I(x, y)− I(x, 0)
y

. (9)

Combining (8) and (9) and rearranging terms, we get the equation

I(x, y)(xy(C(y)− 1)− y + x) = −yC(y) + xI(x, 0) + xyC(y)(C(y)− 1). (10)

As in the previous section, we use the kernel method. Let

Y = Y (x) =
3x+ 2x2 − x

√
1− 4x− 4x2

2(1 + x)2
.

After verifying that xY (C(Y )− 1)− Y + x = 0, we use (10) to find that

I(x, 0)− 1 = −1 + 1

x
(Y C(Y ))− xY C(Y )(C(Y )− 1).

After some elementary algebraic manipulations, this expression simplifies to the generating function

1− 2x−
√
1− 4x− 4x2

4x
,

as desired.

Remark 4.1. Now that we have determined I(x, 0), one could use (10) to find the bivariate generating
function I(x, y), which counts the permutations in the set

s−1(Av(132, 231)) = Av(2341, 1342, 3241, 3142)

according to length and an additional statistic.
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5 Counting s−1(Avn,k(231, 312, 321))

A composition of b into a parts is an a-tuple of positive integers that sum to b. Let Compa(b) denote
the set of all compositions of b into a parts. There is a natural partial order � on Compa(b) defined
by declaring that (x1, . . . , xa) � (y1, . . . , ya) if

∑`
i=1 xi ≤

∑`
i=1 yi for all ` ∈ {1, . . . , a}. For x =

(x1, . . . , xa) ∈ Compa(b), let

Dx = |{y ∈ Compa(b) : y � x}|.

Let ψ(x) be the partition (composition with nonincreasing parts) that has xi − 1 parts of size a− i for all
i ∈ {1, . . . , a − 1} (and has no parts of size at least a). The quantity Dx can also be interpreted as the
number of partitions whose Young diagrams fit inside the Young diagram of ψ(x). Said differently, Dx

is the size of the order ideal in Young’s lattice generated by ψ(x) (see [29] for more details). Let us write
Cx =

∏a
t=1 Cxt , where Cj is the jth Catalan number. Put together, Theorems 6.1 and 6.2 in [29] state

that

|s−1(Avn(231, 312, 321))| =
n−1∑
k=0

1

n+ 1

(
n− k − 1

k

)(
2n− 2k

n

)
=

n−1∑
k=0

∑
q∈Compk+1(n−k)

CqDq.

(11)
From this equation, it is natural to conjecture that∑

q ∈Compk+1(n−k)

CqDq =
1

n+ 1

(
n− k − 1

k

)(
2n− 2k

n

)
(12)

for all nonnegative integers n and k; this is the content of Conjecture 6.1 in [29]. In that article, the current
author showed that this conjecture is equivalent to the following theorem. Let des(π) denote the number
of descents of a permutation π.

Theorem 5.1. For all n ≥ 1 and k ≥ 0, we have

|s−1(Avn,k(231, 312, 321))| =
1

n+ 1

(
n− k − 1

k

)(
2n− 2k

n

)
,

where Avn,k(231, 312, 321) = {π ∈ Avn(231, 312, 321) : des(π) = k}.
In this section, we use the Decomposition Lemma to prove this theorem, thereby settling the aforemen-

tioned conjecture. Our result implies the first equality in (11), so the proof given in this section yields a
completely new proof of Theorem 6.2 from [29] (see that article for more details).

Proof Proof of Theorem 5.1: Let

D`(n, k) = {π ∈ Avn+`,k(231, 312, 321) : tl(π) = `}

and
D≥`(n, k) = {π ∈ Avn+`,k(231, 312, 321) : tl(π) ≥ `}.

Let B`(n, k) = |s−1(D`(n, k))| and B≥`(n, k) = |s−1(D≥`(n, k))|.
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Suppose n ≥ 0 and π ∈ D`(n + 1, k) (see Figure 4). Using the fact that π avoids 312 and 321, we
easily find that πn = n+ 1. Because π avoids 231, we must have πn+1 = n. Note that n is a tail-bound
descent of π. The Decomposition Lemma tells us that |s−1(π)| is equal to the number of triples (H,µ, λ),
where H ∈ SWn(π), µ ∈ s−1(πHU ), and λ ∈ s−1(πHS ). Choosing H amounts to choosing the number
j ∈ {1, . . . , `} such that the northeast endpoint of H is (n + 1 + j, n + 1 + j). Let us fix such a j. The
permutation πHS = n(n+ 2)(n+ 3) · · · (n+ j) is an increasing permutation of length j. Therefore, there
are Cj choices for λ by Theorem 1.1.

Fig. 4: An example of a permutation π ∈ D5(9, 3) and a hook H with j = 2 (in the notation of the proof
of Theorem 4.1).

Now, πHU is a permutation of the set {1, . . . , n− 1}∪ {n+1}∪ {n+ j+2, . . . , n+ `+1}, which has
n + ` − j elements. Therefore, choosing πHU is equivalent to choosing its standardization. The descents
of πHU are simply the descents of π other than n, so des(πHU ) = des(π) − 1 = k − 1. It follows that the
standardization of πHU is in D≥`−j+1(n − 1, k − 1). Any permutation in D≥`−j+1(n − 1, k − 1) can be
chosen as the standardization of πHU . Since πHU has the same fertility as its standardization, the number
of choices for πHU and µ is |s−1(D≥`−j+1(n − 1, k − 1))| = B≥`−j+1(n − 1, k − 1). We obtain the
recurrence relation

B`(n+ 1, k) =
∑̀
j=1

B≥`−j+1(n− 1, k − 1)Cj . (13)

Let

G`,k(x) =
∑
n≥0

B≥`(n, k)x
n, Ik(x, y) =

∑
`≥0

G`,k(x)y
`, and J(x, y, z) =

∑
k≥0

Ik(x, y)z
k.

Note that
G`,k(0) = B≥`(0, k) = |s−1(D≥`(0, k))| = δk0C`,
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where δk0 is the Kronecker delta. Let C(x) =
∑
n≥0 Cnx

n =
1−
√
1− 4x

2x
. Because B≥0(n, k) =

|s−1(Avn,k(231, 312, 321))|, our goal is to understand the generating function

J(x, 0, z) =
∑
n≥0

∑
k≥0

B≥0(n, k)x
nzk =

∑
n≥0

∑
k≥0

|s−1(Avn,k(231, 312, 321))|xnzk.

The recurrence (13) is equivalent to

∑
n≥0

B`(n+ 1, k)xn = x
∑̀
j=1

G`−j+1,k−1(x)Cj ,

so∑
`≥0

∑
n≥0

B`(n+ 1, k)xny` = x
∑
`≥0

∑̀
j=1

G`−j+1,k−1(x)Cjy
` = x

C(y)− 1

y
(Ik−1(x, y)− Ik−1(x, 0)).

(14)
On the other hand,∑

`≥0

∑
n≥0

B`(n+ 1, k)xny` =
∑
`≥0

∑
n≥0

B≥`(n+ 1, k)xny` −
∑
`≥0

∑
n≥0

B≥`+1(n, k)x
ny`

=
1

x

∑
`≥0

(G`,k(x)−G`,k(0))y` −
1

y

∑
`≥0

G`+1,k(x)y
`+1 =

Ik(x, y)− δk0C(y)
x

− Ik(x, y)− Ik(x, 0)
y

.

(15)
Combining (14) and (15) yields the equation

x
C(y)− 1

y
(Ik−1(x, y)− Ik−1(x, 0)) =

Ik(x, y)− δk0C(y)
x

− Ik(x, y)− Ik(x, 0)
y

. (16)

If we multiply both sides of (16) by zk and sum over k ≥ 0, we obtain

xz
C(y)− 1

y
(J(x, y, z)− J(x, 0, z)) = J(x, y, z)− C(y)

x
− J(x, y, z)− J(x, 0, z)

y
.

We can rewrite this equation as

1

y
(J(x, y, z)− J(x, 0, z))(x2z(C(y)− 1) + x− y) = J(x, 0, z)− C(y). (17)

As in the previous two sections, we use the kernel method to find the generating function J(x, 0, z).
There is a unique power series Y = Y (x, z) such that C(Y (x, z)) = x+ 2x2 +O(x3) and x2z(C(Y )−
1) + x− Y = 0. Substituting this into (17) shows that J(x, 0, z) = C(Y ). Let Ĵ(x, z) = xJ(x, 0, z) =
xC(Y ). Using the Catalan functional equation Y C(Y )2 + 1− C(Y ) = 0, we obtain

Ĵ(x, z)− Ĵ(x, z)2

1− zĴ(x, z)2
= x

(
C(Y )− xC(Y )2

1− x2zC(Y )2

)
= x

(
C(Y )−

xC(Y )−1
Y

1− x2zC(Y )−1
Y

)
. (18)
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We now use the fact that x2z(C(Y )− 1) + x− Y = 0 to see that

C(Y )−
xC(Y )−1

Y

1− x2zC(Y )−1
Y

= 1 +
Y − x
x2z

−
x Y−xx2zY

1− x2z Y−xx2zY

= 1.

Substituting this into (18) shows that

Ĵ(x, z) = x+
Ĵ(x, z)2

1− zĴ(x, z)2
.

By Lagrange inversion,

Ĵ(x, z) = x+
∑
m≥0

1

(m+ 1)!

∂m

∂xm

(
x2

1− zx2

)m+1

= x+
∑
m≥0

1

(m+ 1)!

∂m

∂xm

∑
k≥0

(
k +m

k

)
x2m+2k+2zk

= x+
∑
m≥0

1

m+ 1

∑
k≥0

(
k +m

k

)(
2m+ 2k + 2

m+ 2k + 2

)
xm+2k+2zk

= x+ x
∑
k≥0

∑
n≥2k+1

1

n+ 1

(
n− k − 1

k

)(
2n− 2k

n

)
xnzk,

as desired.

6 Further Directions
The proofs of our three main theorems relied on the Decomposition Lemma, which was proven in [24].
That article actually obtained this useful tool as a corollary of a more general result, called the “Refined
Decomposition Lemma,” which allows one to count stack-sorting preimages of permutations according to
the additional statistics des and peak (for π = π1 · · ·πn, peak(π) is the number of indices i ∈ {2, . . . , n−
1} such that πi−1 < πi > πi+1). It could be interesting to generalize Theorems 3.1, 4.1, and 5.1 by
counting the relevant preimage sets according to the statistics des and peak. One could also attempt to
generalize these results to the context of “troupes,” which are special families of colored binary plane trees
for which a version of the Decomposition Lemma holds (see [30] for more details). Of course, one could
also search for other interesting sets of permutations whose stack-sorting preimages can be enumerated
via the Decomposition Lemma.

The results in Sections 3 and 4 complete the enumerations of all sets of the form
s−1(Av(τ (1), . . . , τ (r))) for {τ (1), . . . , τ (r)} ⊆ S3 except the set {321}. There are currently no non-
trivial results that enumerate sets of this form when one or more of the patterns τ (i) has length at least
4. Obtaining such results would be a natural next step. It would be especially interesting to solve this
enumerative problem using valid hook configurations (as in [29]) or the Decomposition Lemma in the
cases in which the sets s−1(Av(τ (1), . . . , τ (r))) have some natural alternative descriptions (i.e., if they



18 Colin Defant

are characterized as the permutations avoiding some collection of patterns or vincular patterns). It is
shown in [26] that∑

n≥1

|s−1(Avn(132, 3412))|xn =
∑
n≥1

|s−1(Avn(231, 1423))|xn =
∑
n≥1

|s−1(Avn(312, 1342))|xn.

Thus, it is natural to consider the specific problem of computing the generating function∑
n≥1

|s−1(Avn(132, 3412))|xn.
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[21] A. Claesson and H. Úlfarsson, Sorting and preimages of pattern classes. DMTCS proc., AR (2012),
595–606.

[22] R. Cori, B. Jacquard, and G. Schaeffer, Description trees for some families of planar maps, Proceed-
ings of the 9th FPSAC, (1997).

[23] C. Defant, Catalan intervals and uniquely sorted permutations. J. Combin. Theory Ser. A, 174 (2020).

[24] C. Defant, Counting 3-stack-sortable permutations. J. Combin. Theory Ser. A, 172 (2020).

[25] C. Defant, Fertility monotonicity and average complexity of the stack-sorting map. European J.
Combin., 93 (2021).

[26] C. Defant, Fertility, strong fertility, and postorder Wilf equivalence. Australas. J. Combin., 76 (2020),
146–182.

[27] C. Defant, Postorder preimages. Discrete Math. Theor. Comput. Sci., 19 (2017).

[28] C. Defant, Preimages under the stack-sorting algorithm. Graphs Combin., 33 (2017), 103–122.

[29] C. Defant, Stack-sorting preimages of permutation classes. Sém. Lothar. Combin., 82B (2020).

[30] C. Defant, Troupes, cumulants, and stack-sorting. arXiv:2004.11367.



20 Colin Defant

[31] C. Defant, M. Engen, and J. A. Miller, Stack-sorting, set partitions, and Lassalle’s sequence. J.
Combin. Theory Ser. A, 175 (2020).

[32] S. Dulucq, S. Gire, and O. Guibert, A combinatorial proof of J. West’s conjecture. Discrete Math.,
187 (1998), 71–96.

[33] S. Dulucq, S. Gire, and J. West, Permutations with forbidden subsequences and nonseparable planar
maps. Discrete Math., 153.1 (1996), 85–103.

[34] W. Fang, Fighting fish and two-stack-sortable permutations. Sém. Lothar. Combin., 80B (2018).

[35] I. Goulden and J. West, Raney paths and a combinatorial relationship between rooted nonseparable
planar maps and two-stack-sortable permutations, J. Combin. Theory Ser. A, 75 (1996), 220–242.

[36] C. Hossain, Quotients derived from posets in algebraic and topological combinatorics. Ph.D. thesis,
N.C. State, 2019.

[37] C. Hossain. Private communication (2018).

[38] D. E. Knuth, The Art of Computer Programming, volume 1, Fundamental Algorithms. Addison-
Wesley, Reading, Massachusetts, 1973.

[39] T. Mansour, H. Skogman, and R. Smith, Passing through a stack k times with reversals. European J.
Combin., 81 (2019), 309–327.

[40] H. Mularczyk, Lattice paths and pattern-avoiding uniquely sorted permutations. arXiv:1908.04025.

[41] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2019.

[42] H. Prodinger, The kernel method: a collection of examples. Sém. Lothar. Combin., 19 (2003).

[43] M. Singhal, Unimodality of a refinement of Lassalle’s sequence. arXiv:2008.08222.

[44] R. Smith and V. Vatter, A stack and a pop stack in series. Australas. J. Combin., 58 (2014), 157–171.

[45] E. Steingrı́msson, Generalized permutation patterns — a short survey. In Permutation Patterns
(2010), S. Linton, N. Rus̆kuc, and V. Vatter (eds.), vol. 376 of London Math. Soc. Lecture Note
Ser., 137–152.
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