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Let λ be a partition with no more than n parts. Let β be a weakly increasing n-tuple with entries from {1, ..., n}. The
flagged Schur function in the variables x1, ..., xn that is indexed by λ and β has been defined to be the sum of the
content weight monomials for the semistandard Young tableaux of shape λ whose values are row-wise bounded by
the entries of β. Gessel and Viennot gave a determinant expression for the flagged Schur function indexed by λ and
β; this could be done since the pair (λ, β) satisfied their “nonpermutable” condition for the sequence of terminals of
an n-tuple of lattice paths that they used to model the tableaux. We generalize flagged Schur functions by dropping
the requirement that β be weakly increasing. Then for each λ we give a condition on the entries of β for the pair
(λ, β) to be nonpermutable that is both necessary and sufficient. When the parts of λ are not distinct there will be
multiple row bound n-tuples β that will produce the same set of tableaux. We accordingly group the bounding β
into equivalence classes and identify the most efficient β in each class for the determinant computation. We recently
showed that many other sets of objects that are indexed by n and λ are enumerated by the number of these efficient
n-tuples. We called these counts “parabolic Catalan numbers”. It is noted that the GL(n) Demazure characters (key
polynomials) indexed by 312-avoiding permutations can also be expressed with these determinants.

Keywords: flagged Schur function, Gessel-Viennot method, Jacobi-Trudi identity, nonintersecting lattice paths,
parabolic Catalan number
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1 Introduction
Fix n ≥ 0 and integers λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0 throughout. The Schur function sλ(x) in the variables
x1, ..., xn can be defined as the sum of the content weight monomial xθ(T ) over all semistandard tableaux
T of shape λ with values from {1, 2, ..., n} =: [n]. To generalize Schur functions, fix a “flag” of integers
0 ≤ β1 ≤ β2 ≤ ... ≤ βn. Define Sλ(β) to be the set of all such tableaux whose values in the ith rows of
their (English) shapes do not exceed the row bound βi for i ∈ [n]. The flagged Schur function sλ(β;x)
has been defined to be the multivariate generating function for the row bounded tableaux T in Sλ(β) using
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the weight xθ(T ). The set Sλ(β) is nonempty if and only if the row bound n-tuple β has βi ≥ i for i ∈ [n];
henceforth we assume that all row bound n-tuples β satisfy this “upper” condition.

Gessel and Viennot considered n-tuples of nonintersecting lattice paths in [GV]. They could express a
generating function for these n-tuples with a determinant via a cancellation argument, provided that the
n-tuples of the terminals for the lattice paths satisfied their “nonpermutable” condition. The Jacobi-Trudi
identity expresses the Schur function sλ(x) as a determinant whose entries are homogeneous symmetric
functions. In his books [St1] [St2], Stanley presented a Gessel-Viennot proof of the Jacobi-Trudi iden-
tity for sλ(x1, x2, ...). That proof converts the n-tuples of nonintersecting lattice paths to semistandard
tableaux. It more generally can produce a determinant expression for a skew flagged Schur function
sλ/µ(β;x), since it is noted that the flag condition on the row bounds β is sufficient for the satisfaction of
the nonpermutable condition for any given λ and µ. The Gessel-Viennot method is still often used [BRT]
[MPP] [MS] [Oka] to express the generating functions or the cardinalities for tableau sets of this nature.

While limiting our attention to nonskew tableaux, we de-emphasize the flag condition and more gener-
ally consider all upper row bounds β when forming the sets Sλ(β). We continue to denote the correspond-
ing generating functions by sλ(β;x). In this more general context, can the Gessel-Viennot method still be
employed to express sλ(β;x) with a determinant? Our main result, Theorem 4.1, presents λ-dependent
conditions on the general upper n-tuples β that are necessary as well as sufficient for the corresponding
λ-dependent n-tuples of lattice path terminals to be nonpermutable. We then make some remarks on the
“row bound sums” sλ(β;x) for general β and on the computation of these sums with Gessel-Viennot
determinants.

This paper is the third in a series of papers on key polynomials (which are the Demazure polynomials,
or Demazure characters of type A) and flagged Schur functions. Each of the themes running through these
papers is of more interest to us than any one of the results is by itself.

For i ∈ [n], the shape λ has λi boxes in its ith row. The parts of λ form a strictly decreasing sequence
if and only if every one of the possible column lengths 1, 2, ..., n− 1 less than n is present in the shape of
λ. It seems that the phenomena that arise when λ is not strict may have received relatively little attention
in the studies of Demazure polynomials and of flagged Schur functions. For example, when λ is not
strict the Demazure polynomials are precisely indexed by the multipermutations for the quotient W J of
the symmetric group Sn, and not by the permutations in Sn. Many of the phenomena considered in
these papers are trivial or vacuous when λ is strict. For example, there exist upper n-tuples β′ 6= β with
Sλ(β′) = Sλ(β) exactly when λ is not strict. Let Rλ be the set of column lengths less than n that appear
in the shape λ. The central objects in this series of papers are n-tuples with entries from [n] which have
been equipped with dividers that are placed in locations between their entries which are indexed by the
elements of Rλ. In these papers we introduce several properties which may be possessed by such “Rλ-
tuples”. In [PW2] we defined the Rλ-parabolic Catalan number to be the number of “λ-312-avoiding
Rλ-permutations”. The most interesting special kinds of Rλ-tuples are those which are also enumerated
by the Rλ-parabolic Catalan numbers. These include the most important of the Rλ-tuples that arise from
the considerations in this paper, the “gapless” Rλ-tuples. It is striking that the gapless Rλ-tuples had
already arisen in [PW2] and [PW3] for different considerations in each of those two papers. The gapless
Rλ-tuples appear to be fundamental new combinatorial quantities.

In this area, how reliably does an equality for two generating functions predict equality for their under-
lying sets of tableaux? Reiner and Shimozono [RS] and then Postnikov and Stanley [PS] obtained results
concerning the possible equalities between Demazure polynomials dλ(π;x) and flagged Schur functions
sλ(β;x). In [PW3] we built upon their work by showing that when dλ(π;x) = sλ(β;x) then the equality
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Dλ(π) = Sλ(β) for the underlying tableau sets also holds: in other words, we ruled out any “accidental”
equalities of the form dλ(π;x) = sλ(β;x) with Dλ(π) 6= Sλ(β). Care must be taken to avoid mis-
characterizing our main result, Theorem 4.1. While it states sharp necessary conditions that are needed
to be able to justifiably apply the Gessel-Viennot method to express the row bound sum sλ(β;x) with
the Gessel-Viennot determinant polynomial (denoted gvλ(β;x)), it is conceivable that such an equality
could nonetheless “accidentally hold” while those conditions are not being satisfied. We define two upper
Rλ-tuples β and β′ to be equivalent when Sλ(β) = Sλ(β′). Then sλ(β;x) = sλ(β′;x). It is conceivable
that accidental equalities of the form sλ(β;x) = sλ(β′;x) while Sλ(β) 6= Sλ(β′) could exist.

As we consider various kinds of upper Rλ-tuples β, we study the applicability and the efficiency of
the Gessel-Viennot method for expressing the general row bound sum polynomials sλ(β;x) with deter-
minants. The following overview of our conclusions is organized with an outlined hierarchy of kinds
of upper Rλ-tuples. Some readers may wish to defer reading this technical summary until their second
reading of this introduction, and some readers may prefer to read the items in the order I, II, A, B, (1), (2),
(3).
I. When β is a “gapless core”Rλ-tuple, then there exists a flag ϕ that is equivalent to it. So the polynomial
sλ(β;x) arises as an already-known flagged Schur function sλ(ϕ;x) and thus it is equal to the Gessel-
Viennot determinant gvλ(ϕ;x). However, the determinant expression gvλ(β;x) for sλ(β;x) will often
have fewer total monomials among its entries than gvλ(ϕ;x); see for example Proposition 9.4.

A. When β is additionally a “bounded platform” Rλ-tuple, then the nonpermutable condition will be
satisfied. This is the sufficient direction of our main result, Theorem 4.1. Here the Gessel-Viennot method
can be immediately applied to express sλ(β;x) as the determinant gvλ(β;x), as is stated in Corollary 4.2.

(1) When β is also a flag, then the sum sλ(β;x) is a flagged Schur function from the outset. But a
flag β is probably not as efficient for the purposes of determinant evaluation as some equivalent gapless
core bounded platform Rλ-tuple β′ would be.

(2) In fact, for efficient evaluation of the Gessel-Viennot determinant, the best possible Rλ-tuples are
the gapless Rλ-tuples. See Proposition 9.4.

(3) The two “gapless” and “flag” criteria are independent for bounded platform gapless core Rλ-
tuples: either, both, or neither may be possessed.

B. When β is not a bounded platform Rλ-tuple, then the nonpermutable condition will not be satisfied.
This is the necessary direction of Theorem 4.1. But this gapless core β can nonetheless be “pre-processed”
to produce an equivalent β′ to which the Gessel-Viennot method can be applied. See Corollary 4.3. When
β is a gapless core Rλ-tuple, Corollary 9.3 describes all gapless core bounded platform Rλ-tuples β′ for
which sλ(β;x) = gvλ(β′;x).
II. When β is not a gapless core Rλ-tuple, then sλ(β;x) cannot arise as a flagged Schur function. In
Section 8 the necessary direction of Theorem 4.1 will be used to remark that there are no Rλ-tuples β′

equivalent to such a β for which the nonpermutable condition is satisfied.
Both in [PW3] and in this paper we have found some “nice” properties that are possessed by the flagged

Schur functions which do not hold (or which have not been obtained by us) for the row bound sums
sλ(β;x) that arise from non-gapless coreRλ-tuples. See the last paragraph of Section 8. Problem 8.2 asks
if a row bound sum sλ(β;x) for an upperRλ-tuple β that is not a gapless coreRλ-tuple can “accidentally”
be equal to a Gessel-Viennot determinant.

Corollary 9.5 describes a potential application to determinant enumerations: If two seemingly unrelated
sets of combinatorial objects are each enumerated with determinants of binomial coefficients and many
test evaluations of them agree, this corollary provides an alternative to row and column operations for
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proving that the determinants are equal in general.
We conclude by indicating where this material is situated and how we were led to the considerations that

crystallized into our main result. Demazure characters arose in 1974 when Demazure introduced certain
B-modules while studying singularities of Schubert varieties in theG/B flag manifolds. ForG = GL(n),
a Demazure polynomial dλ(π;x) can be expressed as the sum of the weight monomial xθ(T ) over a certain
set Dλ(π) of semistandard tableaux of shape λ. Flagged Schur functions arose in 1982 when Lascoux and
Schützenberger were studying Schubert polynomials for the flag manifold GL(n)/B. Seeking a deeper
understanding of the results in [RS] and [PS] that related the polynomials dλ(π;x) and sλ(β;x) to each
other led us to the studies described in this three paper series. Set N := λ1 + λ2 + ... + λn. Our main
result in [PW2], Corollary 7.2, stated that the set Dλ(π) of “Demazure tableaux” is convex in ZN if and
only if the Rλ-permutation π is λ-312-avoiding. Both directions of that result were used in [PW3] as
we sharpened, extended, and deepened the results of [RS] and [PS]. The proof of Corollary 10.4(i) of
[PW3] used the main result of [PW2]. When β has the gapless core property, this corollary ruled out the
accidental equalities sλ(β;x) = sλ(β′;x) with Sλ(β) 6= Sλ(β′). Corollary 10.4(i) is restated here as Fact
8.1, for use in the proof of Corollary 9.3. When combined, Corollary 9.2 of [PW2] and Theorem 13.1 of
[PW3] list nearly a dozen kinds ofRλ-tuples and phenomena that are counted by theRλ-parabolic Catalan
numbers. The ruling out of the accidental equalities just mentioned together with the connection between
flagged Schur functions and Demazure polynomials led to the enumeration of the distinct flagged Schur
polynomials that is listed as Part (iv) of Theorem 13.1. The last item in these lists, Part (vi) of Theorem
13.1 of [PW3], refers to the enumeration in Corollary 9.6 below. Being aware that interesting phenomena
arise for the row bound sums sλ(β;x) when λ is not strict and being familiar with gapless Rλ-tuples and
the Rλ-ceiling map from [PW2] and [PW3] enabled us to recognize the necessity of the conditions in
Theorem 4.1, and then to see that these conditions extended the realm of sufficiency from flags alone.

Routine definitions appear in Section 2 and advanced definitions appear in Section 5. Our main results
are stated in Section 4, after our set-up of the Gessel-Viennot mechanics has been presented in Section
3. Sections 6 and 7 contain the proofs of our main results. Sections 8 and 9 consider equivalences for
the row bounds β, two kinds of accidental equalities, and efficiency for the Gessel-Viennot determinants.
Section 10 presents an application to representation theory and algebraic geometry; there we improve a
determinant expression for some Demazure polynomials that appeared in [PS].

2 Elementary n-tuples and shapes, tableaux, polynomials
Fix n ≥ 1 throughout the paper. Let i, k ≥ 0. Define (i, k] := {i+ 1, i+ 2, ..., k} and [k] := {1, 2, ..., k}
and so on. Lower case Greek letters indicate tuples of non-negative integers; their entries are denoted
with the same letter. Other than ζ, all of these tuples are n-tuples. An nn-tuple ν has n entries νi ∈ [n]
indexed by n indices i ∈ [n]. Let P (n) denote the poset of nn-tuples ordered by entrywise comparison.
An nn-tuple ϕ is a flag if ϕ1 ≤ . . . ≤ ϕn. An upper tuple is an nn-tuple β such that βi ≥ i for i ∈ [n].

Fix R ⊆ [n − 1]. Set r := |R|. When R 6= ∅ denote the elements of R by q1 < . . . < qr. Two
numbers not in R are q0 := 0 and qr+1 := n. We use the qh for h ∈ [r] to specify the locations
of r “dividers” within nn-tuples: Let ν be an nn-tuple. On the graph of ν in the first quadrant draw
vertical lines at x = qh + ε for h ∈ [r] and some small ε > 0. These r lines separate the r + 1
carrels (qh−1, qh] of ν for h ∈ [r + 1]. An R-tuple is an nn-tuple that has been equipped with these
r dividers. For h ∈ [r + 1] the hth carrel contains qh − qh−1 indices. Fix an R-tuple ν; we portray
it by (ν1, ..., νq1 | νq1+1, ..., νq2 | ... | νqr+1, ..., νn). When n = 9 and R = {3, 8}, the dots in Figure
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5.1 display ν := (2, 7, 5 | 8, 6, 6, 9, 9 | 9). Let UR(n) denote the subposet of P (n) consisting of upper
R-tuples. An upper R-flag is an upper flag regarded as an R-tuple. Let UFR(n) ⊆ UR(n) denote the set
of upper R-flags. An R-increasing tuple is an R-tuple α such that αqh−1+1 < ... < αqh for h ∈ [r + 1].
An example is given by δ in Table 6.1. Let UIR(n) ⊆ UR(n) denote the set of R-increasing upper tuples.
More kinds ofR-tuples will be introduced in Sections 5 and 9; the Table 4.1 directory lists the six essential
kinds.

A partition is an n-tuple λ ∈ Zn such that λ1 ≥ . . . ≥ λn ≥ 0. Fix a partition λ throughout. The shape
of λ, also denoted λ, consists of n left justified rows with λ1, . . . , λn boxes. We denote its column lengths
by ζ1 ≥ . . . ≥ ζλ1

. Since the columns were more important than the rows in [PW2] and [PW3], the boxes
of λ are transpose-indexed by pairs (j, i) such that 1 ≤ j ≤ λ1 and 1 ≤ i ≤ ζj . Define Rλ ⊆ [n − 1] to
be the set of distinct column lengths of λ that are less than n. Taking R := Rλ, note that for h ∈ [r + 1]
one has λi = λi′ when i and i′ are in the hth carrel (qh−1, qh] specified by R. Here the number of rows
in the shape of λ that have length λqh is qh − qh−1. For h ∈ [r] the coordinates of the boxes in the hth

cliff of the shape λ form the set {(λi, i) : i ∈ (qh−1, qh]}. To reduce clutter, we replace ‘Rλ’ by ‘λ’ in
subscripts and in prefixes when we are using R := Rλ for the notions above.

A (semistandard) tableau of shape λ is a filling of λ with values from [n] that strictly increase from
north to south within a column and weakly increase from west to east within a row. See Fig. 6.1. Let Tλ
denote the set of tableaux of shape λ. Fix T ∈ Tλ. For j ∈ [λ1], we denote the one column “subtableau”
formed by the jth column by Tj . Here for i ∈ [ζj ] the tableau value in the ith row is denoted Tj(i). To
define the content Θ(T ) := θ of T , for i ∈ [n] take θi to be the number of values in T equal to i. Let
x1, . . . , xn be indeterminants. The monomial xΘ(T ) of T is xθ11 . . . xθnn .

Let β be a λ-tuple. We define the row bound set of tableaux to be Sλ(β) := {T ∈ Tλ : Tj(i) ≤
βi for j ∈ [λ1] and i ∈ [ζj ]}. As in Section 8 of [PW3], it can be seen that Sλ(β) is nonempty if and
only if β ∈ Uλ(n). Fix β ∈ Uλ(n). In [PW3] we introduced the row bound sum sλ(β;x) :=

∑
xΘ(T ),

sum over T ∈ Sλ(β). For upper λ-flags ϕ ∈ UFλ(n) we more specifically refer to the flagged Schur
functions sλ(ϕ;x) as flag Schur polynomials. The “gapless core” Schur polynomials sλ(β;x) are defined
in Section 8.

3 Lattice paths and Gessel-Viennot determinant
We establish conventions and notations for constructions that are analogous to those presented in Section
2.7 of [St1] and Section 7.16 of [St2]. First we introduce n-tuples of weighted lattice paths to model the
tableaux in the row bound tableau set Sλ(β). To obtain a close visual correspondence with tableaux, we
first flip the x-y plane containing the lattice paths vertically so that its first quadrant is to the lower right
(southeast) of the origin on the page. Our transposed matrix coordinates for the boxes in shapes can then
be re-used to coordinatize the points in this first quadrant of Z×Z: Let j ≥ 0 and i ≥ 1. The lattice point
(j, i) is j units to the east of (0, 0) and i units to the south of (0, 0). For j ≥ 1, the directed line segment
from (j − 1, i) to (j, i) is an easterly step of depth i. Let l ≥ j and k ≥ i. A (lattice) path with source
(j, i) and sink (l, k) is a connected set incident to (j, i) and (l, k) that is the union of l − j easterly steps
and k − i southerly steps. The notation ... → (j, i) ↓ (j, k) → (l, k) ↓ ... indicates that an eastbound
path arrives at (j, i), turns right and proceeds south to (j, k), turns left and proceeds east to (l, k), and
then turns right and proceeds south. An n-path is an n-tuple (Λ1, ...,Λn) =: Λ of paths such that the
component path Λm has source (n−m,m) for m ∈ [n]. An n-path is disjoint if no two component paths
intersect.
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Let β ∈ P (n). The n points (λ1 +n−1, β1), (λ2 +n−2, β2), ..., (λn, βn) are terminals and (λ, β) is a
terminal pair. This “strictification” of λ ensures that the longitudes of the terminals are distinct. Initially
our n-paths (Λ1, ...,Λn) will use the terminals (λ1 + n − 1, β1), (λ2 + n − 2, β2), ..., (λn, βn) in this
order as sinks for their respective components. Given such an n-path Λ, as in the proof of Theorem 7.16.1
of [St2] we attempt to create a corresponding tableau T ∈ Sλ(β). Figure 3.1 presents an example for
this correspondence wherein n = 8 and λ = (6, 4, 4, 4, 4, 1, 0, 0) and β = (4, 7, 4, 6, 8, 7, 8, 8). For each
m ∈ [n] we record the weakly increasing depths of the successive easterly steps in the path Λm from left
to right in the boxes of the mth row of the shape λ: Here the easterly step in Λm from (n−m+ j − 1, p)
to (n−m+ j, p) is recorded as the value p in the box (j,m) for T . The last value in the mth row cannot
exceed βm. As is implicit in [St2], these values strictly increase down each column of λ if and only if
there are no intersections among the Λm for m ∈ [n]. (To see this, let i ∈ [qr − 1] and j ∈ [λi+1].
Set t := Tj(i) and suppose Tj(i + 1) = t + 1. Then the easterly steps for Tj(i) and Tj(i + 1) are
(n− i+ j − 1, t)→ (n− i+ j, t) and (n− i− 1 + j − 1, t+ 1)→ (n− i− 1 + j, t+ 1). So the “near
miss” for these tableau values translates to a “near miss” for the path edges.) Let LDλ(β) denote the set
of such n-paths that are disjoint. There is at least one such disjoint n-path if and only if β is upper. As is
claimed in [St2], this recording process can be seen to be bijective to the set Sλ(β). Since it will be seen
that the carrels and cliffs of λ play a crucial role, we now determine Rλ from λ and regard β as being a
λ-tuple. Summarizing:

Fact 3.1. We have LDλ(β) 6= ∅ if and only if β ∈ Uλ(n). For β ∈ Uλ(n), the recording process is a
bijection from the set of disjoint n-paths LDλ(β) to the row bound tableau set Sλ(β).

Figure 3.1. Converting a disjoint 8-path to a semistandard tableau.

To visualize the sequence (λ1 + n − 1, β1), (λ2 + n − 2, β2), ..., (λn, βn) of n terminals in the plane
(as in Figure 3.1), one rotates the graph of β (as in Figure 5.1) by 180◦ around the origin and then shifts
the ith dot by λi + n to the east.

Fix β ∈ Uλ(n). To obtain a determinant expression for sλ(β;x) we will need to consider more general
n-paths and introduce weights. Let Λ be an n-path with arbitrary sinks. Assigning a weight monomial
xΘ(Λ) to Λ in the following fashion emulates our assignment of the weight xΘ(T ) to a tableau T ∈ Tλ
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when Λ ∈ LDλ(β), and it also extends the weight rule to all n-paths. For m ∈ [n] assign the weight xi
to each easterly step of depth i in the path Λm and multiply these weights over its easterly steps. Then
also multiply the weights of the n component paths of Λ to produce a monomial, denoted xΘ(Λ). When
the sinks of Λ are the terminals from (λ, β) in their usual order, the multivariate generating function∑

Λ∈LDλ(β) x
Θ(Λ) is clearly our row bound sum sλ(β;x).

Let j, l ≥ 0, i, k ≥ 1, and set u := l− j. The complete homogeneous symmetric function hu(i, k;x) in
the variables xi, xi+1, ..., xk is defined when u < 0 by hu(i, k;x) := 0, and when u ≥ 0 by hu(i, k;x) :=∑
xt1 · · ·xtu , sum over i ≤ t1 ≤ ... ≤ tu ≤ k. (When i ≤ k and u = 0 conventions imply h0(i, k;x) =

1.) This is the sum of the weights that are assigned to just one path as it varies over all paths from (j, i) to
(l, k).

We next consider n-paths that use the same terminals, but in a permuted order, for their list of sinks.
Let π be a permutation of [n]. Let π.(λ, β) denote the list of terminals (λπ1

+ n− π1, βπ1
),

(λπ2 +n−π2, βπ2), ..., (λπn+n−πn, βπn). Let LDλ(β;π) denote the set of disjoint n-paths (Λ1, ...,Λn)
with respective sinks π.(λ, β). The terminal pair (λ, β) is nonpermutable [GV] if LDλ(β;π) is empty
when π is not the identity (1, 2, ..., n).

Here is our nonskew version of Theorem 2.7.1 of [St1]; as in Theorem 7.16.1 of [St2] we have replaced
the disjoint n-paths with the corresponding tableaux:

Proposition 3.2. Let β ∈ Uλ(n). If the terminal pair (λ, β) is nonpermutable, then the row bound sum
sλ(β;x) is given by the n× n determinant |hλj−j+i(i, βj ;x)|.
To produce this expression with Theorem 2.7.1 of [St1], use the remark above that expressed sλ(β;x) as
the LDλ(β) generating function and note that (λj + n− j)− (n− i) = λj − j + i. Theorem 2.7.1 was
proved with a signed involution pairing cancellation argument, as in [GV]. We refer to this argument as
the G-V method and to this determinant as the G-V determinant for β.

4 Main results
As noted in Table 4.1, the technical definitions of the notions of “gapless core” and “bounded by platform”
appearing in the results below are given in the next section. Our main result combines our Propositions
6.3 and 7.2:

Theorem 4.1. Let λ be a partition and let β be an upper λ-tuple. The terminal pair (λ, β) is nonper-
mutable if and only if β is a gapless core λ-tuple that is bounded by its platform.

Since we will note that the gapless core λ-tuples that are bounded by their platforms are the upper λ-
flags when λ is strict, in that case this theorem says that the upper λ-flags are the only upper λ-tuples
which produce nonpermutable terminal pairs. So in the strict λ case this theorem provides the converse to
Stanley’s parenthetical remark in Theorem 2.7.1 of [St1].

Under the circumstances of the theorem we can employ the G-V method from Proposition 3.2:

Corollary 4.2. Let λ be a partition and let β be an upper λ-tuple. If β is a gapless core λ-tuple that is
bounded by its platform, then sλ(β;x) = |hλj−j+i(i, βj ;x)|.
The converse to this result is open; see Problem 8.2(i) below.

If β is a gapless core λ-tuple that is not bounded by its platform, then the polynomial sλ(β;x) for such
a β can nonetheless be computed with a determinant. The map ∆λ used to convert β to δ for the following
result is also defined in the next section:
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Corollary 4.3. Let λ be a partition and let β be an upper λ-tuple. Set δ := ∆λ(β). If β is a gapless core
λ-tuple, then sλ(β;x) = |hλj−j+i(i, δj ;x)|.
The proof of this corollary is contained in the proof of the more general Corollary 9.3.

λ-Tuples and their sets Section defined Terminology
asdf

β ∈ Uλ(n) 2 upper λ-tuple
ϕ ∈ UFλ(n) 2 upper λ-flag
α ∈ UIλ(n) 2 λ-increasing upper tuple

γ ∈ UGλ(n) 5 gapless λ-tuple
η ∈ UGCλ(n) 5 gapless core λ-tuple
ξ ∈ UBPλ(n) 5 λ-tuple bounded by platform

Table 4.1. Kinds of upper Rλ-tuples

5 Advanced R-tuples
As in [PW2] and [PW3], we first distill the crucial information from an upper R-tuple β into a skeletal
“critical” substructure. Doing this was (and still is) motivated by the tableau considerations that are
presented in the last paragraph of this section. As we distill this information we define two functions from
UR(n) to UR(n). To preview, scanning an R-tuple β within each of its carrels from the right, an entry
of it will be a “critical entry” if it is either the rightmost entry in its carrel, or if it is smaller than the
closest critical entry to its right by an amount that exceeds its distance from that critical entry. Launching
a running example, take n := 9, R := {3, 8}, and β := (2, 7, 5 | 8, 6, 6, 9, 9 | 9). Here there are r+1 = 3
carrels; see Figure 5.1. There the entries of this β are denoted with dots. We will define the R-core and
R-platform maps ∆R and ΞR on UR(n) by constructing their images δ and ξ for β. The entries of δ and
ξ for our example will be denoted with dashes in the left and right parts of Figure 5.1.

Let β ∈ UR(n) and h ∈ [r + 1]. The rightmost critical index of β in the hth carrel is qh. Set x := qh.
Scan the rest of the hth carrel (qh−1, qh] from the right. If it exists, the next critical index to the left is
x′, where qh−1 < x′ < x is maximal such that βx − βx′ > x − x′. Otherwise, the next critical index to
the left is x′ := qh−1. Here qh−1 = 0 occurs when h = 1. Now set x := x′ and iterate this right-to-left
scanning procedure until x′ := qh−1. The intervals (x′, x] are critical intervals; these are subintervals
of the hth carrel. In the second carrel in our example, the next critical index to the left after the initial
(rightmost) critical index 8 is 6. For i ∈ (x′, x], define δi := βx − (x − i) and ξi := βx. Continuing
to work within the second carrel in our example, we have δi = 9 − (8 − i) and ξi = 9 for 6 < i ≤ 8.
If x is a nonzero critical index, we call βx a critical entry. Overall, in our example we write the list of
nonzero critical indices as {1, 3 | 6, 8 | 9} and the list of corresponding critical entries as {2, 5 | 6, 9 | 9}.
We have defined the R-core ∆R(β) := δ of β and the R-platform ΞR(β) := ξ of β. In our example
δ = (2, 4, 5 | 4, 5, 6, 8, 9 | 9) and ξ = (2, 5, 5 | 6, 6, 6, 9, 9 | 9); see Table 6.1 for a larger example. (The
R-ceiling map of [PW3] is the restriction of this R-platform map to a subset UGR(n) of UR(n).)

An R-tuple bounded by its platform is an upper R-tuple β such that β ≤ ΞR(β). Let UBPR(n) ⊆
UR(n) denote the set of upper R-tuples bounded by their platforms. The example β above is not bounded
by its platform, since βi > ξi for i = 2 and 4. Here we summarize several aspects of, and a few immediate
consequences from, the definitions above:
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Figure 5.1. Applications of the maps ∆R and ΞR to our example β ∈ UR(9).

Fact 5.1. Let β ∈ UR(n). Set δ := ∆R(β) and ξ := ΞR(β). Let x′, x ∈ [0, n] be such that (x′, x] is a
critical interval for β.

(i) δx = βx = ξx.

(ii) For i ∈ (x′, x) one has δi = δi+1 − 1. Hence δ ∈ UIR(n).

(iii) For i ∈ (x′, x) one has ξi = ξx. Hence ξ ∈ UFR(n).

(iv) δ ≤ β and δ ≤ ξ.

(v) If β ∈ UBPR(n), then δ ≤ β ≤ ξ.

(vi) ∆R(δ) = δ and ΞR(ξ) = ξ.

Hence we can view theR-tuples δ and ξ as being concatenations respectively of “staircases” and “plateaus”
over the critical intervals for β.

It is notable when the rightmost critical entry in each carrel (which is automatically the last entry of the
carrel) does not exceed the leftmost critical entry in the next carrel: A gapless R-tuple is an R-increasing
upper tuple γ such that for h ∈ [r] we have γqh ≤ γx, where x is the smallest critical index larger than qh.
Let UGR(n) ⊆ UIR(n) denote the set of gapless R-tuples. The example δ above is a gapless R-tuple.
More generally, a gapless core R-tuple is any upper R-tuple η such that for h ∈ [r] we have ηqh ≤ ηx,
where x is the smallest critical index larger than qh. Let UGCR(n) ⊆ UR(n) denote the set of gapless
core R-tuples. The example β above is a gapless core R-tuple. The following two facts explain these
terminologies. The routine verifications appeared as Parts (iii) and (ii) of Proposition 4.2 in [PW3].

Fact 5.2. (i) Let γ ∈ UIR(n). It is the case that γ is a gapless R-tuple if and only if: Whenever there
exists h ∈ [r] with γqh > γqh+1, then γqh − γqh+1 + 1 =: s ≤ qh+1 − qh and the first s entries of the
(h+ 1)st carrel (qh, qh+1] are γqh − s+ 1, γqh − s+ 2, ..., γqh .
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(ii) Let β ∈ UR(n). Then β ∈ UGCR(n) if and only if ∆R(β) ∈ UGR(n).

Part (i) can be re-expressed as: whenever γqh > γqh+1, the leftmost staircase within the (h + 1)st carrel
must contain an entry equal to γqh (and hence there are no “gaps”).

UG ⊆ UI ⊆ UBP

UF ⊆ UBP

UF ⊆ UGC

UG ⊆ UGC

Table 5.1. Containments of the form UXR(n) ⊆ UYR(n) for sets of upper R-tuples.

The five containments displayed in Table 5.1 follow from the definitions and the two facts; transitivity
also yields the sixth containment UGR(n) ⊆ UBPR(n). When all column lengths are distinct, that is
when R = [n − 1], one has UBPR(n) = UIR(n) = UR(n) and UGCR(n) = UGR(n) = UFR(n).
Hence UGCR(n) ∩ UBPR(n) = UFR(n) here.

We relate the concepts above to the tableaux we are considering. Given our fixed partition λ, find its
set Rλ of distinct column lengths. Rewrite the subscript ‘Rλ’ as ‘λ’. Fix β ∈ Uλ(n). As was explained
in Section 8 of [PW3], under value-wise comparison the row bound set Sλ(β) of tableaux has a unique
maximal element Qλ(β) =: Q. To convert the tableau in Figure 3.1 to the maximal tableau Q for that
example first increase the row end value ‘5’ to ‘6’ and then increase nearly all of the values in each row
to the row end value for that row. However, the first values in the fourth and fifth rows are ‘5’ and ‘6’
and the first four values in the first row are ‘2’. Visualizing how Q is determined from β motivated our
definition of the critical entries of β: The bottom value of Q in a cliff of the shape λ is the carrel-ending
critical entry of β in the corresponding carrel. Moving up within that cliff, the semistandard condition
will decrement the ending values in rows of Q by 1 at each higher row until there is a precipitous drop in
the given bounds in β. At such a juncture the next critical entry to the left in β is present in Q as a row
ending value. In this manner it is seen that ∆λ(β) is the Rλ-tuple of these row ending values of Q.

6 Necessary condition for nonpermutability
The two lemmas obtained here give necessary conditions for an upper R-tuple β to yield a terminal pair
(λ, β) that is nonpermutable.

For a determinant example pertinent to the first lemma, take n := 3, λ := (1, 1, 0), and β := (3, 2, 3).
Here ∆λ(β) = (1, 2 | 3) and Ξλ(β) = (2, 2 | 3). Note that β ∈ UGCλ(n)\UBPλ(n), and so this lemma
will imply that (λ, β) is not nonpermutable. Here sλ(β;x1, x2, x3) = x1x2, but the G-V determinant of
Proposition 3.2 evaluates to x1x2 − x2

3.

Lemma 6.1. Let β ∈ Uλ(n). If β /∈ UBPλ(n), then (λ, β) fails to be nonpermutable.

For a determinant example pertinent to the second lemma, take n := 3, λ := (2, 1, 0), and β :=
(3, 2, 3). Here β = ∆λ(β) = Ξλ(β) since λ is strict. Note that β ∈ UBPλ(n)\UGCλ(n), and so this
lemma will imply that (λ, β) is not nonpermutable. Here sλ(β;x, y, z) = x2

1x2 +x1x
2
2 +x1x2x3, but the

G-V determinant of Proposition 3.2 evaluates to x2
1x2 + x1x

2
2 + x1x2x3 − x3

3.

Lemma 6.2. Let β ∈ Uλ(n). If β /∈ UGCλ(n), then (λ, β) fails to be nonpermutable.
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Combining the contrapositives of these two lemmas gives:

Proposition 6.3. Let β ∈ Uλ(n). If (λ, β) is nonpermutable, then β ∈ UGCλ(n) ∩ UBPλ(n).

Fix β ∈ Uλ(n). We prepare for the proofs of both lemmas by constructing some particular n-paths Λ
for the given β. To see that each of these Λ is in LDλ(β), we first describe its corresponding (clearly
semistandard) tableau T . Launching a running example, take n = 16 and λ = (73 | 58 | 32 | 12 | 01).
HereRλ = {3, 11, 13, 15} and so r = 4 and qr = 15. Let β be as displayed in Table 6.1. Set δ := ∆λ(β).
See Table 6.1 for the δ in the example. Consult Figure 6.1 for the tableau T being constructed in the
example case below.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
βi 5 5 8 5 12 13 9 11 11 15 15 16 16 14 16 16
δi 4 5 8 5 7 8 9 10 11 14 15 15 16 14 16 16
ξi 5 5 8 5 11 11 11 11 11 15 15 16 16 14 16 16

Table 6.1. An example β, with δ := ∆λ(β) and ξ := Ξλ(β)

We construct one n-path Λ for each d ∈ [qr]. As d varies, these Λ will differ by the location of a
transition from the most elementary paths for “early” values of i to some more carefully crafted paths Λi
for “middle” values of i. In our example take d = 9 ∈ [15]. For i ∈ (0, d− 1] set Tj(i) := i for j ∈ [λi].
These values are as small as possible. The first d − 1 component paths Λi of Λ corresponding to these
top d − 1 rows of T are described with the top entry in Table 6.2. Figure 6.2 uses dotted lines to display
Λ3,Λ4, ...,Λ16 for our example β; of these Λ3,Λ4, ...,Λ8 are early “elementary” paths. On the ending
longitudes of the paths, the big (green) dots in this figure denote the depths δi that are taken from the

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4
5 5 5 5 5
6 6 6 6 6
7 7 7 7 7
8 8 8 8 8
9 9 9 11 11
10 10 10 14 14
11 11 11 15 15
12 15 15
13 16 16
14
16

Figure 6.1. Example tableau of shape (7, 7, 7 | 5, 5, 5, 5, 5, 5, 5, 5 | 3, 3 | 1, 1 | 0)
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λ-core δ. The more nuanced paths in the middle region are indexed by i ∈ (d − 1, qr]. Let h ∈ [r] be
such that i ∈ (qh−1, qh]. For j ∈ [λqh+1

], above the values in the next (shorter) rows of T , set Tj(i) := i.
These values are still as small as possible. For j ∈ (λqh+1

, λqh ] set Tj(i) := δi. These “overhanging”
values are as large as possible for the given β. The nuanced paths Λi corresponding to these middle rows
of T are described with the middle entry in Table 6.2. Continuing the example, the lowest seven non-null
dotted line paths Λ9, ...,Λ15 are of this nuanced type. For all values of d we “fill out” to an n-path Λ in
the last carrel of β: For the “late” values i ∈ (qr, n] set Tj(i) := δi (= i) for j ∈ [λi]. These values are as
large as possible for the given β; the paths Λi corresponding to these bottom rows are described with the
bottom entry in Table 6.2. In the example, only the last (null) path is of this third type.

i ∈ Λi

(0, d− 1] (n− i, i)→ (λi + n− i, i) ↓ (λi + n− i, δi) ↓ (λi + n− i, βi)
(d− 1, qr] (n− i, i)→ (λqh+1

+ n− i, i) ↓ (λqh+1
+ n− i, δi)→ (λi + n− i, δi) ↓ (λi + n− i, βi)

(qr, n] (n− i, i)→ (λi + n− i, δi) ↓ (λi + n− i, βi)

Table 6.2. Original paths for the proofs of Lemmas 6.1 and 6.2

Proof of Lemma 6.1: Let β ∈ Uλ(n)\UBPλ(n). By rewiring some of the paths within one of the n-
paths constructed above, we will construct a disjoint n-path Λ′ := (Λ′1, ...,Λ

′
n) whose respective sinks

form a nontrivial permutation π of the original ordered terminals. Set δ := ∆λ(β) and ξ := Ξλ(β). Since
ξi = n for i ∈ (qr, n], the failure of boundedness for β cannot occur in this last carrel of the λ-tuple β.
See Table 6.1 for ξ in the running example. Let h ∈ [r] be such that there exists t ∈ (qh−1, qh] such that
βt > ξt, and then let c ∈ (qh−1, qh] be maximal such that βc > ξc. So c is not a critical index of β by Fact
5.1(i), since βc 6= ξc. Let d be the smallest critical index in (qh−1, qh] such that c < d. In the example we
have β6 = 13 > 11 = ξ6 with h = 2, c = 6, and d = 9. Here βc > ξc = ξd = βd = δd, which implies
βc ≥ δd + 1. Since d ≤ qr we have λd ≥ 1, which implies λd + n− d− 1 ≥ 0.

Now refer to the n-path Λ constructed above for this d ∈ [qr]. We will take advantage of the “ex-
cessively” deep sink for Λc. We begin to construct Λ′ by modifying the last part of Λd to produce a
“rewired” path Λ′d. This new path Λ′d will sink at the sink for the old path Λc after “swooping” beneath
the terminals that are currently the sinks for Λc+1,Λc+2, ...,Λd. Those terminals will now be used re-
spectively as the sinks for the rewired Λ′c,Λ

′
c+1, ...,Λ

′
d−1. Look at the southernmost solid (red) path in

Figure 6.2. Rather than finishing with ... ↓ (λqh+1
+ n− d, δd)→ (λd + n− d, δd) = (λd + n− d, βd),

the rewired Λ′d finishes with ... ↓ (λqh+1
+ n − d, δd) → (λd + n − d − 1, δd) ↓ (λd + n − d − 1,

δd + 1)→ (λd + n− c, δd + 1) ↓ (λc + n− c, βc). Here Λ′d stops one unit short of the sink of Λd which
is at (λd + n − d, δd), then goes one unit to the south, then turns left onto the latitude δd + 1 and goes
d− c+ 1 units to the east, and then turns right to go straight south until it sinks at (λc + n− c, βc). This
was the sink of Λc. This new southerly edge (λd + n − d − 1, δd) ↓ (λd + n − d − 1, δd + 1) in Λ′d is
not in use by Λd+1 (or a later path): If d = qh, then the longitude at (λd + n− d)− 1 is not used by any
component of Λ since λd > λd+1 here implies that this longitude is strictly to the east of the longitude
λd+1 +n−d−1 on which Λd+1 sinks. If d < qh, note that δd+1 < δd+1 because d is a critical index. So
here the southernmost point reached by Λ′d on its new briefly used longitude at λd + n− d− 1 is strictly
to the north of the northernmost point on this longitude used by Λd+1, which descends to the depth δd+1
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Figure 6.2. Rewiring four component paths produces a nonpermutability violation.

on the longitude λqh+1
+ n− d− 1 to the west. Therefore Λ′d does not intersect Λd+1.

For either case for d, form = d−1, d−2, ..., cwe next successively modify the finishes of Λd−1,Λd−2,
...,Λc to respectively produce finishes for the rewired Λ′d−1,Λ

′
d−2, ...,Λ

′
c. Look at the other three solid

(red) paths in Figure 6.2. Let m ∈ [c, d). Rather than travelling the elementary path (n − m,m) →
(λm + n −m,m) ↓ (λm + n −m, δm) ↓ (λm + n −m,βm), the rewired Λ′m travels (n −m,m) →
(λm + n−m− 1,m) ↓ (λm + n−m− 1, δm+1) ↓ (λm + n−m− 1, βm+1). Here Λ′m is finishing by
turning right one step early, using one or more new southerly step(s) to reach (λm+1−n−m− 1, δm+1),
and then adopting the final (possibly empty) “stilt” that Λm+1 had been using to finish. Note that Λ′d
reaches (λd + n − d − 1, δd + 1). Since λd−1 = λd, the new southerly steps used by Λ′d−1 are on the
longitude λd + n− d, on which Λ′d−1 sinks at depth βd. Since βd = δd < δd + 1, these new steps cannot
intersect Λ′d. No intersections among these d − c rewired paths occur since the right turns that are each
being executed one easterly step early are being coordinated along a staircase wherein λm = λqh . Given
the choices of c and d, for i ∈ (c, d] we have βi ≤ ξi = ξd = δd. So βi < δd + 1 for i ∈ (c, d]. Hence
Λ′m does not intersect Λ′d for m ∈ [c, d). When m /∈ [c, d] set Λ′m := Λm.

We finish by ruling out intersections between rewired paths and unmodified paths. The rewiring of Λc
to produce Λ′c deformed that path toward the southwest. Thus Λ′c cannot intersect Λc−1, which did not
intersect Λc. The argument above that none of the rewired Λ′m form ∈ [c, d) can intersect Λ′d also implies
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that the entire rewired Λ′p for p ∈ [c, d] lie in the convex hull of the steps in the paths Λc and Λ′d. This
convex region lies weakly to the west of the longitude λc + n− c, and the path Λc forms the northeastern
boundary of it. Therefore Λc−1 cannot intersect any of the rewired paths. For m ∈ [1, c− 1) the path Λm
is strictly northeast of Λc−1 through its ending longitude of λc−1 + n− c + 1 > λc + n− c, the ending
longitude of Λc. Hence none of these Λm can attain such an intersection. We showed above that Λ′d and
Λd+1 do not intersect. The path Λ′d forms the southwestern boundary of the convex region. So none of the
rewired paths can intersect Λd+1. All of the unmodified Λm for m ∈ (d+1, n] sink on longitudes that are
to the west of the sink longitude of Λd+1. So none of the rewired paths can intersect any such paths Λm.
We have permuted the original sinks by rerouting Λd so that Λ′d ends at the sink of Λc and then “shifting”
other paths so that for m ∈ [c, d) the rewired Λ′m sinks at the sink of Λm+1. For this permutation π of the
sinks we have shown LDλ(β;π) 6= ∅.

Proof of Lemma 6.2: Let β ∈ Uλ(n)\UGCλ(n). Again we produce a violating n-path Λ′ by modifying
one of the n-paths defined at the beginning of this section. If β /∈ UBPλ(n) apply Lemma 6.1; otherwise
β ∈ UBPλ(n). Set δ := ∆λ(β); this λ-tuple is in UIλ(n). By Fact 5.2(ii) we have δ /∈ UGλ(n). The
only critical entry in the last carrel (qr, n] is n. So there cannot be a failure of λ-gapless based upon
having δqr > n. Let h ∈ (1, r] and d ∈ (qh−1, qh] be such that δ fails to be λ-gapless based upon
having δqh−1

> δd, where d is the leftmost critical index in the hth carrel (qh−1, qh]. Set c := qh−1.
Since βc = δc at the critical index c, we have βc ≥ δd + 1. Here βc is again “excessively” deep, as in
the preceding proof. As in that proof, in each of two cases we will rewire some of the component paths
in one of the n-paths constructed at the beginning of this section. Since d ≤ qr, in each case we have
λd ≥ 1. This implies λd + n − d − 1 ≥ 0. Again the two cases will be d = qh and d < qh. In each
of these two cases we will refer to the n-path Λ constructed at the beginning of this section for the value
of d at hand. The facts obtained above allow us to now rewire the path Λd in each case to produce a
path Λ′d in essentially the same fashion as in the previous proof. The only difference is that the rewired
Λ′d now has to make λqh−1

− λqh additional easterly steps just before it reaches its sink longitude of
λc + n− c = λqh−1

+ n− qh−1. With this in mind, construct Λ′d for each case as in the preceding proof.
First suppose d = qh. We can reuse the reasoning used in the ‘d = qh’ case to see that the southerly

edge on the longitude (λd+n−d)−1 from depth δd to depth δd+1 is not in use by Λd+1 here. Otherwise
d < qh. The reasoning used in the ‘d < qh’ case before to see that the early “jog” to the right by Λ′d is
acceptable can be re-used here. So Λ′d does not intersect Λd+1. For either case for d, the index d is the
smallest critical index greater than c.

For either case for d, for m = d − 1, d − 2, ..., c + 1, next successively rewire Λd−1,Λd−2, ...,Λc+1

to respectively produce paths Λ′d−1,Λ
′
d−2, ...,Λ

′
c+1 as in the preceding proof. Then rewire the path Λc to

produce a path Λ′c in nearly the same fashion as before. The only difference is that the rewired Λ′c now
makes λqh−1

− λqh fewer easterly steps just before reaching its finishing longitude of λc+1 + n− c− 1.
The observation in the preceding proof concerning the coordination of the right turns among the shifted
d− c rewired paths will need a small modification to account for this.

Now set ξ := Ξλ(β). For each of the two cases for d the fact that d is the smallest critical index larger
than c implies ξi = ξd = βd = δd for i ∈ (c, d]. Since β ∈ UBPλ(n), we have βi ≤ ξi = ξd = δd <
δd + 1 for i ∈ (c, d]. Hence Λ′i does not intersect Λ′d for i ∈ [c, d). The rest of this proof is the same as
before.
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7 Sufficient condition for nonpermutability
To prove the converse of Proposition 6.3 we will need the following lemma. Here we rename and re-index
the components of Λ according to which fixed terminals they use as sinks.

Lemma 7.1. Let β ∈ UBPλ(n). Let π be a permutation of [n] and let Λ ∈ LDλ(β;π). Set δ := ∆λ(β).
For each i ∈ [n], the component Mi of Λ that sinks at the ith terminal (λi + n − i, βi) must reach
(λi + n− i, δi). So it must end with the “stilt” (λi + n− i, δi) ↓ (λi + n− i, βi).

Proof: Let x be a positive critical index for β. Let x′ be the largest critical index that is less than
x. Since critical intervals are contained in carrels, we have λi = λx for i ∈ (x′, x]. Hence the sinks
for these Mi lie on consecutive longitudes. For i ∈ (x′, x) we also have δi = δi+1 − 1. Hence the
points (λx + n − i, δi) for i ∈ (x′, x] form a staircase, since they also lie on consecutive latitudes. The
“reaching” claim is true for Mx since δx = βx. Let i successively decrement from x to x′+ 1 and assume
the claim is true for i′ ∈ (i, x]. The source of Mi is weakly to the northwest of its sink (λi + n − i, βi).
Set ξ := Ξλ(β). From Facts 5.1(iii)(i) recall that ξi = ξx = δx = βx. From Fact 5.1(v) recall that
δi ≤ βi ≤ ξi for β ∈ UBPλ(n). Then δi ≤ βi ≤ δx and the blockade formed by the “in-use” staircase
points (λx+n− i′, δi′) for i′ ∈ (i, x] force the path Mi to reach (λx+n− i, δi). Then it must finish with
(λx + n− i, δi) ↓ (λx + n− i, βi).

Stanley remarked in Theorem 2.7.1 of [St1] that (λ, β) is nonpermutable when β is a flag. Since
UFλ(n) ⊆ UGCλ(n) ∩ UBPλ(n), the following proposition extends that remark.

Proposition 7.2. Let β ∈ Uλ(n). If β ∈ UGCλ(n) ∩ UBPλ(n), then (λ, β) is nonpermutable.

Proof: Let β ∈ UGCλ(n) ∩ UBPλ(n). Let π be a permutation of [n] that is not the identity. There must
exist at least one descent in π−1. So there exist 1 ≤ i < k ≤ n such that πi = πk + 1. Set m := πk.
Set δ := ∆λ(β). Let Λ be an n-path from the standard sources (n −m,m) for m ∈ [n] to the terminals
respectively listed in π.(λ, β). For the sake of contradicting “nonpermutable” suppose Λ ∈ LDλ(β;π).
By the lemma, without loss of generality we may simplify Λ by replacing the sequence β of depths of
its terminals with the sequence of weakly shallower depths δ. This shortens its original paths by deleting
their final stilts (which cannot intersect).

As an index p runs from 1 to n, the longitudes λp + n − p of the n fixed terminals (which will serve
as sinks for the permuted paths) move strictly from east to west. Visualize the paths in Λ as being suc-
cessively launched in time as their sources are scanned from northeast to southwest. We consider the
components Λi and Λk of Λ. The earlier Λi launches at (n− i, i) and sinks at (λm+1 +n−m−1, δm+1).
The later Λk launches at (n−k, k) to the southwest and sinks at (λm+n−m, δm). Comparing the starting
and finishing longitudes for Λk to those for Λi, we have n−k < n−i and λm+n−m > λm+1+n−m−1.
So every longitude that is visited by the earlier Λi is later visited by the longer Λk. The earlier Λi finishes
at the depth δm+1 on the longitude at λm+1 +n−m−1 =: v. Let’s say that the later path Λk first reaches
the longitude at v on the latitude at z, for some z ≥ 1.

In each of the following two cases we prove that a (contradicting) intersection exists.
(i) First suppose that z ≤ δm+1. The later Λk reaches the longitude at n − i weakly to the south of the
earlier Λi and it reaches the longitude at λm+1 + n − m − 1 weakly to the north of Λi. So Λk must
intersect the continuous Λi.
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Figure 7.1. The earlier Λi and the later Λk respectively sink at the terminals (v = λm+1+n−m−1, δm+1)
and (λm + n−m, δm).

(ii) Otherwise we have z > δm+1. Since z cannot exceed the finishing depth δm for Λk, we have z ≤ δm.
Hence δm > δm+1. See Figure 7.1. By Fact 5.2(ii) we know that δ is λ-gapless; in particular it is λ-
increasing. This forces m = qh for some h ∈ [r]. Set s := δm − δm+1 + 1. Since δ is λ-gapless, by
Fact 5.2(i) we have s ≤ qh+1 − qh and δm+1 = δm − s + 1, δm+2 = δm − s + 2, ..., δm+s = δm. For
p ∈ [s] we have λqh+p = λqh+1

. Starting at the sink (v, δm+1) of Λi and moving to the southwest with
stairsteps, we note that the s points (v, δm+1), (v − 1, δm+1 + 1), ..., (v − s+ 1, δm) forming a staircase
are terminals that are serving as sinks for some paths other than Λk. These terminals are shown by the
big dots in Figure 7.1. The source of the later Λk is strictly to the southwest of the source of the earlier
Λi by s staircase steps. Since Λk does not intersect Λi, it must remain strictly to the southwest of Λi as it
approaches (v, z). The earlier Λi sinks at (v, δm+1), which is the northeasternmost point on the staircase
of s terminals. So the source of the later Λk must be weakly to the northwest of the staircase of terminals.
This path Λk must remain weakly to the north of the latitude at z as it approaches (v, z). Since Λk is
confined to this integral-convex region with three boundaries, to sink at (λm + n−m, δm) it must reach
a point on the staircase of terminals. Hence Λk must intersect some component path of Λ.
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8 Accidental equalities; gapless core Schur polynomials are nice
Unless otherwise restricted, below β and β′ refer to arbitrary upper Rλ-tuples. Define gvλ(β;x) to be the
G-V determinant |hλj−j+i(i, βj ;x)| introduced in Proposition 3.2.

To motivate our supplemental remarks and results, we begin with a sequence of review and preview
statements. The necessary direction of Theorem 4.1 said that β must be in UGCλ(n) ∩ UBPλ(n) to
qualify for the application of the G-V method for deducing sλ(β;x) = gvλ(β;x) in Corollary 4.2. But it
is conceivable that one could “accidentally” have sλ(β;x) = gvλ(β;x) when β /∈ UGCλ(n) even though
such a β would produce n-path terminal pairs for λ that are not nonpermutable. Next, Corollary 4.3 noted
that when β ∈ UGCλ(n)\UBPλ(n) one could nonetheless use the G-V method to compute sλ(β;x) by
first “pre-processing” β to produce an equivalent β′ ∈ UGCλ(n) ∩ UBPλ(n). Then one would have
sλ(β;x) = gvλ(β′;x). Lastly, when Rλ ⊂ [n − 1], to produce a given polynomial with a row bound
sum there will be some freedom in the choice of β. This goes back to the tableaux set level, since for
non-strict λ for a given β ∈ Uλ(n) there will exist many β′ ∈ Uλ(n) such that Sλ(β′) = Sλ(β). And then
Sλ(β) = Sλ(β′) trivially implies sλ(β;x) = sλ(β′;x). But it is conceivable that one could accidentally
have sλ(β′;x) = sλ(β;x) while Sλ(β′) 6= Sλ(β). Here and in Section 9 we investigate what is possible
and what is not possible via the choice of alternate β′.

Corollary 10.4(i) of [PW3] related the equalities of the forms Sλ(β) = Sλ(β′) and sλ(β;x) = sλ(β′;x):

Fact 8.1. If η ∈ UGCλ(n), then sλ(η;x) = sλ(β;x) for some β ∈ Uλ(n) implies Sλ(η) = Sλ(β) and
β ∈ UGCλ(n).

The proof of this relied upon the connection between “gapless core Schur polynomials” (defined below)
and Demazure characters studied in that paper. Hence if β /∈ UGCλ(n), then there does not exist η ∈
UGCλ(n) such that accidentally sλ(β;x) = sλ(η;x). But for β, β′ ∈ Uλ(n)\UGCλ(n) one could at
this point in time conceivably have sλ(β;x) = sλ(β′;x) when Sλ(β) 6= Sλ(β′), as noted in Problem 10.5
of [PW3].

Next we relate equalities of the form sλ(β;x) = sλ(β′;x) and sλ(β;x) = gvλ(β′;x). Obviously
sλ(β;x) = sλ(β′;x) and sλ(β′;x) = gvλ(β′;x) imply sλ(β;x) = gvλ(β′;x). This reasoning is used
in the next section to confirm Corollary 4.3 when β ∈ UGCλ(n). More generally, when can we obtain
sλ(β;x) = gvλ(β′;x)? This conclusion is the most interesting when β′ ∈ UGCλ(n) ∩ UBPλ(n), since
UGCλ(n) ∩ UBPλ(n) contains all of the upper λ-tuples for which the G-V method is valid. Corollary
9.3 below generalizes Corollary 4.3. It is impossible to have sλ(β;x) = gvλ(β′;x) for β′ ∈ UGCλ(n)∩
UBPλ(n) when β /∈ UGCλ(n): Then gvλ(β′;x) = sλ(β′;x), but sλ(β;x) = sλ(β′;x) is not possible
here. So in the restricted context of β′ ∈ UGCλ(n) ∩ UBPλ(n) we have a complete answer to the
question above with the statements: when β /∈ UGCλ(n) having sλ(β;x) = gvλ(β′;x) is impossible,
when β ∈ UGCλ(n) then Corollary 9.3 below describes the β′ for which sλ(β;x) = gvλ(β′;x), and
when β ∈ UGCλ(n) ∩ UBPλ(n) the stronger result sλ(β;x) = gvλ(β;x) is Corollary 4.2. For those
who are willing to accept “accidental” (irrespective of nonpermutability) equalities, then the following
questions of necessity for being equal to the G-V determinant are open:

Problem 8.2. Let β ∈ Uλ(n).
(i) Suppose β /∈ UGCλ(n) ∩ UBPλ(n). Is it possible to have sλ(β;x) = gvλ(β;x)?
(ii) Suppose β /∈ UGCλ(n). Is it possible to have sλ(β;x) = gvλ(β′;x) for some β′ ∈ Uλ(n)?

We add to one of the themes of [PW3]. There we showed that the row bound sums sλ(η;x) for
η ∈ UGCλ(n) behaved more nicely than the row bound sums sλ(β;x) for β ∈ Uλ(n)\UGCλ(n). Hence
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we awarded the name gapless core Schur polynomials to the former polynomials, for which the following
can be said: When η ∈ UGCλ(n), the polynomial sλ(η;x) arises as a previously-studied flag Schur
polynomial and as a Demazure polynomial, as shown in Proposition 8.1 and Theorem 9.1(i) of [PW3].
(In fact, its tableau set coincides with the relevant set of Demazure tableaux.) When η′ ∈ UGCλ(n) as
well, then sλ(η;x) and sλ(η′;x) cannot be equal unless Sλ(η) = Sλ(η′). The polynomial sλ(η;x) can
be computed with a G-V determinant (though this may require pre-processing). The distinct polynomials
arising as gapless core Schur polynomials sλ(η;x) are counted by the parabolic Catalan numbers, as
shown in Theorem 13.1(iv) of [PW3]. In contrast, the row bound sums sλ(β;x) for β ∈ Uλ(n)\UGCλ(n)
seem to be of dubious value. They cannot arise as flag Schur polynomials or as Demazure polynomials,
as shown in Corollary 10.4(i) and Theorem 10.3 of [PW3]. It is not known if one can have sλ(β;x) =
sλ(β′;x) with Sλ(β) 6= Sλ(β′) for β′ ∈ Uλ(n)\UGCλ(n), nor is it known if sλ(β;x) can somehow be
computed with an n× n determinant.

9 Equivalence and efficiency
When the partition λ is not strict, more than one upper λ-tuple β can specify the same tableau set Sλ(β)
or the same row bound sum sλ(β;x). And when β is more specifically a gapless core λ-tuple, more
than one bounded gapless core λ-tuple β′ can be used to express sλ(β;x) with gvλ(β′;x). We introduce
equivalence relations to describe how much freedom one has when choosing alternate upper λ-tuples
β′ for the computation of sλ(β;x). Within each class we describe the upper λ-tuples that are valid for
the application of the G-V method, and then we identify the upper λ-tuple that is the most efficient for
evaluating the G-V determinant.

In Section 8 of [PW3] we introduced an equivalence relation on Uλ(n) by defining β ≈λ β′ when
Sλ(β) = Sλ(β′). There Proposition 8.2 stated that this equivalence relation was the same as the equiv-
alence relation ∼R defined on UR(n) in that Section 5 when R := Rλ. Lemma 5.1 of [PW3] said that
this earlier relation ∼R could be defined entirely in terms of upper λ-tuples using the map ∆Rλ =: ∆λ.
The following background facts can be confirmed using Proposition 5.2(ii)(iii), Proposition 4.3(ii), and
Lemma 5.1(i) of [PW3], given the non-essential definitions of “λ-canopy” tuple and “λ-floor” flag in Parts
(iv) and (v) of that Definition 3.1:

Fact 9.1. The equivalence classes for the restrictions of ≈λ and ∼R to UGCλ(n) and to UFλ(n) are:
(i) In UGCλ(n) these subsets are the intervals in Uλ(n) of the form [γ, κ], where γ is a gapless λ-tuple
and κ is the unique “λ-canopy” tuple such that γ = ∆λ(κ).
(ii) In UFλ(n) these subsets are the intervals in UFλ(n) of the form [τ, ξ], where τ is a “λ-floor” flag
and ξ := Ξλ(τ).

The equivalence classes in our most favored set UGCλ(n)∩UBPλ(n) of upper λ-tuples are described
by pairing the minimum elements of Part (i) with maximum elements of the same “λ-ceiling” kind as in
Part (ii):

Proposition 9.2. The equivalence classes for the restrictions of ≈λ and ∼R to UGCλ(n) ∩ UBPλ(n)
are the intervals in Uλ(n) of the form [γ, ξ], where γ is a gapless λ-tuple and ξ is the upper λ-flag Ξλ(γ).

Proof: The restricted classes are the intersections of the classes in UGCλ(n) with UBPλ(n). By Fact
9.1(i), these restricted classes have the form [γ, κ]∩UBPλ(n). To consider one of these, fix γ ∈ UGλ(n)
and let κ be the unique λ-canopy tuple in Uλ(n) such that ∆λ(κ) = γ. Set ξ := Ξλ(γ). We have
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ξ ∈ UFλ(n) by Fact 5.1(iii). Lemma 5.1 of [PW3] says that two upper λ-tuples β and β′ are equivalent
if and only if ∆λ(β) = ∆λ(β′). So β ∈ [γ, κ] for β ∈ Uλ(n) if and only if ∆λ(β) = ∆λ(γ). Our
simultaneous definitions for the maps ∆λ and Ξλ imply that Ξλ(β) = Ξλ(β′) for two upper λ-tuples
β and β′ if and only if ∆λ(β) = ∆λ(β′). The class of γ in Uλ(n) is [γ, κ]. Hence β ∈ [γ, κ] for
β ∈ Uλ(n) if and only if Ξλ(β) = Ξλ(γ) =: ξ. The definition of UBPλ(n) says β ∈ UBPλ(n)
for β ∈ [γ, κ] if and only if β ≤ ξ. Since Ξλ(ξ) = ξ by Fact 5.1(vi), we can deduce ξ ∈ [γ, κ]
and thus ξ ≤ κ. Therefore β ∈ [γ, ξ] for β ∈ Uλ(n) if and only if β ∈ [γ, κ] ∩ UBPλ(n). Clearly
[γ, ξ] ⊆ UGCλ(n) ∩ UBPλ(n).

The equivalence classes in Proposition 9.2 are induced on UGCλ(n) ∩ UBPλ(n) by any one of the
following equalities: Sλ(β) = Sλ(β′), sλ(β;x) = sλ(β′;x), sλ(β) = gvλ(β′), or gvλ(β) = gvλ(β′).
Since it was noted in Section 5 that UFλ(n) ⊆ UGCλ(n) and UFλ(n) ⊆ UBPλ(n), if one is interested
only in flags there is no need to consider how the classes for ≈λ restrict to UFλ(n) ∩ (UGCλ(n) ∩
UBPλ(n)) = UFλ(n).

Corollary 9.3. Let η ∈ UGCλ(n) and η′ ∈ UGCλ(n) ∩ UBPλ(n). Then sλ(η;x) = gvλ(η′;x) if
and only if η′ ∈ [∆λ(η),Ξλ(η)]. Here ∆λ(η) is a gapless λ-tuple and Ξλ(η) is an upper λ-flag. This
nonempty interval is contained in UGCλ(n) ∩ UBPλ(n).

Proof: Let η ∈ UGCλ(n). Set γ := ∆λ(η) and ξ := Ξλ(γ) ∈ UFλ(n). Since η ∈ UGCλ(n), by Fact
5.2(ii) we have γ ∈ UGλ(n) and by Fact 5.1(iv) we have γ ≤ ξ. So [γ, ξ] is of the class form [γ′, ξ′]
in the proposition, and hence it is contained in UGCλ(n) ∩ UBPλ(n) as well as being nonempty. Since
∆λ(γ) = γ := ∆λ(η) by Fact 5.1(vi), by Lemma 5.1 of [PW3] we can deduce that η ≈λ γ. Let η′ be in
the class [γ, ξ] for ≈λ of γ in UGCλ(n)∩UBPλ(n). Then Sλ(η) = Sλ(η′) and so sλ(η;x) = sλ(η′;x).
Corollary 4.2 says that sλ(η′;x) = gvλ(η′;x). The special case of sλ(η;x) = gvλ(η′;x) for η′ := γ was
stated as Corollary 4.3. Conversely, let η′ ∈ UGCλ(n) ∩ UBPλ(n) be such that sλ(η;x) = gvλ(η′;x).
Then sλ(η′;x) = gvλ(η′;x) implies sλ(η;x) = sλ(η′;x), and so Fact 8.1 implies Sλ(η) = Sλ(η′).
Hence η ≈λ η′. Since η ≈λ γ and η′ ∈ UGCλ(n) ∩ UBPλ(n), we see that η′ must be in the class [γ, ξ]
for ≈λ of γ ∈ UGCλ(n) ∩ UBPλ(n).

Applying the λ-platform map Ξλ to a gapless core λ-tuple η produces an upper λ-flag ϕ that is equiv-
alent to η. So any row bound set Sλ(η) for a gapless core λ-tuple also arises as a row bound set Sλ(ϕ)
for an upper λ-flag. This confirms the remark made at the end of Section 8 that every gapless core Schur
polynomial has already arisen as a flag Schur polynomial. If someone was to insist that their input to a
G-V determinant must be an upper λ-flag, then at least the maximum element Ξλ(η) of the interval of
Corollary 9.3 would be available. However, from the viewpoint of efficient determinant evaluation, the
proof of our next result should indicate that that upper λ-flag would be the worst choice from that interval
of choices.

Let η ∈ UGCλ(n). We say η′ ∈ UGCλ(n) ∩ UBPλ(n) attains maximum efficiency if gvλ(η′;x) :=
|hλj−j+i(i, η′j ;x)| has fewer total monomials among its entries than does the G-V determinant gvλ(η′′;x)
for any other η′′ ∈ UGCλ(n) ∩ UBPλ(n) that produces sλ(η;x).

Proposition 9.4. Let η ∈ UGCλ(n). The gapless λ-tuple ∆λ(η) attains maximum efficiency among the
choices in the interval [∆λ(η),Ξλ(η)] allowed by Corollary 9.3.

Proof: Set γ := ∆λ(η). Let η′ ∈ (γ,Ξλ(η)]. For i, j ∈ [n] the (i, j)-entry of the G-V determinant
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gvλ(η′;x) has
(λj−j+η′j
λj−j+i

)
monomials. Since γ < η′ there exists some m ∈ [n] such that λm −m+ η′m >

λm −m+ γm and λj − j + η′j ≥ λj − j + γj for m 6= j ∈ [n].

The description of lattice paths given in the proof of Lemma 7.1 can be used to visualize the choices
in one of the equivalence classes [γ, ξ] of Proposition 9.2: These choices vary only in the lengths of their
path-ending stilts. We have not been able to convert the G-V determinant gvλ(η;x) for η ∈ [γ, ξ] to
the G-V determinant gvλ(γ;x) with naive row and column operations. If λn > 0, one can factor out
(x1x2 · · ·xn)λn from gvλ(γ;x) and work with λ′ := (λ1−λn, λ2−λn, ..., 0). Going further, when there
are only p < n nonempty rows in the shape λ, the determinant gvλ′(γ;x) is equal to its upper left p × p
minor.

Various combinatorial counts have been expressed with determinants of binomial coefficients. If two
families of such determinants look similar and test evaluations yield the same integers, then one first tries
to relate them with row and column operations. If that does not work, the following consequence of
Corollary 4.3 offers an alternative:

Corollary 9.5. Let λ be a partition and let β, β′ be gapless core λ-tuples. If ∆λ(β) = ∆λ(β′) then∣∣∣∣(λj − j + βj
βj − i

)∣∣∣∣ =

∣∣∣∣∣
(
λj − j + β′j
β′j − i

)∣∣∣∣∣
The hypothesis concerning the cores of β and β′ is equivalent to β ≈λ β′.

To illustrate efficiency for determinant entries we first adapt the G-V proof of the Jacobi-Trudi identity
for infinite variables in Theorem 7.16.1 of [St2] to obtain the classic form of this identity in a finite
number n of variables for a nonskew shape, as in Equation 2.8 of [Oka]. Working with a finite number
of variables will allow us to use semistandard tableaux directly, rather than refering to the equivalence
with reverse semistandard tableaux as in [St2]. Avoiding that equivalence can be accomplished with the
following relabeling, which will also harmonize that proof with the vertical labeling convention in this
paper: Now label the translates of the horizontal axis in [St2] from the north with 1, 2, ..., n. (There in
Figure 7-6 from the top these are relabeled 1, 2, 3, 4.) Reading from the east, in general the sources for the
n component finite paths in this adaptation become (n− 1, 1), (n− 2, 1), ..., (0, 1). Since this application
of Theorem 2.7.1 of [St1] uses the row bounds (n, n, ..., n), the n terminals in the proof of Theorem 7.16.1
are (λ1+n−1, n), (λ2+n−2, n), ..., (λn, n). Because all paths start at depth 1 and end at depth n, each of
the determinant entries in that theorem are complete homogeneous symmetric functions. For 1 ≤ i, j ≤ n
the (i, j)-entry has

(
λj+n+i−j−1

n−1

)
monomials. Now we compare the derivation of our Corollary 4.2 in the

same lattice path setting: Choose row bounds β ∈ UGCλ(n) ∩ UBPλ(n). Recall that our sources are
(n− 1, 1), (n− 2, 2), ..., (0, n) and our terminals are (λ1 +n− 1, β1), (λ2 +n− 2, β2), ..., (λn, βn). Set
δ := ∆λ(β). When λ is not strict the general inequality δ ≤ β often becomes strict. For 1 ≤ i, j ≤ n the
(i, j)-entry of our determinant in Corollary 4.3 has only

(
λj+δj−j
δj−i

)
monomials. Proposition 9.4 stated that

these are the most efficient entries possible in this context. These efficiencies have been obtained by first
deleting the “initial stilts” for the mth component paths Λm for m ∈ [n] in the adaptation of [St2] above,
starting instead at our sources. Those stilts dropped from (n−m, 1) to (n−m,m). For a general gapless
core Schur polynomial one usually chooses β < (n, n, ..., n). Changing the row bounds from (n, n, ..., n)
to β deletes portions of some “ending stilts”. Using Lemma 7.1 it can be seen that one may as well
terminate the paths at the terminals (λ1 + n− 1, δ1), (λ2 + n− 2, δ2), ..., (λn, δn) in the G-V derivation
of Corollary 4.2. Then also changing the row bounds from β to δ deletes the rest of the unnecessary
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“ending stilts”, further shortening the paths by βm − δm for m ∈ [n]. These ending stilts dropped from
(λm+n−m, δm) to (λm+n−m,βm), and then from (λm+n−m,βm) to (λm+n−m,n). For a simple
numerical comparison consider the following extreme example: Let p ≥ 1 and set n := 2p+1. Let q ≥ 1.
Consider the n-tuples λ := (q, q, ..., q) and β := (2p+1, 2p+1, ..., 2p+1). So δ = (1, 2, 3, ..., 2p, 2p+1).
Here the (i, j)-entry of the Jacobi-Trudi determinant has

(
q+2p+i−j

2p

)
monomials. In contrast our (i, j)-

entry has
(
q
j−i
)

monomials. When i = j this comparison becomes
(
q+2p

2p

)
>
(
q
0

)
= 1.

In the first paper [PW2] of this series we defined the parabolic Catalan number Cλn to be the number of
“λ-312-avoiding permutations”. There in Theorem 9.1(iii) we noted that this is also the number of gapless
λ-tuples. Given this, the following result is a consequence of Propositions 9.2 and 9.4. It was previewed
as Part (vi) of Theorem 13.1 of [PW3]:

Corollary 9.6. The number of valid upper λ-tuple inputs to the G-V determinant expression for flag Schur
polynomials on the shape λ that attain maximum efficiency is Cλn .

For a sequence of examples, let m ≥ 1 and set n := 2m. Suppose λ is a partition whose shape’s set of
column lengths is Rλ = {2, 4, ..., 2m− 2}. Then the number of maximum efficiency inputs here is given
by the member of Sequence A220097 of the OEIS [Slo] that is indexed by m.

10 Determinant expression for some Demazure characters
At the end of Section 10 of [PW3] we promised to give a determinant expression for certain GL(n)
Demazure characters (key polynomials) here. As noted in that section of [PW3], general Demazure
characters dλ(π;x) for GL(n) can be defined with divided differences or as a sum of xΘ(T ) over a certain
set Dλ(π) of semistandard tableaux. See for example [PW1]. Given that UGλ(n) ⊆ UGCλ(n) ∩
UBPλ(n), the next statement follows from Theorem 10.2(ii) of [PW3] and Corollary 4.2 here. For this
result that theorem gives dλ(π;x) = sλ(γ;x). Consult Section 3 of [PW3] for the definitions of λ-
permutations and the map Ψλ.

Corollary 10.1. Let λ be a partition and let π be a λ-permutation. If π is λ-312-avoiding, then Ψλ(π) =:
γ is a gapless λ-tuple and dλ(π;x) = |hλj−j+i(i, γj ;x)|.
A “less efficient” (in the sense of our Section 9) version of this expression appeared in the proof of
Corollary 14.6 of [PS] when Postnikov and Stanley applied their skew flagged Schur function determinant
identity Equation 13.1 to their chλ,w.

Section 3 of [KM] proposes another approach to determinant generating function enumeration of
tableaux (satisfying general row bounds) that are expressed in terms of n-paths.
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