
ar
X

iv
:1

90
7.

01
29

9v
4

 [
m

at
h.

C
O

]
 1

8
A

ug
 2

02
1

Discrete Mathematics and Theoretical Computer Science DMTCS vol. 23:3, 2021, #3

Determining the Hausdorff Distance Between

Trees in Polynomial Time

Aleksander Kelenc ∗

Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia

Institute of Mathematics, Physics and Mechanics, Slovenia

Center for Applied Mathematics and Theoretical Physics, University of Maribor, Slovenia

received 2nd Dec. 2020, accepted 24th July 2021.

The Hausdorff distance is a relatively new measure of similarity of graphs. The notion of the Hausdorff distance con-

siders a special kind of a common subgraph of the compared graphs and depends on the structural properties outside

of the common subgraph. There was no known efficient algorithm for the problem of determining the Hausdorff dis-

tance between two trees, and in this paper we present a polynomial-time algorithm for it. The algorithm is recursive

and it utilizes the divide and conquer technique. As a subtask it also uses the procedure that is based on the well

known graph algorithm of finding the maximum bipartite matching.

Keywords: graph algorithms, trees, Hausdorff distance, graph similarity

1 Introduction

Comparing the structure of objects is a popular task in several scientific fields. The scientists want to

know if the compared objects are identical or similar in some way. For the study of similarity of molec-

ular structures in chemistry many algorithmic approaches have been developed. The so-called structure

searching mostly uses a graph isomorphism algorithm to determine whether two molecular compounds

are identical; substructure searching involves the subgraph isomorphism problem and involves determin-

ing whether any of the sample structures (usually saved in a database) contains a given structure.

Closely related to the topic of this paper is the problem known in chemistry as similarity searching:

given a molecule of interest find in a database its nearest neighbours - those molecules which are most

similar to the given sample - using some measure of inter-molecular similarity [6]. To have a measure of

similarity one has to model the compared objects with an appropriate tool. Graphs are often used for this

purpose. Determining the distance between two graphs is related to the study of similarity of molecular

structures [14].

A graph can be transformed into another one by a finite sequence of graph edit operations such as

vertex insertion, vertex deletion, vertex substitution, edge insertion, edge deletion and edge substitution.

∗Partially supported by the Slovenian Research Agency under the grants N1-0063, J1-1693 and J1-9109.

ISSN 1365–8050 © 2021 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://arxiv.org/abs/1907.01299v4

2 Aleksander Kelenc

Therefore, the distance between the two graphs can be defined by the shortest (or least-cost) edit operation

sequence and it is called the graph edit distance [8]. The graph edit distance is a general approach

of inexact graph matching and by restricting to some special operations we get special measures. For

example, assume that the compared graphs are of the same order and size, the possible operations defined

are edge move [2], edge rotation [5] and edge slide [2, 10].

A graph G is said to be a common subgraph of the graphs G1 and G2 if it holds that H1 ⊆ G1 and

H2 ⊆ G2, where H1 and H2 are both isomorphic to G. We say that a common subgraph G of G1 and G2

is a maximum common subgraph if there does not exist a common subgraph H with |V (H)| > |V (G)|.
The problem of determining maximum common subgraph is also a special case of graph edit distance

computation. It was shown [3] that under a particular cost function the graph edit distance computation is

equivalent to the maximum common subgraph problem.

In [4] the authors introduced a graph distance metric based on the maximum common subgraph. The

metric they define uses only the order of a maximum common subgraph and the order of the graphs

compared. A measure of similarity of graphs based on a maximum common subgraph is often used in

chemical graph theory to search for molecules that are measured to be close to each other. In [7, 12] the

authors described the maximum common subgraph algorithms and their applications to cheminformatics

tasks.

The Hausdorff distance of two graphs was introduced in [1]. The Hausdorff distance considers a special

kind of a common subgraph of the compared graphs which depends on the structural properties outside

of the common subgraph. The Hausdorff distance of graphs is more useful than the graph distance metric

based on the maximum common subgraph when the measure of similarity of graphs has to be correlated

with the distances from a subgraph (isomorphic to a common subgraph of the compared graphs) to the

vertices that are outside of that subgraph. In the Example 1.1 there are graphs G1 and G2 that have the

same number of vertices in the maximum common subgraphs but different Hausdorff distances regarding

to the graph G.

Example 1.1. Graphs G1 and G2 from Figure 1 are both subgraphs of graph G, therefore, there are

six vertices in the maximum common subgraph of G and G1, and six vertices in the maximum common

subgraph of G and G2. However, the Hausdorff distance of G and G1 is two and the Hausdorff distance

of G and G2 is one. This means that graphs G and G2 are more similar than graphs G and G1 with

respect to the Hausdorff distance of graphs.

G

G1 G2

Figure 1: Graphs G, G1 and G2.

Determining the Hausdorff Distance Between Trees in Polynomial Time 3

Authors of the paper [11] have further studied the Hausdorff distance on common families of chem-

ical graphs, namely paths, cycles and trees. They have presented an open problem of existence of a

polynomial-time algorithm for the Hausdorff distance between two trees.

In this paper we give the answer to this open problem. We present a polynomial-time algorithm for

the Hausdorff distance between two trees. The algorithm is based on the divide and conquer technique.

We proceed as follows. In the next section we state some basic definitions. Section 3 deals with some

known results that are used in the algorithm. In section 4 we present the polynomial-time algorithm for

Hausdorff distance between two trees and an example of how this algorithm works.

2 Basic definitions and notations

Let G = (V (G), E(G)) be a graph with the vertex set V (G) and the edge set E(G), where an edge is an

unordered pair of vertices {u, v} . A short notation uv is used for an edge {u, v}. A vertex u is adjacent

to a vertex v if uv ∈ E(G). A vertex u is incident to an edge e if it is an endpoint of the edge e.

Let G = (V (G), E(G)) and H = (V (H), E(H)) be arbitrary graphs. Graph H is a subgraph of G

(H ⊆ G) if V (H) ⊆ V (G) and E(H) ⊆ E(G).

All graphs considered in the paper are simple graphs, i.e. the are no multiple edges and no loops

(uu 6∈ E(G) for any u ∈ V (G)).

Let G be a graph and let S ⊆ V (G). By 〈S〉 we denote the subgraph of G induced by the set S, i.e. for

all u, v ∈ S, uv ∈ E(〈S〉) if and only if uv ∈ E(G).

Two graphs are isomorphic, if there is a bijective correspondence between their vertex sets which

preserves adjacency and non-adjacency of the vertices.

A path P from a vertex x to a vertex y in a graph G is a sequence x = v0v1v2 . . . vk−1vk = y of

pairwise different vertices of G, where vivi+1 is an edge of G, for each i ∈ {0, . . . , k − 1}. The vertices

x and y are called the endpoints of the path. The length of a path P , denoted by ℓ(P), is the number of

edges in P . If we add the edge xy to the path, then we get a cycle.

The distance between vertices x and y is the length of a shortest path between x and y in G and is

denoted by dG(x, y). A graph G is connected if for each pair of vertices u, v ∈ V (G) there is a path in G

from u to v. A connected subgraph H of a graph G is convex in G if for any pair of vertices u, v ∈ V (H),
any shortest path P from u to v in graph G lies entirely in H (P ⊆ H).

A graph T = (V (T), E(T)) is a tree if it is connected and has no cycles. A tree T = (V (T), E(T))
is rooted if there is a distinguished vertex r ∈ T (G) called the root of the tree. Note, there is a unique

path from the root to any other vertex v ∈ V (T). The root is at the top and the other vertices can be

partitioned in the levels according to their distance to the root of the tree. The depth of vertex v ∈ V (T),
denoted by depth[v], is the length of the path from the root node to the vertex v. The depth of T is

a maximum depth among the all vertices. Vertex v ∈ V (T) is called ancestor of vertex u ∈ V (T) if

vertex v lies on the unique path from u to the root and u 6= v. Vertex v ∈ V (T) is called descendant

of vertex u ∈ V (T) if vertex u lies on the unique path from v to the root and u 6= v. The set of all

ancestors (descendants) of a vertex v is denoted by ancestors[v] (descendants[v]), respectively. Vertex

v ∈ V (T) is called the parent of node u ∈ V (T), denoted by parent[u], if vu ∈ E(T) and v is

ancestor of u. The vertex u is then called a child of vertex v. The children of a vertex v is the set

children[v] = {u ∈ V (T) | u is a child of v}. A vertex with no children is called a leaf . Non-root

vertices v, u ∈ V (T) are siblings if parent[v] = parent[u]. The height of a vertex v ∈ (V (T)),

4 Aleksander Kelenc

denoted by height[v], is the length of a longest path from the vertex v to any other vertex in the vertex set

{v} ∪ descendants[v].

Example 2.1. In Figure 2 there is a rooted tree T with the root vertex v10. Tree T is drawn twice. On the

left side, T is drawn with regard to the depth of the vertices, and on the right side, T is drawn with regard

to the height of the vertices.

v1

v2 v3

v4

v5

v6

v7

v8 v9

v10

0

1

2

3

v1

v2 v3

v4

v5

v6

v7

v8

v9

v10

3

2

1

0

Figure 2: A rooted tree T drawn with regard to the depth (left hand-side) and to the height (right hand-side) of

vertices.

Let G be a graph and v be a vertex of G. The eccentricity of the vertex v, denoted e(v) is the maximum

distance from v to any vertex of V (G). That is, e(v) = max{dG(v, u) | u ∈ V (G)}. The radius of

the graph G, denoted rad(G), is the minimum eccentricity among the vertices of G, i.e. rad(G) =
min{e(v) | v ∈ V (G)}. The diameter of G, denoted diam(G), is the maximum eccentricity among the

vertices of G, i.e. diam(G) = max{e(v) | v ∈ V (G)}. The center of G is the set of vertices with

minimum eccentricity, i.e. center(G) = {v ∈ V (G) | e(v) = rad(G)}. A vertex v ∈ center(G) is called

a central vertex of G. For an arbitrary graph G it holds that rad(G) ≤ diam(G) ≤ 2 · rad(G).
A graph G = (V (G), E(G)) is bipartite if the set of vertices V (G) can be partitioned into two sets A

and B such that any edge from E(G) has one endpoint in the set A and the other in the set B. A matching

M ⊆ E(G) is a collection of edges such that every vertex of V (G) is incident to at most one edge of M .

A vertex is matched if it is an endpoint of an edge from the set M . A maximum matching is a matching

that contains the largest possible number of edges. A matching is called perfect or 1-factor if every vertex

of a graph G is matched.

To introduce the Hausdorff distance in graphs we will need the following definitions.

Definition 2.2. Let H1 be a convex subgraph of G1 and H2 a convex subgraph of G2. If H1 and H2

are isomorphic graphs, then an amalgam of G1 and G2 is any graph A obtained from G1 and G2 by

identifying their subgraphs H1 and H2. We call the isomorphic copies of G1 and G2 in A the covers of

the amalgam A and denote them by GA
1 and GA

2 , respectively. See Figure 3 for reference.

We denote the set of all amalgams of the graphs G1 and G2 by X (G1, G2).

Remark 2.3. Let A be an amalgam of G1 and G2 obtained from G1 and G2 by identifying their convex

subgraphs H1 and H2. Then GA
1 ∩GA

2 = HA
1 = HA

2 is isomorphic to H1 and H2.

Let G be the family of all simple connected graphs.

Determining the Hausdorff Distance Between Trees in Polynomial Time 5

G1 G2

H1 H2

GA
1

GA
2

A

Figure 3: An amalgam A of G1 and G2.

Definition 2.4. Let G1, G2 ∈ G. Let A be an amalgam of G1 and G2. Then the distance between the

covers GA
1 and GA

2 of the amalgam A is

hA(G
A
1 , G

A
2) := max

u∈V (A)
{dA(u,G

A
1 ∩GA

2)}.

Remark 2.5. In [1] authors introduced the Hausdorff graph 2A of the graph A and defined hA(G
A
1 , G

A
2)

as the distance between the vertices G1 and G2 in the Hausdorff graph 2A, where those two vertices cor-

respond to the subgraphs G1 and G2 of the graph A. However, it was shown in [11] that hA(G
A
1 , G

A
2) =

maxu∈V (A){dA(u,G
A
1 ∩ GA

2 }. For the sake of simplicity we define the distance between the covers GA
1

and GA
2 of the amalgam A in this way.

GivenG1, G2 ∈ G and an amalgamA ofG1 andG2, Definition 2.4 says that to determinehA(G
A
1 , G

A
2),

one has to find a vertex v ∈ V (A) with the maximum distance to GA
1 ∩ GA

2 (since hA(G
A
1 , G

A
2) =

dA(v,G
A
1 ∩GA

2)).
The Hausdorff distanceH : G × G → R on G is defined as follows:

Definition 2.6. [1] For any graphs G1, G2 ∈ G, we define

H(G1, G2) =

{

min
{

hA(G
A
1 , G

A
2) | A ∈ X (G1, G2)

}

, if G1 6∼= G2

0, if G1
∼= G2

.

We callH the Hausdorff distance on G.

From the Definition 2.6 follows that the Hausdorff distance between two graphs is zero if and only

if they are isomorphic. If two graphs are not isomorphic then there is at least one vertex outside of the

intersection GA
1 ∩GA

2 of any amalgam and therefore the Hausdorff distance is at least one.

Note, Definition 2.6 is equivalent to definition of the Hausdorff distance in [1, Definition 4.18], where

it is proven that H is a metric on the class of all simple connected pairwise non-isomorphic graphs. An

amalgam A of two simple connected graphs G1 and G2, for which hA(G
A
1 , G

A
2) = H(G1, G2) is called

an optimal amalgam.

To determine the Hausdorff distance between the graphs G1 and G2 from G one has to find an optimal

amalgam. Having a convex common subgraph of G1 and G2 an amalgam of graphs G1 and G2 can be

6 Aleksander Kelenc

constructed. Therefore, the task is to find a convex common subgraph of G1 and G2 such that the distance

between the covers GA
1 and GA

2 of the corresponding amalgam A is minimized.

In [11] the Hausdorff distance between the families of some chemical graphs were considered. The ex-

act formulae for the Hausdorff distance between paths and cycles were given. Trees were also considered

and the exact exponential time algorithm for trees was introduced. The authors stated the following open

problem:

Problem 2.7. [11] Is there a polynomial algorithm that determines the Haudsorff distance between two

arbitrary trees?

In the next sections we give an affirmative answer to Problem 2.7 and present such an algorithm.

3 Preparation for the algorithm

The main procedure of the algorithm is working on the so called top-down common subtrees and therefore

we need the following definitions summarized in [13].

Definition 3.1. Let T = (V (T), E(T)) be a rooted tree. A subtree of T is a connected subgraph of T . A

top-down subtree S = (V (S), E(S)) is a rooted subtree of T where parent[v] ∈ V (S), for all non-root

vertices v ∈ V (S). Let u ∈ V (T). A subtree of T is called a subtree rooted at u if it is induced on a

vertex set {u} ∪ descendants[u].

Definition 3.2. Two rooted trees T1 = (V (T1), E(T1)) and T2 = (V (T2), E(T2)) are isomorphic if there

is a bijection M ⊆ V (T1)×V (T2) such that (root[T1], root[T2]) ∈M and (parent[v], parent[u]) ∈M ,

for all non-root vertices v ∈ V (T1), u ∈ V (T2) with (v, u) ∈ M . The set M is called a rooted tree

isomorphism.

Definition 3.3. A top-down common subtree of the rooted tree T1 = (V (T1), E(T1)) and the rooted tree

T2 = (V (T2), E(T2)) is a structure (S1, S2,M), where S1 = (V (S1), E(S1)) is a top-down subtree

of T1, S2 = (V (S2), E(S2)) is a top-down subtree of T2 and M ⊆ V (S1) × V (S2) is a rooted tree

isomorphism of S1 and S2.

Example 3.4. In Figure 4 there are two trees T1 and T2. A subtree S1 induced on the vertex set

{v2, v6, v7, v8, v9, v11} is a top-down subtree of T1. Similarly, a subtree S2 induced on the vertex set

{u3, u4, u5, u6, u7, u8} is a top-down subtree of T2.

A subtree of T1, induced with grey vertices, is a subtree rooted at vertex v5 and it is not a top-down subtree

since, for example v5 is not the root and parent[v5] is not in the subtree.

Let M = {(v2, u3), (v6, u4), (v7, u5), (v8, u6), (v9, u7), (v11, u8)} be a rooted tree isomorphism of S1

and S2. The structure (S1, S2,M) is a top-down common subtree of rooted trees T1 and T2.

We proceed with some general properties of the Hausdorff distance between two simple connected

graphs and some properties of the Hausdorff distance between two trees.

For a convex common subgraph of two simple connected graphs one can take a trivial subgraph on one

vertex from each factor. If central vertices from the both factors are taken as a convex common subgraph

then we get a natural upper bound on the Hausdorff distance between the two graphs:

Theorem 3.5. [11] Let G1 and G2 be two arbitrary simple, connected graphs. Then

H(G1, G2) ≤ max {rad(G1), rad(G2)} .

Determining the Hausdorff Distance Between Trees in Polynomial Time 7

v1

v2

v3 v4

v5

v6

v7

v8

v9

v10

v11

T1 T2

u1 u2 u3

u4

u5

u6

u7

u8

Figure 4: Illustration of the concepts defined above.

Any tree has either one central vertex or two adjacent central vertices. If |center(T)| = 1 then we say

that a tree T is central. Otherwise it is bicentral. The next theorem states that in the tree with the larger

diameter there always exists at least one central vertex that is in every optimal amalgam.

Theorem 3.6. [11] Let T1 and T2 be two arbitrary non-trivial trees, with diam(T1) ≥ diam(T2). Let

c ∈ center(T1). Then for every optimal amalgam A ∈ X (T1, T2) it holds that {cA} ⊆ V (TA
1 ∩ TA

2).

On the other hand, an example was presented in [11] showing that this may not hold for the tree with a

smaller diameter.

We will also need to find maximum matchings in bipartite graphs. A maximum matching in bipartite

graph G = (V (G), E(G)) is called a maximum bipartite matching. The problem of finding a maximum

bipartite matching can be solved in polynomial time. The Hopcroft-Karp algorithm [9] finds a maximum

bipartite matching in O(
√

|V (G)||E(G)|) time.

Recall, to determine the Hausdorff distance between two trees, one has to find a convex common

subgraph (a subtree) of the input trees such that the distance between the covers of the corresponding

amalgam is minimized (an optimal amalgam). Note, a subtree of a tree is always a convex subgraph.

An amalgam of trees T1 and T2 is a tree. If we root an amalgam A at a vertex from the intersection

of the amalgam vA ∈ V (TA
1 ∩ TA

2), then the intersection of the amalgam is a top-down subtree of the

amalgamA. The subtrees of T1 and T2 that give rise to the rooted amalgamA are top-down subtrees of the

trees T1 and T2 rooted in the vertices corresponding to the vertex vA. We can get any optimal amalgam by

finding the appropriate top-down subtrees of the input trees, so the procedure of the algorithm works on

top-down common subtrees, and therefore, we have to root both input trees. Optimal top-down amalgam

is an amalgam optimal with respect to the rooted structure; meaning that the corresponding isomorphism

is a rooted tree isomorphism. We call a top-down common subtree optimal if the corresponding amalgam

is an optimal top-down amalgam. Note, both root vertices of an optimal top-down common subtree have

to be in the intersection of the corresponding amalgam, since the corresponding isomorphism is a rooted

tree isomorphism.

Example 3.7. We can see that in Figure 5 there are two non-isomorphic rooted trees T1 and T2. Since

8 Aleksander Kelenc

the top-down common subtree labeled with black vertices gives rise to an amalgam in which the distance

between the covers is equal to one, it follows that this is an optimal top-down common subtree.

v1

v2

v3 v4

v5

v6

v7

v8

v9

v10

v11

T1 T2

u1 u2 u3

u4

u5

u6

u7

u8

Figure 5: An optimal top-down common subtree of trees T1 (rooted at v11) and T2 (rooted at u8). It is labeled with

black vertices in both trees.

As the input of the algorithm we get two non-rooted trees T1 = (V (T1), E(T1)) and T2 =
(V (T2), E(T2)), where diam(T1) ≥ diam(T2). Since a central vertex of T1 is in the intersection of

any optimal amalgam (Theorem 3.6) we can root T1 in a central vertex. For T2 we have no such property.

In the example below we can see that an optimal top-down amalgam is not necessarily an optimal amal-

gam (non-rooted). This depends on the choice of the root vertices of the input trees T1 and T2. If we root

tree T2 in each vertex v ∈ V (T2) and run the procedure for each such case, then we are guaranteed that

the algorithm is able to find a common subtree of the input trees such that the distance between the covers

of the corresponding amalgam is minimized. In other words, this way the algorithm finds an optimal

top-down amalgam that is also an optimal amalgam.

Example 3.8. Figure 6 shows an optimal top-down common subtree of the non isomorphic rooted trees

T1 and T2. Trees T1 and T2 are almost the same to those in Figure 5, with the difference that tree T2 here

is rooted in the vertex u7. An optimal top-down common subtree is induced by black vertices and it gives

rise to an amalgam in which the distance between the covers is equal to two. Therefore, this common

subtree does not minimize the distance between the covers of the corresponding amalgam of non-rooted

trees. The minimum distance is one, see Figure 5.

4 The Algorithm

Now, we are ready to present the Algorithm 1 that determines the Hausdorff distance between two arbitrary

trees T1 and T2 in polynomial time. The corresponding common subtree structure is also determined by

the algorithm.

The algorithm uses two procedures. With respect to Definition 3.3, an optimal top-down common

subtree is a structure (S1, S2,M) and therefore, we have to find a mapping M from T1 to T2. The

procedure OptimalTopDownCommonSubtree is for determining the distance between the covers of

Determining the Hausdorff Distance Between Trees in Polynomial Time 9

v1

v2

v3 v4

v5

v6

v7

v8

v9

v10

v11

T1 T2

u1 u2 u3

u4

u5

u6

u7

u8

Figure 6: An optimal top-down common subtree of trees T1 (rooted at v11) and T2 (rooted at u7), induced on black

vetrices in both trees.

Algorithm 1: HausdorffDistanceBetweenTrees

input : Arbitrary trees T1 and T2, where diam(T1) ≥ diam(T2).
output: The Hausdorff distance between T1 and T2 stored in hd, and the corresponding common

subtree structure stored in M .

1 hd←∞
2 O← ∅
3 r1 ∈ center(T1)
4 Compute heights of vertices of tree T1 rooted in r1
5 foreach u ∈ V (T2) do

6 M ′← ∅
7 Compute heights of vertices of tree T2 rooted in u

8 distance← OptimalTopDownCommonSubtree(T1,r1,T2,u,M ′)

9 if distance < hd then

10 hd← distance

11 r2 ← u

12 O←M ′

13 end

14 end

15 M ← ∅
16 ReconstructionOfMapping(T1,r1,r2,O,M)

the optimal top-down amalgam of two rooted trees and the procedure ReconstructionOfMapping

is for the reconstruction of the subtree isomorphism that corresponds to the optimal amalgam. Notice that

the first procedure is called many times with different rooted trees as input, while the second one (for the

reconstruction of solution) is called just once, at the end of the algorithm.

First, let us describe the procedure OptimalTopDownCommonSubtree. The result of the pro-

10 Aleksander Kelenc

cedure is the distance between the covers of the optimal top-down amalgam of the input rooted trees.

Remember, an optimal top-down common subtree gives rise to an optimal top-down amalgam. An op-

timal top-down common subtree of the rooted input trees T1 and T2 can be constructed with breaking

down the original rooted trees to rooted subtrees and finding optimal top-down common subtrees of those

smaller rooted trees. We start with the root vertices r1 and r2, and traverse both trees recursively.

At each step we are in the vertices v ∈ V (T1) and u ∈ V (T2). We break down each rooted tree into

rooted subtrees, such that the rooted subtrees of T1 are rooted in the children of v and the rooted subtrees

of T2 are rooted in the children of u. We consider optimal top-down common subtrees for all possible

pairs of those smaller subtrees. After we get all optimal top-down common subtrees for the children of v

and children of u we can combine some of them and determine an optimal top-down common subtree of

the subtree rooted at v and the subtree rooted at u. When we combine optimal top-down common subtrees

of children of v and children of u, we have to be careful that we do not combine one subtree with more

than one other subtree.

We can easily determine an optimal top-down common subtree if one of the root vertices is a leaf of

original input tree (subtree rooted at this root is a trivial graph). If a vertex v ∈ V (T1) is a leaf (or a vertex

u ∈ V (T2) is a leaf) then mapping v to u gives an optimal top-down common subtree. The distance

between the covers of the corresponding amalgam is determined by the farthest vertex from the root in the

other subtree. The farthest vertex from the root is always at the distance equal to height[u] (or height[v]),
respectively. Therefore, one of the root vertices being a leaf is our stopping condition for the recursion.

Otherwise, p = |children[v]|, q = |children[u]| and without loss of generality assume p ≥ q. Denote

with v1, . . . , vp and u1, . . . , uq the children of v and u, respectively. If p > q then we add to the set

children[u] some dummy vertices D = {d1, . . . , dp−q}, otherwise D = ∅. Build the complete bipartite

graph

Gvu = ({v1, . . . , vp} ∪ ({u1, . . . , uq} ∪D) , E)

on p + (q + |D|) = 2p vertices with partition sets {v1, . . . , vp} and ({u1, . . . , uq} ∪D). For technical

reasons related to the reconstruction of an optimal top-down common subtree, the edges (vi, uj) ∈ E of

graph Gvu are ordered pairs of vertices. The first vertex is from T1 and the second is from T2. Each edge

of Gvu is assigned a non-negative weight. We want that from the weights of the edges of the graph Gvu

we are able to determine the distance between the covers of an optimal top-down amalgam of a subtree

rooted at v and a subtree rooted at u. The weight of an edge (vi, uj) ∈ E is equal to the distance between

the covers in an optimal top-down amalgam of a subtree (of T1) rooted at vi and a subtree (of T2) rooted

at uj . Therefore, we will recursively call the same procedure with different root vertices. If vi ∈ V (T1)
is a leaf (or uj ∈ V (T2) is a leaf) then the recursive call hits the stop condition and returns the distance

height[u] (or height[v]), respectively. A dummy vertex dk represents an empty subtree and no such

top-down common subtree exists. If we want that the weight of the edge (vi, dk) ∈ E can possibly give

rise to the distance between the covers of an optimal top-down amalgam of a subtree rooted at v and a

subtree rooted at u, then the edge (vi, dk) must get the weight that is equal to the distance of the farthest

vertex from the vi plus 1 (height[v] + 1), i.e. vertices v and u are in the intersection of such optimal top-

down amalgam while the whole subtree rooted at vi is not in the intersection of such optimal top-down

amalgam.

When all the weights of the graph Gvu are determined we need to get the best possible combination

of the corresponding optimal top-down amalgams to combine them into an optimal top-down amalgam A

of a subtree rooted at v and a subtree rooted at u. We have to minimize the distance between the covers

Determining the Hausdorff Distance Between Trees in Polynomial Time 11

of an optimal top-down amalgam A. To do this we need the following concept. Let Mvu be a perfect

matching of the complete bipartite graph Gvu that minimizes the value of the largest weight (we will call

it an optimal perfect matching).

Lemma 4.1. The distance between the covers of an optimal top-down amalgam of a subtree (of T1) rooted

at v and a subtree (of T2) rooted at u is equal to the largest weight in an optimal perfect matching Mvu.

Proof: Every perfect matching of the graph Gvu corresponds to a bijective mapping between partitions of

the graph Gvu. Therefore, a perfect matching gives rise to a combination of optimal top-down amalgams

between the subtrees rooted at children[v] and subtrees rooted at children[u] together with the dummy

vertices. Every subtree rooted at some vertex from the set children[v] is combined either with exactly one

subtree rooted at some vertex from the children[u] or exactly one dummy vertex. Such a combination of

optimal top-down amalgams induces an amalgam A of a subtree rooted at v and a subtree rooted at u. The

distance between the covers of the amalgam A is equal to the largest weight in a perfect matching, since

the weights of edges in the graph Gvu are the distances between the covers of the corresponding optimal

top-down amalgams.

Let Mvu be an optimal perfect matching of the graph Gvu. From the construction of the graph Gvu it

follows that the distance between the covers of an optimal top-down amalgam is at most the largest weight

in an optimal perfect matching Mvu. For the converse suppose, that the distance between the covers of

an optimal top-down amalgam is less than the largest weight in an optimal perfect matching Mvu. Using

the corresponding subtree isomorphism M of the optimal top-down common subtree we can construct

the complete bipartite graph G′
vu which has an optimal perfect matching with the largest weight that is

smaller than the largest weight in Mvu, a contradiction with the construction of Gvu.

Therefore, the distance between the covers of an optimal top-down amalgam is equal to

min
M⊂E

(

max
e∈M

w(e)

)

,

where M is a perfect matching of the complete bipartite graph Gvu and w(e) represents the weight of the

edge e.

When all the recursive calls are completed, we get back to the root vertices and the largest weight of

the optimal perfect matching Mr1u is the distance between the covers of an optimal top-down amalgam

of the rooted trees T1 and T2.

12 Aleksander Kelenc

Procedure OptimalTopDownCommonSubtree(T1,v,T2,u,M ′)

input : Rooted tree T1 and its root vertex v, rooted tree T2 and its root vertex u, and the union set

of solutions to the optimal perfect matching problems M ′.

output: Distance between the subtree of T1 rooted at v and subtree of T2 rooted at u, and the union

set of solutions to all optimal perfect matchings solved during the procedure saved in M ′.

1 if isLeaf(T1,v) or isLeaf(T2,u) then

2 return max(height(T1,v) , height(T2,u))

3 end

4 Create the complete bipartite graph Gvu without edge weights

5 foreach e = xy ∈ Gvu do

6 if x is dummy vertex then

7 weight(e)← height(T2,y)+1
8 else if y is dummy vertex then

9 weight(e)← height(T1,x)+1
10 else

11 weight(e)← OptimalTopDownCommonSubtree(T1,x,T2,y,M ′)

12 end

13 end

14 Mvu← SolveOptimalPerfectMatching(Gvu)

15 distance← the largest weight of Mvu

16 Remove edges incident with dummy vertices from Mvu.

17 M ′ = M ′ ∪Mvu

18 return distance

The described procedure uses the sub-procedure SolveOptimalPerfectMatching that finds a

perfect matching of the complete bipartite graph Gvu that minimizes the value of the largest weight (an

optimal perfect matching) and returns it. For the sake of clarity we will describe this sub-procedure briefly.

Given a complete bipartite graph Gvu = (V (Gvu), E(Gvu)) with |V (Gvu)| = 2p, we first sort the

edges in the ascending order of the edge weights and make an array of all different edge weights. Then

we find an optimal perfect matching of Gvu by using binary search on the array of the edge weights

where on each step we run Hopcroft-Karp algorithm for finding a maximum bipartite matching. In each

iteration we have an edge weight w in the middle of the current array. Take the spanning subgraph G′
vu of

the graph Gvu with all the edges having the weights smaller or equal than w. Find a maximum bipartite

matching M ′
vu of the graph G′

vu using the Hopcroft-Karp algorithm. If |M ′
vu| = p, then the optimal

perfect matching Mvu has the largest weight smaller of equal than w. We save current M ′
vu into Mvu

and we can continue the binary search in the left half of the current array. Otherwise, the optimal perfect

matching Mvu has the largest weight greater than w and we can continue the binary search in the right

half of the current array. Since the graph Gvu is a finite complete bipartite graph there will be at least

one maximum bipartite matching M ′
vu with cardinality p during the described binary search. In the end,

return the matching Mvu.

Let us take a look at an example of executing the procedure OptimalTopDownCommonSubtree

on the input rooted trees T1 (rooted at v11) and T2 (rooted at u8), both depicted in Figure 5.

Determining the Hausdorff Distance Between Trees in Polynomial Time 13

Example 4.2. We start with the tree T1 rooted at v11 and tree T2 rooted at u8. Since none of the root

vertices is a leaf we build the following complete bipartite graph with edge weights table shown on the

right hand-side:

Gv11u8
:

v6

v9

v10

u4

u7

d1

u4 u7 d1
v6 3

v9 3

v10 1 2 1

We know the weights of edges if one of the endpoints is a leaf or a dummy vertex. To get the missing

weights we have to proceed recursively down the trees.

First, we want to determine the weight of the edge v6u4. In order to find the optimal top-down common

subtree of the subtree rooted at v6 and subtree rooted at u4 we get complete bipartite graph Gv6u4
:

v2

v5

d2

u1

u2

u3

u1 u2 u3

v2 1 1 1©
v5 1 1© 1

d2 1© 1 1

Since the vertices u1, u2 and u3 are leaves, all the weights are known. Therefore, we get an optimal

perfect matching Mv6u4
= {(v2, u3), (v5, u2), (d2, u1)} of the complete bipartite graph (drawn with bold

edges and encircled weights). The largest weight of Mv6u4
is 1, therefore the weight of the edge v6u4

from graph Gv11u8
is 1.

Next, we want to determine the weight of the edge v6u7. In order to find the optimal top-down common

subtree of the subtree rooted at v6 and the subtree rooted at u7 we get complete bipartite graph Gv6u7
:

v2

v5

u6

d3

u6 d3
v2 2

v5 2

For the weights of edges v2u6 and v5u6 we have to find the optimal top-down common subtrees of the

following two pairs of rooted subtrees. The first pair with the subtree rooted at v2 and subtree rooted at

u6 yields the trivial weighted complete bipartite graph Gv2u6
with the optimal perfect matching Mv2u6

=
{(v1, u5)}:

14 Aleksander Kelenc

v1 u5

u5

v1 0©

The second one with the subtree rooted at v5 and subtree rooted at u6 yields the complete bipartite graph

Gv5u6
with optimal perfect matching Mv5u6

= {(v3, u5), (v4, d4)}:

v3

v4

u5

d4

u5 d4
v3 0© 1

v4 0 1©

Therefore, the weights of edges v2u6 and v5u6 from graph Gv6u7
are 0 and 1, respectively. We have all

the weights of the graph Gv6u7
to find the optimal top-down common subtree of the subtree rooted at v6

and the subtree rooted at u7:

v2

v5

u6

d3

u6 d3
v2 0© 2

v5 1 2©

From the largest weight of optimal perfect matching Mv6u7
= {(v2, u6), (v5, d3)} it follows that the

weight of the edge v6u7 from graph Gv11u8
is equal to 2.

Proceeding in the same way, we have to determine the weight of the edge v9u4. In order to find

the optimal top-down common subtree of the subtree rooted at v9 and the subtree rooted at u4 we get the

complete bipartite graphGv9u4
with the optimal perfect matchingMv9u4

= {(v8, u1), (d5, u2), (d6, u3)}:

v8

d5

d6

u1

u2

u3

u1 u2 u3

v8 1© 1 1

d5 1 1© 1

d6 1 1 1©

The largest weight of the optimal perfect matching Mv9u4
is equal to 1 so the weight of the edge v9u4

from graph Gv11u8
is 1.

To get the last missing weight, namely the weight of the edge v9u7, from the graph Gv11u8
we have to

find the optimal top-down common subtree of the subtree rooted at v9 and the subtree rooted at u7. We

get the trivial weighted complete bipartite graph Gv9u7
:

v8 u6 u6

v8

The perfect matching is trivial but we still need the weight of the edge v8u6. To get the weight of the

edge v8u6 we get another trivial complete bipartite graph Gv8u6
with optimal perfect matching Mv8u6

=

Determining the Hausdorff Distance Between Trees in Polynomial Time 15

{(v7, u5)}:

v7 u5 u5

v7 0©

Since the largest weight of the matching Mv8u6
is equal 0 also the largest weight of the previous trivial

matching Mv9u7
= {(v8, u6)} is equal to 0. Therefore, the weight of the edge v9u7 is equal to 0 and now

we have all the weights to find the perfect matching of the complete bipartite graph Gv11u8
:

v6

v9

v10

u4

u7

d1

u4 u7 d1
v6 1© 2 3

v9 1 0© 3

v10 1 2 1©

After finding the optimal perfect matching Mv11u8
= {(v6, u4), (v9, u7), (v10, d1)} we get the optimal

top-down common subtree of the input rooted trees T1 (rooted at v11) and T2 (rooted at u8). The largest

weight of the optimal perfect matching Mv11u8
is equal to 1 so the distance between the covers of the

corresponding amalgam is equal to 1.

The procedure ReconstructionOfMapping is used to construct an actual optimal top-down com-

mon subtree isomorphism mapping M of the input rooted trees. The construction is based on the Lemma

4.3. First, recall some properties of optimal perfect matchings.

At a fixed step during the procedure OptimalTopDownCommonSubtree we are in the vertices

v ∈ T1 and u ∈ T2. Let S1 = (V (S1), E(S1)) be the subtree of T1 rooted at v and S2 = (V (S2), E(S2))
the subtree of T2 rooted at u. The solution to an optimal perfect matching Mvu of the complete bipartite

graph Gvu is a set of weighted edges. Notice, the endpoints of those edges are from the vertex sets

V (S1), V (S2) or dummy vertices D. If we remove from set Mvu all the edges with a dummy vertex as an

endpoint, then we get a set of ordered pairs of vertices M ′
vu ⊆ V (S1) × V (S2). Since V (S1) ⊆ V (T1)

and V (S2) ⊆ V (T2) it follows that M ′
vu ⊆ V (T1)× V (T2).

Lemma 4.3. Let T1 = (V (T1), E(T1)) and T2 = (V (T2), E(T2)) be input rooted trees for the procedure

OptimalTopDownCommonSubtree and let M ′ ⊆ V (T1)×V (T2) be the union set of solutions to all

optimal perfect matching problems solved during the procedure without the edges incident with dummy

vertices. There is a unique optimal top-down common subtree isomorphism M ⊆ V (T1) × V (T2) such

that M ⊆M ′.

Proof:

Let T1 = (V (T1), E(T1)) and T2 = (V (T2), E(T2)) be the input rooted trees for the procedure

OptimalTopDownCommonSubtree and let M ′ be the corresponding union set of solutions to op-

timal perfect matching problems without the edges incident with dummy vertices. If we show that for

each vertex v ∈ V (T1) with (parent(v), z) ∈ M ′, for some vertex z ∈ V (T2), there is at most one pair

(v, w) ∈ M ′ such that parent(w) = z, then we can reconstruct the unique optimal top-down common

subtree isomorphism M ⊆ M ′ of T1 and T2 in the order of non-decreasing depth of the vertices in the

tree T1.

16 Aleksander Kelenc

Let (v, w1), (v, w2) ∈ M ′ with w1 6= w2. Suppose that vertices w1 and w2 are siblings. Both of

them appear in the bipartite graph Gpz in the same partition set, where p = parent(v). Two edges in a

(bipartite) matching cannot share a common vertex. Only one pair, either (v, w1) or (v, w2), can be part of

an optimal perfect matching for Gpz , a contradiction. It follows that vertices w1 and w2 are not siblings.

Therefore, parent(w1) 6= parent(w2).

We will reconstruct an optimal top-down common subtree isomorphism mapping M ⊆ V (T1)×V (T2)
from the set M ′ ⊆ V (T1) × V (T2) as follows. Begin with M = {(r1, r2)} and for all the remaining

vertices v ∈ V (T1) in preorder traversal(i) of the tree T1, add the pair (v, w) to the set M if it holds that

(v, w) ∈M ′ and (parent(v), parent(w)) ∈M .

Procedure ReconstructionOfMapping(T1,r1,r2,M ′,M)

input : Rooted tree T1 and its root vertex r1, root vertex r2 of T2, the union set of solutions to the

optimal perfect matching problems M ′ and mapping M .

output: Optimal top-down common subtree isomorphism mapping M from the subtree of T1

rooted at r1 to subtree of T2 rooted at r2 reconstructed from the union set of solutions to

all optimal perfect matchings saved in M ′.

1 M ←M ∪ (r1, r2)
2 Let P (T1) = (v1, . . . , vn) be the preorder set of the vertex set V (T1)
3 for i← 1 to n do

4 foreach (vi, w) ∈M ′ do

5 if ((parent(vi), parent(w)) ∈M then

6 M ←M ∪ (vi, w)
7 end

8 end

9 end

In Example 4.4 we continue Example 4.2 with the reconstruction of an optimal top-down common

subtree isomorphism mapping M .

Example 4.4. The solutions to optimal perfect matching problems solved during the procedure are listed

below.

(i) In this case, preorder traversal means that we start in the root vertex and, the parent vertices have to be visited before their child

vertices. The visiting order of children of a vertex is not important.

Determining the Hausdorff Distance Between Trees in Polynomial Time 17

Mv6u4
= {(v2, u3), (v5, u2), (d2, u1)}

Mv2u6
= {(v1, u5)}

Mv5u6
= {(v3, u5), (v4, d4)}

Mv6u7
= {(v2, u6), (v5, d3)}

Mv9u4
= {(v8, u1), (d5, u2), (d6, u3)}

Mv8u6
= {(v7, u5)}

Mv9u7
= {(v8, u6)}

Mv11u8
= {(v6, u4), (v9, u7), (v10, d1)}

The set M ′ ⊆ V (T1)×V (T2) equals to the union of the above sets without the edges incident with dummy

vertices. Therefore,

M ′ ={(v1, u5),

(v2, u3), (v2, u6),

(v3, u5),

(v5, u2),

(v6, u4),

(v7, u5),

(v8, u1), (v8, u6),

(v9, u7)}.

We start with the mapping set M = {(v11, u8)}. Following the preorder traversal of T1 rooted at v11 we

add (v6, u4), (v2, u3), (v5, u2), (v9, u7), (v8, u6) and (v7, u5) to the set M .

Finally, we have the following Theorem.

Theorem 4.5. The Algorithm 1 determines the Hausdorff distance between the input trees and finds the

corresponding common subtree isomorphism M .

Proof:

In the optimal top-down amalgam root vertices are always in the intersection of the amalgam. There-

fore, we can root T1 in a central vertex due to the Theorem 3.6. For the root of T2 we choose each vertex

of the vertex set of T2, making sure that one of the optimal top-down amalgams will coincide with an opti-

mal amalgam of the input trees. The correctness of the ProcedureOptimalTopDownCommonSubtree

follows from Lemma 4.1 and the correctness of the Procedure ReconstructionOfMapping follows

from Lemma 4.3.

In order to bound the time complexity of Algorithm 1 we need the time complexities of the procedures

and sub-procedures.

18 Aleksander Kelenc

Lemma 4.6. Let T1 = (V (T1), E(T1)) and T2 = (V (T2), E(T2)) be rooted input trees of the procedure

OptimalTopDownCommonSubtree and let Gvu be the complete bipartite graph on 2p vertices con-

sidered during the procedure. The sub-procedure of finding an optimal perfect matching of graph Gvu

runs in O
(

log (|V (T1)|) · p
5

2

)

.

Proof: Graph Gvu has p2 edges. First we sort all the edges in O(p2 · log (p2)) time. Then we do a binary

search on the array of all different edge weights. There are at most |V (T1)| different edge weights in the

graph Gvu since the edge weights in graph Gvu are made from heights of the vertices of the input trees.

Therefore, the binary search takes at most log (|V (T1)|) iterations. At each iteration we run the Hopcroft-

Karp algorithm for maximum bipartite matching. Hopcroft-Karp algorithm runs in O(
√

|V (G)||E(G)|)

time [9]. This gives us the O
(

log (|V (T1)|) · p
5

2

)

overall time complexity.

Lemma 4.7. Let T1 = (V (T1), E(T1)) and T2 = (V (T2), E(T2)) be rooted in-

put trees of the procedure OptimalTopDownCommonSubtree. The time com-

plexity of the procedure OptimalTopDownCommonSubtree is bounded by

O
(

log (|V (T1)|) · |V (T1)| · |V (T2)| ·
(

|V (T1)|
3

2 + |V (T2)|
3

2

))

.

Proof: If one of the root vertices is a leaf then the complexity of the procedure is constant. Therefore, the

total effort spent on leaves is bounded by O (|V (T1)|+ |V (T2)|).

If both of the root vertices are non-leaves then the most (time) consuming part of the proce-

dure is the sub-procedure SolveOptimalPerfectMatching and is bounded by time complexity

O
(

log (|V (T1)|) · p
5

2

)

due to the Lemma 4.6, where p = max {|children[v]|, |children[u]|}. Until the

end of the proof we will denote |children[v]| with c(v). If we sum the time complexities of all the possi-

ble pairs of vertices such that one is from V (T1) and the other is from V (T2) then we get an upper bound

for the time complexity. Therefore, using the following equalities and inequalities

Determining the Hausdorff Distance Between Trees in Polynomial Time 19

∑

v∈V (T1),u∈V (T2)

max
{

log (|V (T1)|) · c(v)
5

2 , log (|V (T1)|) · c(u)
5

2

}

≤

≤
∑

v∈V (T1),u∈V (T2)

(

log (|V (T1)|) · c(v)
5

2 + log (|V (T1)|) · c(u)
5

2

)

=

= log (|V (T1)|) ·
∑

v∈V (T1)





∑

u∈V (T2)

c(v)
5

2 + c(u)
5

2



 =

= log (|V (T1)|) ·
∑

v∈V (T1)

((

|V (T2)| · c(v)
5

2

)

+
(

c(u1)
5

2 + · · ·+ c(u|V (T2)|)
5

2

))

≤

≤ log (|V (T1)|) ·
∑

v∈V (T1)

((

|V (T2)| · c(v)
5

2

)

+
(

c(u1) + · · ·+ c(u|V (T2)|)
)

5

2

)

≤

≤ log (|V (T1)|) ·
∑

v∈V (T1)

((

|V (T2)| · c(v)
5

2

)

+ |V (T2)|
5

2

)

=

= log (|V (T1)|) ·
((

|V (T1)| · |V (T2)|
5

2

)

+
((

|V (T2)| · c(v1)
5

2

)

+ · · ·+
(

|V (T2)| · c(v|V (T1)|)
5

2

)))

=

= log (|V (T1)|) ·
((

|V (T1)| · |V (T2)|
5

2

)

+ |V (T2)| ·
(

c(v1)
5

2 + · · ·+ c(v|V (T1)|)
5

2

))

≤

≤ log (|V (T1)|) ·
((

|V (T1)| · |V (T2)|
5

2

)

+ |V (T2)| ·
(

c(v1) + · · ·+ c(v|V (T1)|)
)

5

2

)

≤

≤ log (|V (T1)|) ·
((

|V (T1)| · |V (T2)|
5

2

)

+
(

|V (T2)| · |V (T1)|
5

2

))

we get that the total effort spent on non-leaves is bounded by

O
(

log (|V (T1)|) · |V (T1)| · |V (T2)| ·
(

|V (T1)|
3

2 + |V (T2)|
3

2

))

.

Theorem 4.8. Let T1 = (V (T1), E(T1)) and T2 = (V (T2), E(T2)) be input trees of the Algorithm 1,

where diam(T1) ≥ diam(T2). The time complexity of the Algorithm 1 is bounded by

O
(

log (|V (T1)|) · |V (T1)| · |V (T2)|
2 ·

(

|V (T1)|
3

2 + |V (T2)|
3

2

))

.

Proof: Since the procedure ReconstructionOfMapping runs in O (|V (T1)| · |V (T2)|) it follows

that the most expensive part of the Algorithm 1 is the for loop which iterates through all the vertices of

V (T2). At every iteration, the procedure OptimalTopDownCommonSubtree is called. Therefore,

the time complexity of the Algorithm 1 is bounded by

O
(

|V (T2)| ·
(

log (|V (T1)|) · |V (T1)| · |V (T2)| ·
(

|V (T1)|
3

2 + |V (T2)|
3

2

)))

.

20 Aleksander Kelenc

References

[1] I. Banič, A. Taranenko, Measuring closeness of graphs – the Hausdorff distance, A. Bull. Malays.

Math. Sci. Soc. 40 (2017) 75-95.

[2] G. Benadé, W. Goddard, T. A. McKee, P. A. Winter, On distances between isomorphism classes of

graphs, Math. Bohem. 116 (2) (1991) 160-169.

[3] H. Bunke, On a relation between graph edit distance and maximum common subgraph, Pattern

Recognit. Lett. 18 (8) (1997) 689-694.

[4] H. Bunke, K. Shearer, A graph distance metric based on the maximal common subgraph, Pattern

Recognit. Lett. 19 (1998) 255-259.

[5] G. Chartrand, F. Saba, H. B. Zou, Edge rotations and distance between graphs, Čas. pěst. mat. 110

(1) (1985) 87-91.

[6] G. M. Downs, P. Willett, Similarity searching in databases of chemical structures, in: K. B. Lip-

kowitz, D. B. Boyd (Eds.), Reviews in Computational Chemistry, Volume 7, John Wiley & Sons,

Inc., Hoboken, NJ, USA, 2007, pp. 1-66.

[7] E. Duesbury, J. D. Holliday, P. Willett, Maximum Common Subgraph Isomorphism Algorithms,

MATCH Commun. Math. Comput. Chem. 77 (2017) 213-232.

[8] X. Gao, B. Xiao, D. Tao, X. Li, A survey of graph edit distance, Pattern Anal. and Appl. 13 (1)

(2010) 113-129.

[9] J. E. Hopcroft, R. M. Karp, An n5/2 Algorithm for Maximum Matchings in Bipartite Graphs, SIAM

J. Comput. 2 (4) (1973) 225-231.

[10] M. Johnson, An ordering of some metrics defined on the space of graphs, Czechoslovak Math. J. 37

(1) (1987) 75-85.

[11] A. Kelenc, A. Taranenko, On the Hausdorff Distance between Some Families of Chemical Graphs,

MATCH Commun. Math. Comput. Chem. 74 (2015) 223-246.

[12] J. W. Raymond, P. Willett, Maximum common subgraph isomorphism algorithms for the matching

of chemical structures, J. Comput. Aid. Mol. Des. 16 (2002) 521-533.

[13] G. Valiente, Algorithms on Trees and Graphs, Springer-Verlag, Berlin Heidelberg, 2010.

[14] P. Willett, Matching of Chemical and Biological Structures Using Subgraph and Maximal Common

Subgraph Isomorphism Algorithms, in: D. G. Truhlar, W.J. Howe, A. J. Hopfinger, J. Blaney, R.

A. Dammkoehler (Eds.), Rational Drug Design, Springer, New York, 1999, pp. 11-38.

