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We show that, with the exception of the words a2ba2 and b2ab2, all (finite or infinite) binary patterns in the Prouhet-
Thue-Morse sequence can actually be found in that sequence as segments (up to exchange of letters in the infinite
case). This result was previously attributed to unpublished work by D. Guaiana and may also be derived from
publications of A. Shur only available in Russian. We also identify the (finitely many) finite binary patterns that
appear non trivially, in the sense that they are obtained by applying an endomorphism that does not map the set of all
segments of the sequence into itself.
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1 Introduction
Let µ be the endomorphism of the free semigroup {a, b}+ defined by µ(a) = ab and µ(b) = ba. Since a is
a prefix of µ(a), µn(a) is also a prefix of µn+1(a). Hence, the sequence (µn(a))n determines a sequence
of letters, or infinite word, whose prefix of length 2n is µn(a); we say that the infinite word t thus obtained
is generated by µ. It is called the Prouhet-Thue-Morse sequence and it has been the object of extensive
studies and applications. It was first considered by Prouhet (1851) in connection with a problem in number
theory, five decades later by Thue (1906, 1912) to exhibit infinite words avoiding cubes and squares, and
another two decades later by Morse (1921) as a discretized description of non-periodic recurrent geodesics
in surfaces of negative curvature. See Allouche and Shallit (1999) for a survey on this topic, including
several further connections with other branches of Mathematics. The first author and other collaborators
have previously studied the sequence t in the framework of symbolic dynamics and its connections with
free profinite semigroups (see Almeida and Costa (2013) and Almeida et al. (2020)). It was in fact an
attempt to construct a profinite semigroup with certain properties that prompted this work, although no
further references to profinite semigroups will be made in this paper.
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This paper concerns the study of binary patterns of t, that is, finite or infinite words w over the alphabet
{a, b} for which there exists an endomorphism ϕ of the semigroup {a, b}+ (naturally extended to infinite
words) such that the word ϕ(w) can be found as a block of consecutive letters of t (which we call a
segment of t). Since we need to identify concrete finite segments of t, a simple and efficient algorithm on
how to compute them is presented in Section 2.

Characterizations of binary patterns of t are due to Shur (1996a) and D. Guaiana (unpublished work
announced in Restivo and Salemi (2002b,a)). Our first main contribution is a proof of the characterization
attributed to D. Guaiana (but also, independently, obtained by Shur (1997) in his thesis) using results
from Shur (1996a): with the exception of a2ba2 and b2ab2, the binary patterns of t are its finite segments.
Section 3 presents our proof of this result.

The endomorphism µ and the endomorphism ξ exchanging the letters a and b are easily seen to trans-
form finite segments of t into other such segments. In Section 4, we consider the problem of determining
which finite segments may only be transformed into other segments by endomorphisms of {a, b}+ that
may be obtained by composition of µ and ξ. Such words are said to be typical since we show that all but
finitely many finite segments of t are typical. We further determine all atypical words. As an application
of our results, we also determine all infinite binary patterns of t.

We conclude the paper with Section 5, where we propose the investigation of the properties we estab-
lished for t for arbitrary infinite words.

2 Segments of t
By a word we always mean a finite sequence of letters of an alphabet A, that is a member of the free
monoid A∗. A word u is a factor of a word v if there exist words x and y such that v = xuy. In spite of
the terminology, an infinite word is not a word but rather an infinite sequence of letters.

Note that {ab, ba} is a code, in the sense that it generates a free subsemigroup of {a, b}+ and, therefore,
µ is injective.

For an infinite word w = a1a2 · · · , by the segments of w we mean the words of the form akak+1 · · · a`
with k 6 ` and the infinite words of the form akak+1 · · · . Note that, since µn+1(a) = µn(a)µn(b), all
factors of the words µn(b) are segments of t. It follows that a word u ∈ {a, b}+ is a segment of t if and
only if so is the word that is obtained from u by interchanging the letters a and b.

A word w ∈ A+ is said to be avoided by t if there is no homomorphism ϕ : A+ → {a, b}+ such that
ϕ(w) is a segment of t. We also say that w ∈ A+ is unavoidable in t if it is not avoided by t; we then
also say that w is a pattern of t. For instance, it is well known that a3 and ababa are avoided by t, which
is also expressed by saying that t is, respectively, cube-free and overlap-free (Lothaire, 1983).

The preceding notions are extended to infinite words by saying how endomorphisms of {a, b}+ are
applied to infinite words. Given an infinite word w = a1a2 · · · over the alphabet {a, b} and an endo-
morphism ϕ of {a, b}+, we let ϕ(w) be infinite word obtained by concatenating the ϕ(ai): ϕ(w) =
ϕ(a1)ϕ(a2) · · · .

For a nonempty word u, let t1(u) denote its last letter.
The computation of the segments of t may be carried out easily in view of the following proposition.

The first part is an improved version of Shur (1996b, Corollary 1), although the same conclusion is in fact
already established in the proof of the cited statement. We present a proof for the sake of completeness.
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Proposition 2.1 A word w is a segment of t if and only if it is a factor of µn(a), where n = 1 if |w| = 1,
n = 3 if |w| = 2, and n = 2 + dlog2(|w| − 1)e otherwise. Moreover, for every integer k > 3, the value
n = 2 + dlog2(k − 1)e is minimum for µn(a) to admit as factors all segments of t of length k.

Proof: Since t is cube-free, the cases where |w| 6 3 are easily verified by inspection. Suppose that w is
a segment of t which we may assume to be of length at least 4. Then, w is a factor of µn(a) for some
positive integer n. Take n to be minimum with that property. If m is the minimum positive integer such
that w is a factor of µm(x) for some letter x, then either only x = b can play that role and n = m + 1,
or x = a may play it and n = m. We need to show, respectively, that m 6 1 + dlog2(|w| − 1)e or
m 6 2 + dlog2(|w| − 1)e. Since |w| > 4, we may assume that m > 4 for, otherwise, the inequality
m 6 1 + dlog2(|w| − 1)e holds trivially.

Let µ(x) = xy. As µm(x) = µm−1(xy) and m is minimum, there must be a nontrivial factorization
w = w1w2 with w1 a suffix of µm−1(x) and w2 a prefix of µm−1(y).

If one of the factors w1 or w2 has length greater than 2m−2, then we must have |w| > 2m−2 + 1,
which implies that m 6 1 + dlog2(|w| − 1)e and fulfills our aim. Thus, we may assume that both
w1 and w2 have length at most 2m−2. Now, we have µm(x) = µm−2(xyyx) and w is a factor of
µm−2(yy) = µm−3(yxyx). If w is a factor of either µm−3(xyx) or µm−3(yxy), then it is also a factor of
µm−2(xx) = µm−3(xyxy) and, therefore, also of µm(y), so that we are in the case n = m. On the other
hand, by the minimality of m the word w cannot be a factor of µm−3(xy) = µm−2(x) or µm−3(yx) =
µm−2(y), and so we have |w| > 2m−3 + 2, which implies that n = m 6 2 + dlog2(|w|− 1)e, as claimed.
It remains to consider the case where w is a factor of neither µm−3(xyx) nor µm−3(yxy). Then there
must be a factorization w = sµm−3(xy)z with s and z nontrivial words, so that |w| > 2m−2 + 2, which
yields m 6 1 + dlog2(|w| − 1)e. This completes the proof of the first part of the proposition.

To prove the last part of the proposition, first note that, for k > 3, the value of f(k) = 2+dlog2(k−1)e
is at least 3. We claim that, for n > 3, there is a word of length 2n−3 + 2 that is a segment of t but not a
factor of µn−1(a). Noting that f(2n−3 + 2) = n, the result follows.

To establish the claim, consider the word w = t1(µn−3(b))µn−3(a)b. It is a segment of t, in fact a
factor of µn(a) = µn−2(a)µn−3(b) · µn−3(a) · µn−1(b) since b is the first letter of µn−1(b). It remains
to show that w is not a factor of µn−1(a) = µn−3(a)µn−3(b)µn−3(b)µn−3(a). Otherwise, since there
are no overlaps in t, w must be a factor of µn−3(bb). For n = 3, this is clearly impossible since not even
µn−3(a) = a is a factor of µn−3(bb) = bb. For n > 3, we have

µn−3(a) = µn−4(a)µn−4(b) (1)

µn−3(bb) = µn−4(b)µn−4(a)µn−4(b)µn−4(a). (2)

Since there are no overlaps in µn−3(bb), the only place where µn−3(a) is found as a factor of µn−3(bb)
is as the product of the two middle factors in the factorization given in (2). Hence, the word w =
t1(µn−3(b))µn−3(a)b is not a factor of µn−3(bb) since, for instance, b is not the first letter of µn−4(a). 2

For example, the segments of lengths 4 and 5 of the infinite word t are the factors of those lengths
of µ4(a) = abbabaabbaababba. But, for instance, aabb is a segment of t but not a factor of µ3(a) =
abbabaab; it is precisely the segment considered in the last part of the proof of Proposition 2.1.

Throughout the remainder of the paper, when we need to check whether a concrete finite word is a
segment of t, without any further reference we simply apply the algorithm given by Proposition 2.1,
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which is linear in the length of the given word. We proceed similarly when we need to compute all the
segments of t of a given length.

Now, we take into account also the dual version of Proposition 2.1, where µn(b) is considered instead
of µn(a), which is a direct consequence of Proposition 2.1 using the fact that the set of all segments of t
of fixed length k is closed under taking images under ξ. Since every segment of t of length 2n+1−1 must
contain the factor µn(a) or µn(b), it follows from Proposition 2.1 that, for k > 3, every segment of length
k of t is a factor of every segment of t of some length ` which is at most

22+dlog2(k−1)e+1 − 1 6 24+log2(k−1) − 1 = 16k − 17.

The existence of such an ` is the property known as uniform recurrence of t and holds for every sequence
generated by iterating a primitive endomorphism of a free semigroup (Queffélec, 2010, Proposition 5.2).
In the case of the Prouhet-Thue-Morse sequence, the optimum value of ` is presented in Allouche and
Shallit (2003, Example 10.9.3): for k > 3, we have ` = 9 · 2r + k − 1, where r is the integer determined
by the inequalities 2r + 2 6 k 6 2r+1 + 1. Note that using the first inequality determining r, one gets the
upper bound ` 6 10k − 19, which is better than our rough upper bound ` 6 16k − 17.

3 Finite binary patterns
The following result plays a key role below.

Theorem 3.1 (Shur (1996a)) The set of words of {a, b}+ that are avoided by t is the fully invariant ideal
generated by the set

{a3, ababa, a2ba2b, ab2ab2, t1(µk(a))µk(aba)a (k > 1), t1(µm(a))µm(bab)a (m > 2)}.

Moreover, the above is a minimal generating set for the fully invariant ideal of the words avoided by t.

The generators corresponding to k = 1 and k = 2 are, respectively, bab2a2ba and a ab2a ba2b ab2a a;
the generator corresponding to m = 2 is a ba2b ab2a ba2b a while, for m = 1, the word given by
t1(µm(a))µm(bab)a = b2a2b2a2 is avoided by t but may be obtained for instance from the generator
a2ba2b by mapping a to b and b to a2.

Another useful ingredient in our arguments is the following “synchronization” result.

Lemma 3.2 (de Luca and Varricchio (1989, Lemma 3.9)) Let X = {ab, ba} and consider s ∈ X+

with |s| > 4. If u and v are words such that usv ∈ X+ and |u| is odd then usv has an overlap.

Since t has no overlaps, we conclude that t = usv, with s as in Lemma 3.2 and u a finite word, then u
has even length.

Corollary 3.3 If there is a factorization t = uµn+1(x)v where u ∈ {a, b}∗, x ∈ {a, b}, and n > 0, then
u = µn(w) and v = µn(z) for some word w and infinite word z.

Proof: We proceed by induction on n, the case n = 0 being trivial as µ0 is interpreted to be the identity
function. Suppose that n > 1 and, by symmetry, assume that x = a. Since µn+1(a) = µn(a)µn(b) =
µn−1(abba), by the induction hypothesis we know that u = µn−1(w) and v = µn−1(z), for some finite
word w and infinite word z, and so t = wabbaz. Lemma 3.2 then implies that w and z belong to the
image of µ. Hence, u and v belong to the image of µn. 2
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We say that a segment u of t is special if both ua and ub are segments of t. The special segments
of t have been investigated by de Luca and Varricchio (1989) with the purpose of counting the number of
segments of each given length. For our purposes, it suffices to observe the following much simpler result.

Lemma 3.4 (de Luca and Varricchio (1989, Lemma 3.6)) If the word w is special, then so is µ(w).

We say that two words are suffix comparable if at least one of them is a suffix of the other. The following
lemma is the core of our arguments.

Lemma 3.5 Suppose that u is a finite word such that ua is unavoidable in t and ub is a segment of t but
ua is not. If n > 2 and u is suffix comparable with µn(a), then u is also suffix comparable with µn+1(b).

Proof: Since µn(a) is a suffix of µn+1(b) = µn(b)µn(a), we may assume that µn(a) is a suffix of u,
say u = u1µ

n(a). Consider a concrete occurrence of ub in t: t = u0ubv, where u0 ∈ {a, b}∗. Since
t is recurrent, we may assume that |u0| > 2n. By Corollary 3.3, we know that u0u1 = µn−1(u′) and
bv = µn−1(v′) for some word u′ and infinite word v′ (cf. Figure 1). Since µn−1(v′) starts with b, so does
v′.

u0 u bv

u1 µn(a)

µn−1(v′)µn−1(u′)

Fig. 1: Some segments of t

Suppose first that u′ ends with the letter b and |u| > 3 · 2n−1. If u′ ends in ab then the word
t1(µn−1(a))µn−1(bab)a is a suffix of ua which, in view of Theorem 3.1, contradicts the assumption
that ua is unavoidable in t. On the other hand, if u′ ends with b2 then, taking into account that bv starts
with µn−1(b), we conclude that t = µn−1(u′′b2ab2v′′) for some finite word u′′ and infinite word v′′.
Since t is a fixed point of the injective endomorphism µ, it follows that b2ab2 is a segment of t, which we
know is not the case.

If |u| 6 3 · 2n−1, then u is suffix of µn−1(xab) for a letter x. By Lemma 3.4, as it is easy to check
that xab is special, so is µn−1(xab). Hence, u is special, contradicting the assumption that ua is not a
segment of t.

Thus, u′ must end with ba, so that u0u ends with µn+1(b). Since both u and µn+1(b) are suffixes
of u0u, they must be suffix comparable, thereby concluding the proof of the lemma. 2

Similarly, one can prove the following lemma.

Lemma 3.6 Suppose that u is a finite word such that ua is unavoidable in t and ub is a segment of t but
ua is not. If n > 2 and u is suffix comparable with µn(b) then u is also suffix comparable with µn+1(a).

Shur also observed in Shur (1996a) that the word a2ba2 (and, therefore, also b2ab2) is unavoidable in t
but it is not a segment of t. Our first main result is that there are no other such examples, thus providing
an alternative characterization of two-letter words unavoidable in t.

According to Restivo and Salemi (2002a, Theorem 2) and Restivo and Salemi (2002b, Theorem 3),
the following theorem, which is considered to be surprising, was first proved by D. Guaiana in 1996
but, through private communication with A. Restivo, we learned that the proof was never published and
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the manuscript appears to be lost. On the other hand, we later learned from A. M. Shur that the next
theorem also appears in his Ph.D. thesis (1997), which has never been published other than as a document
in the Russian State Library. Moreover, Shur observed that the result can also easily be drawn from
Theorem 3.1 using a characterization of the finite words on the alphabet {a, b} that are not segments of t,
which is given in Shur (2005, Statement 1), a paper also in Russian. Since all the proofs seem to be either
lost or somewhat inaccessible in the Russian literature, again we present our own proof for the sake of
completeness.

Theorem 3.7 A word w ∈ {a, b}+ is unavoidable in t if and only if it is one of the words a2ba2 and
b2ab2, or it is a segment of t.

Proof: We proceed by induction on the length of w. In view of Theorem 3.1, it is easy to check that
the theorem holds for words of length at most 5. Assuming inductively that the result holds for words of
length n, let w be a word of length n + 1 > 6 that is unavoidable in t. Since interchanging the letters a
and b does not affect either of the properties of being unavoidable in t and being a segment of t, we may
as well assume that a is the last letter of w.

Let w = ua. Since w is unavoidable in t, so is u. Hence, by induction hypothesis, u may be found
somewhere as a segment of t. Take such an occurrence of u in t and let x be the letter immediately after
it. We wish to show that there is such an occurrence of u in t with x = a. Aiming at a contradiction,
we may assume that there is no such occurrence, that is, we always have x = b. Since t is recurrent, the
segment ux may be found in t as far as we wish, so that we may continue prolonging it on the left as
much as may be convenient. Thus, we are assuming that ua is unavoidable in t and that ub is a segment
of t as long as desired but ua is not a segment of t. However, we have to be careful because there is in
principle no assurance that such an extension of u to the left retains the property that ua is unavoidable
in t.

Since a3 is avoided by t and we are assuming that x = b, u cannot end with b2. We distinguish several
cases according to the termination of the word u.

If u ends with b then, by the above, it ends with ab. Suppose, more precisely, that u ends with bab. Since
w ends with baba and ababa is avoided by t, in fact u must end with b2ab. This situation is impossible
since we know that the suffix b2ab2 of ub is not a segment of t.

Alternatively, assuming that u ends with b, it must end with ba2b = µ2(b). We may then apply suc-
cessively Lemmas 3.5 and 3.6 to deduce that there is some n > 2 such that u is a suffix of µn(a). By
Lemma 3.4, it follows that u is special, which contradicts the assumption that ua is not a segment of t.

The next case we consider is that where u ends with aba. Note that u cannot end with a2ba for,
otherwise, w = ua ends with ba2ba2 and, therefore, it cannot be unavoidable in t. Also, u cannot end
with baba since babab is not a segment of t. Hence, aba is not a suffix of u.

Thus, assuming that u ends with ba, it must end with ab2a = µ2(a). We are then again led to a
contradiction as above using Lemmas 3.5, 3.6 and 3.4. 2

4 Typical finite binary patterns
Recall that the endomorphism of {a, b}+ switching the letters a and b is denoted ξ. Since the finite
segments of t are the finite words that are factors of µn(a) for all sufficiently large n and µn(a) is a factor
of µn+1(b), we may replace a by b in that characterization of the segments of t. Moreover, as ξ commutes
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with µ, we conclude that the set of finite segments of t is closed under applying the substitutions ξ and µ.
By induction on n, the words µ2n(a) are palindromic, in the sense that they coincide with the words read
in the reverse order; this entails the well known fact that the set of segments of t is closed under reversal.

We say that a word w ∈ {a, b}+ is atypical if it is a segment of t and there is an endomorphism ϕ
of {a, b}+ such that ϕ(w) is also a segment of t and ϕ is not of one of the forms µn or ξ ◦µn with n > 0.
Segments of t that are not atypical are said to be typical.

We say that a word is a variant of another wordw if it may be obtained fromw by applying reversal or ξ
or both. Note that the set of atypical words is closed under taking factors and, by the above discussion, it
is also closed under taking variants.

The following result appears explicitly as Brlek (1989, Proposition 3.3) but may already be extracted
from Thue (1912) (see Berstel (1995, Chapter 3, Proposition 2.13)).

Proposition 4.1 If u2 is a segment of t then u is one of the words µn(a), µn(b), µn(aba) or µn(bab) for
some n > 0.

Yet another property of the Prouhet-Thue-Morse infinite word is the following result which explains
the above terminology.

Theorem 4.2 Let w ∈ {a, b}+ be a segment of t containing at least one of the segments aba and bab
along with all other segments of t of length 3. Then w is typical.

Proof: Suppose ϕ is an endomorphism of {a, b}+ such that ϕ(w) is a segment of t. By Proposition 4.1,
since ϕ(a2) and ϕ(b2) are square segments of t, each of the words ϕ(a) and ϕ(b) must be obtained by
applying a power of µ to one of the words a, b, aba, bab. Let then ϕ(a) = µk(u) and ϕ(b) = µ`(v),
where u, v ∈ {a, b, aba, bab}. We may assume that k 6 ` since, otherwise, we would consider the pair
(ξ(w), ϕ◦ξ) instead of (w,ϕ). Then, we have the factorization ϕ = µk ◦ψ, where ψ is the endomorphism
of {a, b}+ defined by ψ(a) = u and ψ(b) = µ`−k(v). Since µ is injective and t is a fixed point of µ,
from the fact that ϕ(w) is a segment of t, we conclude that so is ψ(w). On the other hand, since ξ and µ
commute, if ψ is a product of µ and ξ then so is ϕ. Hence, we may assume that k = 0.

The mapping ξ◦ϕ has also the property that (ξ◦ϕ)(w) is a segment of t. Since (ξ◦ϕ)(a) = ξ(µk(u)) =
µk(ξ(u)), we may further assume that u is one of the words a or aba. Since aab is a factor ofw and neither
a3 nor a2ba2 is a factor of t, then v cannot start with a and, therefore, it must be either b or bab.

Consider first the case where u = a. Since baa is a factor of w but a3 is not a factor of t, ϕ(b) cannot
end in a, which implies that ` is even. If ` > 2, then ϕ(b) starts with µ2(b) = ba2b. But, since a2b is a
factor of w, this implies a2ba2 is a factor of ϕ(w) and, therefore, a segment of t, which we know is not
the case. Hence, we must have ` = 0. It remains to rule out the case ϕ(b) = bab, which results from
noting that in that case, from the assumption that either aba or bab is a factor of w, it follows that either
ababa or bababab is a factor of ϕ(w) while we know that ababa is not a segment of t.

Next, consider the case where u = aba. Since a2b is a factor of w and ababa is not a segment of t,
ϕ(b) cannot start with ba. As µ`(b) is a prefix of ϕ(b), it follows that ` = 0 and ϕ(b) = b. This leads
to a similar situation as that considered at the end of the preceding paragraph, with the letters a and b
interchanged which is, therefore, excluded. This completes the proof of the theorem. 2

The assumption of Theorem 4.2 that a segment of t contains as factors at least one of the words aba
and bab along with all other segments of length 3 of t holds for all segments of t of length 10, as may be
easily checked by examining all segments of that length. Hence, by Theorem 4.2 there are only finitely
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many atypical words. Since there are 5 different segments of length 3 of t that are supposed to appear in
the word, no word with length shorter than 7 satisfies the criterion of Theorem 4.2 and ab2a2ba is a word
of length 7 that does satisfy it. On the other hand, the segment a2bab2aba, of length 9, fails to have the
segment ba2 as a factor.

The following result completes the above observations by giving the full identification of atypical
words.

Theorem 4.3 Up to taking variants, the atypical words are the factors of the words aabab, abaaba, and
aabbaab.

Proof: To check that all relevant words have been duly considered, the reader may wish to refer to the
diagram in Figure 2 later in the paper, where all atypical words are represented.

The following is the complete list of segments of t of length 5:

aabab, aabba, abaab, ababb, abbaa, abbab,

baaba, baabb, babaa, babba, bbaab, bbaba.

Note that all these words are variants of factors of at least one of the three words in the statement of the
theorem. Hence, by showing that those three words are atypical, we obtain that so are all words of length
up to 5.

We next indicate for each of the words in the statement of the theorem an endomorphism ϕ of {a, b}+
not of the forms µn and ξ ◦ µn that maps it to a segment of t:

• aabab: ϕ(a) = a, ϕ(b) = b2aba2b;

• abaaba: ϕ(a) = a, ϕ(b) = b2;

• aabbaab: ϕ(a) = a, ϕ(b) = bab.

The verification of all these statements amounts to routine calculations.
Showing that there are no other atypical words requires more work. Note that a word is typical if it has

a typical factor. Hence, also excluding variants and words that satisfy the criterion of Theorem 4.2, we
obtain the following reduced list of words remaining to be treated:

aababb, aabbab, abbaabba, ababba. (3)

We proceed to show that each word w in the list (3) is typical. For that purpose, assume that ϕ is an
endomorphism of {a, b}+ such that ϕ(w) is a segment of t.

In the first three cases, since ϕ(a2) and ϕ(b2) are factors of ϕ(w), we may start the argument using
Proposition 4.1 as in the proof of Theorem 4.2, assuming that ϕ(a) is either a or aba.

Consider first the case ϕ(a) = a. Since in the three cases, aab is a factor of w but t is cube-free,
ϕ(b) must start with b. Therefore, we may assume that ϕ(b) = bv with v ∈ {a, b}+. In all three cases,
since abb is a factor of w, we get that abvbv is a factor of ϕ(w) and this would provide an overlap in t
if v ends with a. Hence v ends with b. Since ϕ(b) is of the form µn(x) for some x ∈ {a, aba, b, bab},
we conclude that either ϕ(b) starts with baab or it is bab. The first case is excluded since aabaa is then
a factor of ϕ(aab), whence also of ϕ(w), while it is not a segment of t. The case ϕ(b) = bab is also
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excluded if w is either aababb or aabbab since it leads to the overlap babab in the factor ϕ(bab) of ϕ(w).
In case w = abbaabba, one can simply check directly that ϕ(w) is not a segment of t.

Still treating for the moment only the first three of the words in the list (3), suppose next that ϕ(a) =
aba. Again, as aab is a factor of w and aabaa cannot be a factor of ϕ(w), ϕ(b) must start with b. If
it ends with a, then aϕ(bb) would be an overlap in ϕ(w) since abb is a factor of w. Hence, ϕ(b) starts
and ends with b. This is impossible in case w has the factor bab since it would lead to the overlap babab
in ϕ(w). This excludes the cases where w is the first or the second word in the list (3). So, we have
w = abbaabba. Then ϕ(w) is a square segment of t. By Proposition 4.1, ϕ(abba) is one of the words
µn(x) with x ∈ {a, aba, b, bab}. Since n 6 1 gives a word that is too short to be ϕ(abba), we must
have n > 2, in which case a simple calculation shows that µn(x) cannot start with aba. This ends the
verification that the first three words in the list (3) are typical.

It remains to consider the word w = ababba. Here, we have two square factors of ϕ(w), namely the
squares of ϕ(b) and ϕ(ab). By Proposition 4.1 we know that there are words x, y ∈ {a, aba, b, bab} and
non negative integers m,n such that ϕ(b) = µm(x) and ϕ(ab) = µn(y). In case m > n, comparing
the lengths of the word ϕ(ab) and its factor ϕ(b), we obtain the inequality 2n|y| > 2m|x|, so that 3 >
|y| > 2m−n|x| > 2m−n. It follows that |x| = 1, |y| = 3 and m = n + 1. From the equalities
µn(y) = ϕ(ab) = ϕ(a)µn+1(x) we then deduce that ϕ(a) = µn(y1), where y1 is the first letter of y, and
µ(x) = xy1. Since abb is a factor of w, ϕ(abb) = µn(y1xy1xy1) is a segment of t, which contradicts
t being overlap free. Thus, we must have n > m. Then ϕ(a) must be of the form µm(z) where z is
a prefix of µn−m(y). It follows that, as in the proof of Theorem 4.2, we may then assume that m = 0
and that ϕ(b) is either b or bab. Consider first the case where ϕ(b) = b. Since abba is a factor of w but
b3 is not a factor of ϕ(w), the word ϕ(a) must start and end with the letter a and we may assume that it
is not reduced to a. Since ϕ(a) = z, we conclude that ϕ(a) must start with abba. Since bba is a factor
of w, this yields the factor bbabb of ϕ(w), which is not possible since ϕ(w) is a segment of t. Finally, the
case ϕ(b) = bab is excluded since ϕ(ab) = µn(y) cannot end with bab. This concludes the proof of the
theorem. 2

To facilitate the visualization of the set of atypical words, we give a semigroup theoretical formulation.
Although we do not go deep into it, the reader unfamiliar with semigroup theory may prefer to skip these
considerations or refer to a standard textbook in the area such as Clifford and Preston (1961); Howie
(1995).

Let S be the set of atypical words. We may define a multiplication on the set S0 = S ∪ {0} as follows:
for u, v ∈ S, u · v is uv if uv is atypical and 0 otherwise; for all s ∈ S0, s · 0 = 0 · s = 0. Note that S0 is
the Rees quotient of {a, b}+ by the ideal consisting of the typical words together with the words that are
not segments of t.

The diagram in Figure 2 represents S0 as a partially ordered set for the Green J -order, in which an
element u lies above v if and only if u is a factor of v. The words in bold are the lexicographic minima
among their variants; note that those that are atoms (which are underlined) are precisely the words that
were shown directly to be atypical in Theorem 4.3.

We conclude this section with another application of Theorem 4.2, this one concerning infinite patterns
of t.

Corollary 4.4 Let w be an infinite word and suppose that there is an endomorphism ϕ of {a, b}+ such
that ϕ(w) is a suffix of either t or ξ(t). Then w is itself a suffix of either t or ξ(t).
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a

aa ab

b

ba bb

aab baa aba abbbab bba

aaba aabbbaab abaa abab baba abbababbbbaa bbab

aababbaaba aabbabaabbabaab babaa ababb abbaa abbabbabbabbaab bbaba

0

aabbaabaabbaabaaba abbaab babbabbbaabb

aabbaabbaabbaaabbaabbbbaabba

Fig. 2: The semigroup S0

Proof: Since all segments of w are unavoidable in t and they are all extendable on the right, by The-
orem 3.7 they are segments of t. Since the language of the segments of t defines a minimal subshift
(Queffélec, 2010, Proposition 5.2), it follows that w and t have the same segments. In particular, the word
a2b2a2bab is a segment of w and it satisfies the assumption of Theorem 4.2. It follows that there is n > 0
such that ϕ = µn or ϕ = ξ ◦ µn. Again, since µ is injective and both t and ξ(t) are fixed by µ, the result
follows. 2

The somewhat different formulation for finite and infinite segments (compare Theorem 3.7 with Corol-
lary 4.4) is fully justified by the following result, which entails that the infinite words t and ξ(t) have no
common suffix.

Proposition 4.5 If s is an infinite word over {a, b} and w is a common infinite suffix of s and ξ(s), then
w is periodic.

Proof: By assumption, there are finite words x and y such that s = xw, ξ(s) = yw. Since w and ξ(w)
start with different letters, the words x and y have different lengths. Replacing s by ξ(s), if needed, we
may assume that x is shorter than y. As ξ(x) is a prefix of ξ(s) = yw, it follows that y = ξ(x)z for
some word z. From ξ(s) = ξ(x)zw, we deduce that ξ(w) = zw and so w = ξ2(w) = ξ(z)zw, thereby
showing that w is periodic. 2

5 Final remarks and problems
For an infinite word w over a finite alphabet A, let L(w) be the language consisting of its finite segments.
Note that the automorphisms of the semigroupA+ permute the letters ofA; we call them letter exchanges.
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The language obtained from L(w) by applying all possible letter exchanges is denoted L̄(w). Let E(w)
denote the set of all endomorphisms ϕ of A+ such that ϕ(L(w)) ⊆ L(w). The set Ē(w) is similarly
defined using L̄(w) instead of L(w). Note that both E(w) and Ē(w) are submonoids of the monoid
End(A+) of all endomorphisms of the semigroup A+.

The following is an immediate consequence of Theorem 4.2.

Corollary 5.1 The monoid E(t) = Ē(t) is generated by the set {ξ, µ}. In particular, it is finitely gener-
ated. 2

Corollary 5.1 is intimately related with a result of Thue (see Berstel (1995, Chapter 3, Theorem 2.16))
that characterizes the set of the so-called overlap-free morphisms, that is, endomorphisms of {a, b}+ that
map the set of all overlap-free words into itself, namely as the monoid generated by {ξ, µ}. In fact, in
view of another result of Thue (see Berstel (1995, Chapter 3, Theorem 2.15)), all (overlap-free) words
that can be arbitrarily prolonged in both directions to overlap-free words are segments of t. It follows
that overlap-free morphisms belong to E(t) and so Corollary 5.1 immediately yields Thue’s necessary
condition for overlap-free morphisms. That the condition is also sufficient is given by another result of
Thue (see Berstel (1995, Chapter 3, Lemma 2.2)). It does not appear to be immediately obvious how to
deduce Corollary 5.1 from Thue’s results.

Corollary 5.1 is also related with a result of Pansiot (1981) characterizing the endomorphisms of {a, b}
that generate some infinite word obtained from t by dropping a finite prefix as precisely the powers
of µ. Since t is recurrent, all such infinite words w have the same language L(w) = L(t). Hence, the
endomorphisms ϕ considered by Pansiot belong to E(t), whence they are products of ξ and µ. Since ξ and
µ commute, it follows from Corollary 5.1 that ϕ is either µk or ξµk for some k > 0, the latter possibility
being excluded because w is assumed to be a fixed point of ϕ. This gives Pansiot’s result. Again, it is not
clear how to deduce Corollary 5.1 from Pansiot’s results.

Theorems 3.7 and 4.2, together with Corollary 5.1 may be regarded as three finiteness properties of the
Prouhet-Thue-Morse sequence. It is natural to ask which infinite words possess such finiteness properties.
More precisely, we propose the following problems.

Problem 1 Which infinite words w have the property that, up to finitely many exceptions, the patterns
of w on the same alphabet are obtained from its segments up to an exchange of letters?

Problem 2 For which infinite words w is the monoid E(w) finitely generated? Similar question for Ē(w).

We say that a finite segment u of w is w-atypical if there is some endomorphism ϕ /∈ Ē(w) of A+

such that ϕ(u) is also a segment of w.

Problem 3 Which infinite words w have only finitely many w-atypical segments?

A negative example for Problem 1 is provided by the Fibonacci infinite word, which is the only fixed
point f of the endomorphism φ of {a, b}+ defined by φ(a) = ab and φ(b) = a. That there are infinitely
many finite binary patterns of f that are not segments of f was proved in Restivo and Salemi (2002a) (see
also Restivo and Salemi (2002b)), where it is also shown that there are Sturmian infinite words that admit
as patterns all segments of all Sturmian infinite words. Recall that an infinite word is Sturmian if it has
exactly n+ 1 segments of each length n > 1. We do not know whether E(f) is generated by ϕ and Ē(f)
is generated by ϕ and ξ. We also do not know whether the set of f -atypical words is finite.

Problem 1 was raised in Restivo and Salemi (2002a) for binary infinite words that are either fixed points
of endomorphisms or of linear complexity. In the same paper, it is observed that if w is an infinite word
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with all elements of A+ as segments (which may be obtained for instance by concatenating all the words
in a sequence enumerating the elements of A+), then obviously w is a positive example for Problem 1.
Note that E(w) = Ē(w) = End(A+) and it is easy to see that End(A+) is not finitely generated: for
the endomorphisms that maps each letter to itself, except for one letter a that is mapped to ap, where p is
prime, the only elements of End(w) that are factors of it are the letter exchanges and the factors of which
it is also a factor. From the preceding observation it also follows that there are no w-atypical words. Thus,
w is a negative example for Problem 2 and a positive example for Problem 3.
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