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Defant, Engen, and Miller defined a permutation to be uniquely sorted if it has exactly one preimage under West’s

stack-sorting map. We enumerate classes of uniquely sorted permutations that avoid a pattern of length three and a

pattern of length four by establishing bijections between these classes and various lattice paths. This allows us to

prove nine conjectures of Defant.
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1 Introduction

This paper is concerned with enumerating special classes of permutations that arise from West’s stack-

sorting map. Stack-sorting was originally a computer algorithm on stacks introduced by Knuth (1968).

Later, West (1990) defined the stack-sorting map, which we call s, as a deterministic variant of Knuth’s

algorithm. Since then, the map has been studied extensively: see Bóna (2020, 2002a,b); Bousquet-Mélou

(1998, 2000); Defant (2020c,a, 2019, 2018, 2017); Goulden and West (1996); Zeilberger (1992).

The stack-sorting map itself will not be relevant to the methods in this paper, but for sake of com-

pleteness, we include a simple recursive definition of it. The map s sends the empty permutation to

itself. For a permutation π ∈ Sn, we can write π = LnR and define s(π) = s(L)s(R)n. For example,

s(516243) = s(51)s(243)6 = s(1)5s(2)s(3)46 = 152346.

The fertility of a permutation π is the number of preimages of π under s, or |s−1(π)|. Bousquet-Mélou

(2000) defined a permutation to be sorted if it has positive fertility, that is, if it has some preimage under

s.

Recently, Defant et al. (2020) defined a permutation to be uniquely sorted if its fertility is exactly 1,

giving rise to a new and fruitful type of permutation that has a surprising amount of structure. We let

Un denote the set of uniquely sorted permutations in Sn. The work in Defant et al. (2020) suggests

that the relationship between uniquely sorted permutations and general permutations is analogous to the

relationship between matchings and general set partitions. Moreover, the authors prove that the sets of

uniquely sorted permutations of odd length (which we soon see are the only nonempty sets) are counted

by an interesting sequence first introduced in Lassalle (2012) called Lassalle’s sequence (OEIS A180874).
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A descent of a permutation π ∈ Sn is an index i ∈ [n− 1] where πi > πi+1, in which case we call πi a

descent top and πi+1 a descent bottom. Similarly, an ascent of π is an index i ∈ [n− 1] where πi < πi+1,

in which case we call πi an ascent bottom and πi+1 an ascent top. It follows that any permutation has

an equal number of descents, descent tops, and descent bottoms as well as an equal number of ascents,

ascent bottoms, and ascent tops. Moreover, for all 2 ≤ i ≤ n, we have that πi is either an ascent top or a

decent bottom (and, similarly, for all 1 ≤ i ≤ n− 1, πi is either an ascent bottom for a decent top). The

following theorem characterizes uniquely sorted permutations and will serve as a basis for much of the

work in this paper.

Theorem 1.1 (Defant et al. (2020)). A permutation π ∈ Sn is uniquely sorted if and only if it is sorted

and it has exactly n−1
2 descents.

As an immediate consequence, uniquely sorted permutations must have odd length, so from now on we

will refer to the set U2k+1 instead of Un.

Let U2k+1(τ
(1), . . . , τ (ℓ)) be the set of permutations in U2k+1 that avoid all of the patterns τ (1), . . . , τ (ℓ)

(see Section 2 for a definition of pattern avoidance). In Defant (2020c), combinatorial classes of this form

with each τ (i) length 3 are enumerated. This is done primarily through bijections between these classes

and intervals of various posets on the set of Dyck paths of a fixed length.

In the same paper, Defant enumerates two classes of the form U2k+1(τ
(1), τ (2)), where τ (1) has length

3 and τ (2) has length 4, before making 18 conjectures concerning further interesting classes of this form.

Each row of Table 1 represents the conjecture that the class of uniquely sorted permutations of odd length

avoiding the given patterns is counted by the corresponding OEIS sequence.

Patterns OEIS Sequence

∗312, 1432

∗312, 2431

∗312, 3421 A001764

∗132, 3412

∗231, 1423

312, 1243 A122368

Patterns OEIS Sequence

∗132, 3421

∗132, 4312 A001700

231, 1243

132, 2341

132, 4123
A109081

312, 2341 A006605

Patterns OEIS Sequence

312, 3241 A279569

312, 4321 A063020

132, 4231 A071725

∗231, 1432 A001003

∗231, 4312 A127632

231, 4321 A056010

Tab. 1: Conjectural OEIS sequences enumerating sets of the form U2k+1(τ
(1)

, τ
(2)).

In this paper, the conjectures concerning the nine notable pairs of patterns marked with an asterisk (∗)

in Table 1 are proven as theorems. The OEIS sequence A001700 consists of the binomial coefficients(
2k−1

k

)
, and the OEIS sequence A001764 consists of the 3-Catalan numbers 1

2k+1

(
3k
k

)
, making these

classes easier to enumerate since we have relatively simple closed formulas counting them. Additionally,

the sequence A001003 counts the little Schröder numbers, which have been well studied. The sequences

A001764 and A127632 also count U2k+1(312, 1342) and U2k+1(231, 4132), respectively, as proven in

Defant (2020c).

Starting in Section 4, these nine classes are enumerated one by one. For each, the general structure

of the permutations in the class is found by decomposition based on pattern avoidance. Then, using this
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structure, the class is enumerated, either by direct counting, bijection with a previously-counted class,

generating functions, or, as the title of this paper suggests, bijection with certain types of lattice paths.

Lattice paths were studied as early as the late 19th century to solve Bertrand’s ballot problem (see Bertrand

(1887)) via a bijection with Dyck paths in Whitworth (1878). Since then, they have grown to become a

crucial concept in math, computer science, statistics, and physics; see Krattenthaler (2015) for an overview

of this history. Dyck paths, as mentioned before, are central to the methods in Defant (2020c) and will

appear later in this paper. The bijections concerning lattice paths in this paper rely strongly on a fascinating

natural analog between the conditions on uniquely sorted permutations and the conditions on certain types

of lattice paths.

2 Preliminaries

2.1 Pattern Avoidance

In this paper, a permutation of length n is a sequence containing each element of the set [n] = {1, . . . , n}
exactly once, written out in one-line notation. The symmetric group on n symbols, denoted Sn, is the set

of all permutations of length n. More generally, given a sequence of positive integers a = a1 · · · an, any

sequence of the form ai1 · · ·aiℓ with i1 < · · · < iℓ is a subsequence of a. If i1, . . . , iℓ are all consecutive,

we call ai1 · · · aiℓ a consecutive subsequence of a.

The normalization of a sequence of distinct positive integers a = a1 · · · an is the permutation in Sn

obtained by replacing the ith smallest entry of a with i for all i. For example, the normalization of 381 is

231. For a sequence of distinct positive integers a and a permutation τ , we say that a contains τ if there

exists a subsequence of a whose normalization is τ . Otherwise, a avoids τ . We let Av(τ (1), . . . , τ (ℓ)) be

the set of permutations avoiding all of the patterns τ (1), . . . , τ (ℓ).

2.2 The Canonical Hook Configuration

In order to make the sorted condition more workable, we introduce the concept of hooks. A permutation

π = π1 · · ·πn can be visually represented via its plot, which is the set of all points (i, πi) such that i ∈ [n].
These points can be connected via hooks of π. A hook H is created by starting at a point (i, πi), which

we call the southwest (SW) endpoint of H , and then moving upward and then to the right to connect it to

a second point (j, πj), which we call the northeast (NE) endpoint of H . A point (r, πr) lies strictly below

H if i < r < j and πr < πj ; it lies weakly below H if i < r ≤ j and πr ≤ πj .

Let π have descents d1 < · · · < dk. The canonical hook configuration (CHC)(i) of π is the tuple

H = (H1, ..., Hk) of hooks of π, defined as follows. First, the SW endpoint of the hook Hi is (di, πdi
).

Let Ni denote the NE endpoint of Hi. We determine these NE endpoints by starting with Nk, which is

the leftmost point above and to the right of (dk, πdk
). Then, decrementing i by one for each hook, Ni

is the leftmost point above and to the right of (di, πdi
) that does not lie weakly below any of the hooks

Hi+1, . . . , Hk. If Ni does not exist for some i, then π does not have a CHC. An example of the CHC of

a permutation is shown in Figure 1.

(i)Defant instead uses the term canonical valid hook configuration; the present author drops the valid to avoid wordiness.
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Fig. 1: The CHC of 2 7 3 5 9 4 8 1 6 10 11 12.

The following proposition allows us to determine whether a permutation is sorted using the CHC.

Proposition 2.1 (Defant (2017)). A permutation π is sorted if and only if it has a canonical hook config-

uration.

This proposition, along with Theorem 1.1, gives us that π ∈ Sn is uniquely sorted if and only if it has a

CHC and exactly n−1
2 descents. The permutation in Figure 1 has a CHC, so it is sorted. But it has length

12 and only 3 descents, so it is not uniquely sorted (in fact, its fertility is 160). We now introduce one

particularly useful lemma.

Lemma 2.2 (Defant (2020c)). Let π ∈ U2k+1, and let N1, . . . ,Nk be the NE endpoints of the hooks in

π’s CHC. Let DB(π) be the set of descent bottoms of π. The two k-element sets DB(π) and {N1, . . . ,Nk}
form a partition of {(i, πi) : 2 ≤ i ≤ 2k + 1}.

For example, the descent bottoms of the permutation in Figure 1 are the points (3, 3), (6, 4), and (8, 1),
and the NE endpoints of hooks are (5, 9), (10, 10), and (11, 11). Since the point (7, 8) is neither, the

permutation is not uniquely sorted. Note that this lemma tells us that in a uniquely sorted permutation,

NE endpoints are precisely ascent tops and SW endpoints are precisely decent tops. Another immediate

consequence is that the plot of any π ∈ U2k+1 must end with the point (2k + 1, 2k + 1).

2.3 Permutation Structure

Since we will be using Proposition 2.1 to determine if a permutation is sorted, we will be dealing heavily

with the plot of a permutation and thus will consider a permutation and its plot synonymously. Conse-

quently, for a permutation π, we will refer to the entry πi and the point (i, πi) interchangeably. Note, also,

that when we look at a plot, it suffices to consider only the relative order of the points, and not the actual

positions of the points.

For a plot containing two disjoint subsequences µ and λ, we say µ is above λ if every point in µ is

above every point in λ. We define below, to the right of, and to the left of in a similar fashion.

Given the permutations µ and λ, their sum, denoted µ⊕ λ, is the permutation obtained by placing the

plot of λ above and to the right of µ. Their skew sum, µ ⊖ λ, is the permutation obtained by placing the

plot of λ below and to the right of µ. Geometrically, we have:
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µ⊕ λ =
µ

λ
and µ⊖ λ =

µ

λ
.

Let Dec(n) = n(n − 1) · · · 21 and Inc(n) = 12 · · · (n − 1)n denote the decreasing permutation of

length n and the increasing permutation of length n, respectively. We denote a decreasing and increasing

permutation, respectively, with the symbols:

and .

The tail length of a permutation π = π1 · · ·πn, denoted tl(π), is the smallest nonnegative integer ℓ
such that πn−ℓ 6= n − ℓ. By convention, we let tl(Inc(n)) = n. If tl(π) = ℓ, then the tail of π is the list

of points (n− ℓ+ 1, n− ℓ+ 1), . . . , (n, n).

3 Three Bijections with Dyck Paths

3.1 Dyck Paths

A Dyck path of semilength k is a path starting at (0, 0) and ending at (2k, 0) that consists of k (1, 1) steps

(called up steps) and k (1,−1) steps (called down steps) and at no point crosses below the horizontal

axis. We let Dk denote the set of Dyck paths of semilength k. It is a classical result that the sets Dk are

counted by the Catalan numbers, Ck = 1
k+1

(
2k
k

)
. We can associate an up-down sequence to a Dyck path

by reading the path from left to right and recording the letter U for an up step and D for a down step.

Note that the above-the-horizontal condition in a Dyck path is equivalent to every prefix of an up-down

sequence having at least as many U ’s as D’s. Going forward, we will treat a Dyck path and its up-down

sequence as the same object.

Fig. 2: The Dyck path UDUUUDDUDD of semilength 5.

3.2 Three Classes of Permutations

We now highlight the structures of three particular classes of pattern-avoiding permutations:

• A permutation π avoids 132 and 231 if and only if π = L1R, where L is decreasing and R is

increasing. We call this type of permutation vee after its resemblance to the letter V. We call the

imaginary vertical line at 1, separating L and R, the vertical of the permutation.

• A permutation π avoids 132 and 312 if and only if the plot of π is the 90 degree clockwise rotation

of the plot of a vee permutation. We call this type of permutation svee, which is short for sideways-

vee. We call the rotation of the vertical the horizontal.
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• A permutation π avoids 231 and 312 if and only if π is the sum of decreasing permutations; such a

permutation is called layered. Each decreasing permutation in the sum is called a layer.

As we will see in later sections, these three types of permutations will be key for decomposing permu-

tations of the form U2k+1(τ
(1), τ (2)). We will denote a vee, svee, and layered permutation, respectively,

with the symbols:

, , and .

3.3 Rethinking Some Past Results

In Defant (2020c), Defant proves that

|U2k+1(132, 231)| = |U2k+1(132, 312)| = |U2k+1(231, 312)| = Ck.

His enumeration of the first class derives from the following lemma.

Lemma 3.1 (Defant (2020c)). There exists a bijection U2k+1(132, 231) → Dk.

Proof: Given π ∈ U2k+1(132, 231), we have from above that π can be written as π = L1R, where L is

decreasing and R is increasing. We construct the path Λ = Λ1 · · ·Λ2k as follows: let Λi = U if 2k+2− i
is an entry in R and Λi = D if 2k+ 2− i is an entry in L. The permutation π is uniquely sorted and thus

has exactly k descents, causing |L| = |R| = k. This means that Λ has k ups and k downs. Moreover,

since π has a CHC, every prefix of Λ contains at least as many U ’s as D’s. Thus, Λ ∈ Dk. This map is

easily reversible, so this is indeed a bijection.

Fig. 3: The vee permutation 10 6 5 3 2 1 4 7 8 9 11 and its image under the bijection in Lemma 3.1, the Dyck path

UDUUUDDUDD .

This simple bijection touches upon an intriguing connection between Dyck paths and uniquely sorted

permutations. While Defant uses a different map for proving that:

|U2k+1(132, 312)| = |U2k+1(231, 312)| = Ck,

we note here that a method similar to that in the proof of Lemma 3.1 can be used to make bijections with

these sets.
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Lemma 3.2. There exists a bijection U2k+1(132, 312) → Dk.

Proof: Given π ∈ U2k+1(132, 312), we have from above that π is svee. We construct the path Λ =
Λ1 · · ·Λ2k as follows: for 2 ≤ i ≤ 2k + 1, if πi > πi−1, let Λi−1 = D, and if πi < πi−1, let Λi−1 = U .

Note that we are simply associating ascent tops with D and descent bottoms with U . The permutation π
is uniquely sorted and thus has exactly k descents, causing |L| = |R| = k. This means that Λ has k ups

and k downs. Moreover, since π has a CHC, the NE endpoint of a hook (which must be an ascent top)

comes after the SW endpoint of that same hook (which must be a descent top), and thus every prefix of Λ
contains at least as many U ’s as D’s. Thus, Λ ∈ Dk. This map is easily reversible since ascent tops must

be above the horizontal and decent bottoms must be below, so this is indeed a bijection.

Lemma 3.3. There exists a bijection U2k+1(231, 312) → Dk.

Proof: Given π ∈ U2k+1(231, 312), we have from above that π is layered. We construct the path Λ =
Λ1 · · ·Λ2k as follows: for 2 ≤ i ≤ 2k + 1, let Λi−1 = D if πi > πi−1, and let Λi−1 = U if πi < πi−1.

Note that we are then simply associating ascent tops with D and descent bottoms with U . The rest follows

as in the proof of the previous lemma (only know ascent tops are the first entries in each layer besides the

first).

The above lemmas not only help us to rethink some of the results of Defant (2020c), but demonstrate

the simplest application of a method crucial to enumerating classes in this paper. More specifically, the

condition that a uniquely sorted permutation of length 2k + 1 has k descents is akin to Dyck paths of

semilength k having k U ’s, and the existence of a CHC is akin to every prefix of a Dyck path having at

least as many U ’s as D’s. In Sections 5 and 6, we will see how to translate this idea to more complex

permutation classes and paths.

4 Two Almost-Vee Classes

In this section, we prove that, out of the eighteen conjectured classes, two are counted nicely by the

binomial coefficient
(
2k−1

k

)
.

Theorem 4.1. We have |U2k+1(132, 4312)| =
(
2k−1

k

)
.

Proof:

Consider the plot of some π ∈ U2k+1(132, 4312), and let ρ be any consecutive subsequence of π,

which, by definition, also avoids 132 and 4312.

Since ρ avoids 132, we can decompose ρ = λρmµ, where ρm is the largest entry in ρ and λ is above µ.

Now we consider two cases.

Case 1: The subsequence µ contains the pattern 12. Then λ must not contain the pattern 21, since ρ avoids

4312. This implies λ is increasing. Moreover, since ρ avoids 4312, µ must avoid 312, so µ avoids both

132 and 312 and thus is svee. Thus, we can write ρ = I ⊖ τ where I is increasing and τ is svee.

Case 2: The subsequence µ is empty or decreasing. In this case, there are no clear restrictions on λ.
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We first perform the above decomposition on π. In case 1, we are done. In case 2, we can repeat the

same decomposition process on λ instead of π. This can be repeated until we are in case 1 or until the

pieces in the decomposition are empty. Note that in case 2 we add a point to the right and above the

unknown portion of π as well as a decreasing permutation to the right and below the unknown portion of

π, which preserves a svee shape in π. In case 1 we add the skew sum of an increasing permutation I and a

svee τ , which ends the decomposition process. However, if the size of I is at least 2, the second element

of I is an ascent top but not a NE endpoint (since there are no descents to the left of it), contradicting

Lemma 2.2. Thus I is a single point, so π can be thought of as a svee permutation σ preceded by a special

point that lies above the horizontal of the svee. Thus π = π1σ, where π1 lies above σ’s horizontal (if π1

lies immediately above the horizontal, π is simply svee). We call such a permutation a modified svee, or

modsvee, for short. See Figure 4 for an example of a modsvee permutation.

Fig. 4: The modsvee permutation 643527819. The dashed boxes illustrate which pieces of the permutation are

decomposed after each step in the decomposition process.

Following Defant (2020c), we call a uniquely sorted permutation π ∈ U2k+1 nice if the SW endpoint of

the hook in the CHC of π with NE endpoint (2k+1, 2k+1) is (1, π1). For a nice π ∈ U2k+1(132, 4312),
the hook H1 connecting (1, π1) to (2k + 1, 2k + 1) lies above every other hook of π and thus does not

interfere with the rest of the CHC. Thus, π can be decomposed into the hookH1, plus the svee permutation

of size 2k − 1 whose CHC consists of the remaining hooks of π. Recall from Lemma 3.2 that there are

Ck−1 such svee permutations. The NE endpoint of H1 must be (2k + 1, 2k + 1), whereas the height of

the SW endpoint (1, π1) can be immediately below any of the k ascent tops of the svee. Thus, there are

kCk−1 nice permutations in U2k+1(132, 4312).
Now, given any (not necessarily nice) permutation π ∈ U2k+1(132, 4312), we have that (1, π1) lies

above the descending part of the svee shape following it, so 1 is a descent and thus (1, π1) is attached

via a hook to one of the k points in the ascending part of the svee. Fix some 1 ≤ j ≤ k and let (1, π1)
be attached to the j th point in the ascending part of svee, which we will call (m,πm). Since any hook

with SW endpoint to the left of (m,πm) cannot intersect the hook with NE endpoint (m,πm), all of the

hooks before this point are entirely contained to the left of it. Thus, the points (1, π1) through (m,πm)
form a nice uniquely sorted modsvee permutation of size 2j + 1, of which there are jCj−1, from above.

It follows that (m,πm) = (2j + 1, 2j + 1). The remaining hooks other than the one with SW endpoint

(2j + 1, 2j + 1) lie to the right of the point (2j + 1, 2j + 1). Thus, the points (2j + 1, 2j + 1) through

(2k + 1, 2k + 1) form a uniquely sorted permutation of size 2(k − j) + 1 that is also svee shaped. From
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Lemma 3.2, there are Ck−j such permutations. Thus, for a given j, there are jCj−1Ck−j permutations.

Summing over all possible j gives us that |U2k+1(132, 4312)| =
∑k

j=1 jCj−1Ck−j . It is routine to

show that
∑k

j=1 jCj−1Ck−j =
(
2k−1

k

)
, giving us the desired result. See Figure 5 for an example of this

decomposition.

Fig. 5: The decomposition of the modsvee permutation 643527819 into a nice modsvee uniquely sorted permutation

(on the left) and a svee uniquely sorted permutation (on the right).

Theorem 4.2. We have |U2k+1(132, 3421)| =
(
2k−1

k

)
.

Proof:

The permutation obtained by reflecting the plot of π through the line y = x is called the inverse(ii)

of π, denoted π−1. Note that 132 is its own inverse and that the inverse of 3421 is 4312. Therefore, a

permutation avoids 132 and 3421 if and only if its inverse avoids 132 and 4312. Also, it is proven in

Lemma 4.3 in Defant (2020c) that a permutation that avoids 132 has the same number of descents as its

inverse. It is natural, then, to conjecture that permutations in U2k+1(132, 3421) are simply the inverses

of those in U2k+1(132, 4312). Note that this does not hold for general permutations; for example, the

permutation 31425 is uniquely sorted, but its inverse is 24135, which is not uniquely sorted.

Consider some π ∈ U2k+1(132, 3421) and some consecutive subsequence of π, called ρ. Again, since

ρ avoids 132, we can decompose ρ = λρmµ, where ρm is the largest entry in ρ and λ is above µ. There

are three cases.

Case 1: The subsequences λ and µ are both nonempty. Then λρm contains the pattern 12, so µ cannot

contain the pattern 21, so µ is increasing. Then since nonempty µ lies below and to the right of λ, we

have that λ must avoid 231 in order for ρ to avoid 3421. Thus λ avoids both 132 and 231 and therefore is

vee, giving us the decomposition ρ = τ ⊖ I , where τ is vee and I is increasing.

Case 2: The subsequence λ is empty, and there are no clear restrictions on µ.

(ii)When π is considered as an element of the symmetric group, we have that π−1 is indeed the algebraic inverse of π.
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Case 3: The subsequence µ is empty, and there are no clear restrictions on λ.

We first perform the above decomposition on π. If we are in case 1, the structure of π is determined

to a degree to which we are satisfied, and we are done. In the other cases, we can repeat the same

decomposition process on the unknown portion of the permutation until we end up in case 1 or all of the

unknown portions are empty. Note that cases 2 and 3 preserve a vee shape in π, whereas in case 1 we

add the skew sum of a vee permutation and an increasing permutation I , which ends the decomposition

process. However, if the size of I is at least 2, the second element of I is an ascent top but not a NE

endpoint (since there are no descents below it), contradicting Lemma 2.2. Thus I is a single point, so the

result of this process is the decomposition consisting of a vee permutation, plus one special point below

the vee that is to the right of the vertical of the vee (if the point is immediately to the right the vertical, π
is simply vee). We call such a permutation a modified vee, or modvee for short.

Fig. 6: The modvee permutation 853241679, which is the inverse of the permutation in Figure 5.

As hoped for, it follows from the definition of modvee and modsvee that the inverse of a permutation

in one class is in the other class. Moreover, note that when we reflect a modvee permutation, all of the

points to the left of the vertical that were descent tops become descent bottoms, the points to the right

of the vertical that were ascent tops remain ascent tops, and the special point becomes the special point

in the resulting modsvee permutation. Thus, the relative order of ascent tops and descent bottoms is the

same in the modvee permutation, read bottom to top, as it is in its image modsvee permutation, read left

to right. Then, by the logic in the lemmas in Section 3.3, a modvee permutation has a CHC if and only

if its inverse does. Thus, inversion does indeed define a bijection between the two classes, giving us that

|U2k+1(132, 3421)| = |U2k+1(132, 4312)| =
(
2k−1

k

)
.

5 Bijections with S-Motzkin Paths
A variant of a Dyck path is a Motzkin path of length k, which is a path from (0, 0) to (k, 0) that consists of

up steps, down steps, and (1,0) steps (called east steps) and at no point crosses below the horizontal axis.

In the up-down sequence of a Motzkin path, we write the letter E for east steps. Prodinger and Selkirk

(2018) defined a specific subclass of Motzkin paths.

Definition 5.1. An S-Motzkin path is a Motzkin path with k up steps, k down steps, and k east steps such

that:
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1. The first step is east.

2. Between every two east steps is exactly one up step.

3. The ith down step must occur after at least i east steps and i up steps. This is equivalent to the

condition that the path does not cross the horizontal axis.

Interestingly, this definition arose from a 2018 International Mathematics Competition question pro-

posed in Petrov and Vershik (2018) about a frog moving through three-space.

Fig. 7: The S-Motzkin path EUEUDEDUEUDD of length 12.

Let MS

k denote the set of S-Motzkin paths of length 3k.

Theorem 5.2 (Prodinger and Selkirk (2018)). We have |MS

k | =
1

2k+1

(
3k
k

)
.

Prodinger and Selkirk prove this with a bijection between S-Motzkin paths of length 3k and ternary

trees on k nodes, the latter of which is counted by the so-called 3-Catalan numbers 1
2k+1

(
3k
k

)
; see Graham

et al. (1989). These paths will be crucial for enumerating five classes of uniquely sorted permutations

counted by the same formula.

Theorem 5.3. We have |U2k+1(312, 2431)| =
1

2k+1

(
3k
k

)
.

Proof:

Consider the plot of some π ∈ U2k+1(312, 2431) and some consecutive subsequence of π, called ρ.

Since ρ avoids 312, we can write ρ = λρmµ, where ρm is the smallest entry in ρ and λ is below µ. Since

ρ avoids 2431 and ρm lies below and to the right of λ, we have that λ avoids both 312 and 132 and thus is

svee.

We first perform this decomposition on π. Once we find svee λ, we can repeat this same decomposition

process on µ instead of π and continue to repeat until the subsequences are empty. The result is the

decomposition π = (λ(1) ⊖ 1)⊕ (λ(2) ⊖ 1)⊕ · · · ⊕ (λ(l−1) ⊖ 1) ⊕ (λ(ℓ)), where each λ(i) is svee. We

call a permutation of this form stair-svee, and we call each λ(i) ⊖ 1 (or, for the last i, λ(ℓ)) a block of π.

By default, we assume blocks are maximal: that is, starting at the leftmost block in the permutation, each

block is as large as it can be while still the correct shape.
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Fig. 8: The structure of a stair-svee permutation.

Now, we define a bijection from U2k+1(312, 2431) to MS

k via the following rule. Let Λ be the path

EUEU . . . EU containing alternating k E’s and k U ’s. Given π ∈ U2k+1(312, 2431), let a1, . . . , ak be

the ascent tops of π, ordered from left to right, and let ni be the number of descent bottoms to the left

of ai. For 1 ≤ i ≤ k, if ai is in the same block as the point immediately to the left of it, insert a D
immediately after the nth

i U in Λ. If ai is not in the same block as the point immediately to the left of it,

insert a D immediately after the ni + 1th E in Λ.

By construction, Λ begins with E and alternates between E and U . Note that by the same logic as

in the proofs of the lemmas in Section 3.3, the kth D in Λ appears after at least k U ’s and k E’s. The

particular placement of D’s allows us to recover the type of ascent that created it. The only possible issue

is that with a path containing UDED it is ambiguous which type of ascent came first. However, since π
is stair-svee, in which each block must end in a descent, an ascent top that is immediately preceded by a

point in the same block cannot be followed by an ascent top in a new block. Therefore this case is actually

unambiguous. Thus, this map is indeed a bijection and |U2k+1(312, 2431)| = |MS

k | =
1

2k+1

(
3k
k

)
.

Fig. 9: The stair-svee permutation 3 2 4 1 9 8 7 10 11 6 5 12 13 and its image under the bijection in Theorem 5.3, the

S-Motzkin path EUDEUEDUEUDDEUEUDD .
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Theorem 5.4. We have |U2k+1(312, 3421)| =
1

2k+1

(
3k
k

)
.

Proof:

Consider the plot of some π ∈ U2k+1(312, 3421) and some consecutive subsequence of π, called ρ.

Since ρ avoids 312, we can write ρ = λρmµ, where ρm is the smallest entry in ρ and λ is below µ. Since

ρ avoids 3421 and ρm lies below and to the right of λ, we have that λ avoids both 312 and 231 and thus is

layered.

We first perform the above decomposition on π. Once we find layered λ, we can repeat this same

decomposition process on µ instead of π and continue to repeat until the subsequences are empty. The

result is the decomposition π = (λ(1) ⊖ 1)⊕ (λ(2) ⊖ 1)⊕ · · · ⊕ (λ(l−1) ⊖ 1)⊕ (λ(ℓ)), where each λ(i) is

layered. We call a permutation of this form stair-layered, and again we call each λ(i) ⊖ 1 (or, for the last

i, λ(ℓ)) a block of π.

Fig. 10: The structure of a stair-layered permutation.

We define a map from U2k+1(312, 3421) to MS

k using similar rules as we did for the previous class.

Let Λ be the path EUEU · · ·EU containing an alternating k E’s and k U ’s. Consider some π ∈
U2k+1(312, 3421), with tl(π) = ℓ. Let a1, . . . , am be the ascent tops of π′ = π1 · · ·π2k+1−ℓ (which

is the permutation obtained from removing the tail from π), ordered from left to right, and let ni be the

number of descent bottoms to the left of ai. For 1 ≤ i ≤ m, if ai is in the same block as the point

immediately to the left of it, insert a D immediately after the nth
i U in Λ. If ai is not in the same block

as the point immediately to the left of it, insert a D immediately after the ni + 1th E in Λ. Then insert ℓ
D’s at the end of Λ to account for the tail. Note that the tail needs to be dealt with in this way because, in

this case, the tail can be its own block (in the previous proof, the tail cannot be its own block because we

assume blocks to be maximal, and adding a tail to a svee-skew-sum-1 block always creates a svee block).

This process is equivalent to, if the tail is its own block, treating the last two blocks as a single block, and

then using the rules from the previous proof. Thus, by the same logic in the previous proof, only now with

layered permutations instead of svee permutations, this is indeed a bijection between the desired sets, and

|U2k+1(312, 3421)| = |MS

k | =
1

2k+1

(
3k
k

)
.
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Fig. 11: The stair-layered permutation 3 2 4 1 8 7 6 9 11 10 5 12 13 and its image under the bijection in Theorem 5.4,

the S-Motzkin path EUDEUEDUEUDDEUEUDD . The rightmost block is the tail.

Theorem 5.5. We have |U2k+1(312, 1432)| =
1

2k+1

(
3k
k

)
.

Proof:

Consider π ∈ U2k+1(312, 1432) and some consecutive subsequence of π, called ρ. Since π avoids 312,

we can write ρ = λµρm, where λ is below ρm and µ is above ρm. Now we distinguish two cases.

Case 1: The subsequence λ is nonempty. Then an entry of λ lies below and to the left of µ while ρm lies

above and to the right of λ and below and to the right of µ, so in order for ρ to avoid 1432, we have that

µ must avoid 21 and thus is increasing.

Case 2: The subsequence λ is empty. Then there are no clear restrictions on µ.

We first perform the above decomposition on π. In case 1, we can repeat this decomposition process

on λ; in case 2, we can repeat it on µ. We repeat until the unknown subsequences are empty. The result is

the decomposition of π into a permutation that looks like a svee permutation, except each point above the

horizontal can be replaced with a block of the form Inc(n) ⊖ 1 (points that are not replaced with blocks

of this form are regarded as blocks of size one). We call a permutation of this form svee-increasing.
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...

Fig. 12: The general structure of a svee-increasing permutation. Each of the blocks above the horizontal and the

points below the horizontal can be deleted.

We define a map from U2k+1(312, 1432) to MS

k . Given the plot of some π ∈ U2k+1(312, 1432),
we label each point below the horizontal with the symbols EU . Above the horizontal, we label each

point in its own block D, and we label a block of size n ≥ 2 with EDn−1U , where Dn−1 denotes the

concatenation of n − 1 D’s. The first point in π is left unlabeled. Then we read the labels from left to

right to obtain the path Λ.

Note that in this labeling, each ascent top can be associated with a D and each descent bottom with

an EU (we can think of the EU in EDn−1U being associated with the last point in the block, a descent

bottom, and the Dn−1 being associated with the n− 1 ascent tops in the block). Thus, since π is uniquely

sorted, there are k of each type of step. Moreover, by construction, E and U steps always alternate,

starting with E. Since π has a CHC, each prefix of π contains at least as many descents as ascents, so

each prefix of Λ, when read right to left, contains at least as many U ’s as D’s and thus remains above the

horizontal. Therefore, Λ ∈ MS

k .

For the inverse map, Let Λ ∈ MS

k . Since Λ starts with E and between every two east steps there is

exactly one up step, we can uniquely factor Λ = B1 · · ·Bℓ where each Bi is either D or of the form

EDmU for some m ≥ 0. To recover π ∈ U2k+1(312, 1432), we start with a permutation plot with a

single point. Then we read Λ left to right and for each EU factor we plot a point below and to the right

of the plot so far, for each D factor we plot a point above and to the right of the plot so far, and for

each EDmU factor (m ≥ 1) we plot a block of the form Inc(m) ⊖ 1 above and to the right of the plot

so far. The resulting π is svee-increasing and thus avoids 321 and 1432. By the same logic as in the

paragraph above, in this process D steps correspond to ascent tops and EU pairs correspond to descent

bottoms, so the condition that the ith down step in Λ occurs after at least i east steps and i up steps

implies that π is uniquely sorted. Thus, π ∈ U2k+1(312, 1432). Therefore, this is indeed a bijection, so

|U2k+1(312, 1432)| = |MS

k | =
1

2k+1

(
3k
k

)
.



16 Hanna Mularczyk

EU
EU

EU

D

EDDU

D

EDU

Fig. 13: The svee-increasing permutation 4 3 2 5 7 6 1 9 10 8 11 and its image under the bijection in Theorem 5.5, the

S-Motzkin path EUEUDEDUEUEDDUD .

Theorem 5.6. We have |U2k+1(231, 1423)| =
1

2k+1

(
3k
k

)
.

Proof:

Consider π ∈ U2k+1(231, 1423) and some consecutive subsequence of π, called ρ. Since ρ avoids 231,

we can write ρ = ρ1λµ, where λ lies below ρ1 and µ lies above ρ1. Since ρ avoids 1423 and ρ1 is below

and to the left of µ, we have that µ must also avoid 312 in addition to 231, and thus µ is layered.

We first perform the above decomposition on π. Once we find layered µ, we can repeat this same

decomposition process on λ instead of π and continue to repeat until the unknown subsequence is empty.

Since at each step we add a point to the the left and above the unknown part of the permutation, as well

as a layered permutation to the right of that point and the unknown part and above the unknown part, the

resulting permutation is vee shaped, except each point to the right of the vertical of the vee can be replaced

with a decreasing block. We call a permutation of this form vee-layered.

...

Fig. 14: The general structure of a vee-layered permutation. Each of the blocks to the right of the vertical and the

points to the left of the vertical can be deleted.
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We define a map from U2k+1(231, 1423) to MS

k using rules similar to those in the previous bijection:

Given the plot of π ∈ U2k+1(231, 1423), we label each point to the left of the vertical with D. To the right

of the vertical, we label each layer of size n with EDn−1U . The lowest point in π is left unlabeled. Then

we read the labels from top to bottom to obtain the path Λ. By the same logic as in the previous proof,

except where now the separation of E and U with D’s marks a layer with one ascent top and n−1 descent

bottoms, we have that Λ is an S-Motzkin path. For the inverse map, we can again factor Λ = B1 · · ·Bℓ

where each Bi is of the form EDmU (m ≥ 0) or D. Then, we start with the plot of a single point and

in the reverse order Bℓ, . . . , B1, we plot a point above and to the left of the plot so far for each D factor,

and plot a decreasing block of size m+ 1 above and to the right of the plot so far for each EDmU factor.

By the same logic as before, the resulting π is in U2k+1(231, 1423). Thus, this is indeed a bijection, so

|U2k+1(231, 1423)| = |MS

k | =
1

2k+1

(
3k
k

)
.

D

D

EU
EU

EU

EDU

EDDU

Fig. 15: The vee-layered permutation 9 2 1 5 4 3 6 8 7 10 11 and its image under the bijection in Theorem 5.6, the

S-Motzkin path EUEUDEDUEUEDDUD .

Theorem 5.7. We have |U2k+1(132, 3412)| =
1

2k+1

(
3k
k

)
.

Proof:

The result follows from Theorem 5.6 and some previous work. Theorem 6.1 in Defant (2020c) states

that there exists a bijection swu : U2k+1(231) → U2k+1(132). In the proof of Theorem 5.1 in Defant

(2020b), Defant shows that swu(Av(231, 1423)) = Av(132, 3412). Consequently, swu yields a bijection

between U2k+1(231, 1423) and U2k+1(132, 3412). Thus |U2k+1(132, 3412)| = |U2k+1(231, 1423)| =
1

2k+1

(
3k
k

)
.

6 A Bijection with a Subclass of Schröder Paths

We now introduce another well-studied type of lattice path. A Schröder path of semilength k is a path

from (0, 0) to (2k, 0) that consists of an equal number of up steps and down steps, as well as some number

of (2,0) steps (called horizontal steps and denoted H in the up-down sequence) and at no point crosses

below the horizontal axis. The kth Schröder number, denoted Sk, is defined to be the number of Schröder

paths of semilength k.
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Fig. 16: The Schröder path UHUUUDDUHDDD of semilength 7.

It is well-known that the Schröder paths can be divided into two equinumerous subclasses: paths that

have a horizontal step on the horizontal axis and paths that do not have a horizontal step on the horizontal

axis. Let Sk be the set of paths in the latter subclass of length k. It follows that |Sk| = Sk/2 for k ≥ 1
(and |S0| = S0 = 1); these numbers are known as the little Schröder numbers(iii).

Theorem 6.1. We have |U2k+1(231, 1432)| = |Sk|.

Proof: Consider π ∈ U2k+1(231, 1432) and some consecutive subsequence of π, called ρ. Since ρ avoids

231, we can write ρ = λρmµ, where ρm is the largest entry in ρ and λ is below µ. We now consider two

cases.

Case 1: The subsequence λ is nonempty. Then, since a point in λ lies below and to the left of µ and

ρm lies above and horizontally between λ and µ, we have that µ must not contain 21 in order for ρ to

avoid 1432. Thus, µ is increasing. If µ has size n ≥ 2, then ρm and µn are both ascent tops and thus

NE endpoints of hooks Hi and Hj , respectively, in π’s CHC. If πi, πj are the SW endpoints of Hi, Hj ,

respectively, then i < j in order for the hooks to not intersect. But then ρm would be the NE endpoint of

Hj , and not µn, because ρm is to the left of and immediately above µn. Thus, µ must have size at most 1,

giving us that ρ = λ⊕ τ , where τ is 1 or 21.

Case 2: The subsequence λ is empty. Then there are no clear restrictions on µ.

We first perform this decomposition process on π. In case 1, we can repeat this decomposition process

on λ; in case 2, we can repeat it on µ. We repeat until the unknown subsequences are empty. The result

is the decomposition π = L1R where L is decreasing and R’s normalization is τ1 ⊕ · · · ⊕ τℓ where each

τi is 1 or 21. Thus π is a permutation that is vee, except points to the right of the vertical can be replaced

with the block 21. We call this type of permutation vee-step. Note that, by definition, the set of vee-step

permutations is the set of vee-layered permutations (described in the proof of Theorem 5.6) in which each

layer is at most size 2.

Now we define a map from U2k+1(231, 1432) to Sk as follows: Given π ∈ U2k+1(231, 1432), we write

π = L1R as before and label every point in L with the symbol U . Recall R has normalization τ1⊕· · ·⊕τℓ
where τi = 1 or 21. Treating each τi as a single unit, if τi = 1 we label the corresponding point in R with a

D and if τi = 21 we label the corresponding pair points in R with a single H . Then, starting at the lowest

point 1 in π, we read off the labels from bottom to top to obtain a path Λ. Since π is uniquely sorted, it

has k ascents and k descents. The steps labeled with H contain both an ascent top and a descent bottom,

so Λ has an equal number of U ’s and D’s. Moreover, π being sorted implies not only that every prefix of

(iii)Sometimes they are called the small Schröder numbers.
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Λ contains as many U ’s as D’s, but also that there are no horizontal steps in Λ along the horizontal axis.

This is because H corresponds to a 21 block, which contains an ascent top followed by a descent bottom.

If this occurred along the horizontal axis, there would be a prefix subsequence π1 · · ·πm with more ascent

tops than descent bottoms, meaning that there must be an ascent top that is not a NE endpoint, which

contradicts Lemma 2.2. Thus, Λ ∈ Sk. The map is easily reversible, making it a bijection. Therefore

|U2k+1(231, 1432)| = |Sk|.

D

D

D

H

U

U

U

Fig. 17: The vee-step permutation 732154689 and its image under the bijection in Theorem 6.1, the Schröder path

UUHDUDD .

7 Counting U2k+1(231, 4312) with a Generating Function

Defant (2020c) showed how to decompose permutations in U2k+1(231, 4132) to obtain an identity proving

these permutations are in bijection with Pallo comb intervals. In this section, we modify Defant’s method

to instead decompose the permutations in U2k+1(231, 4312), which are counted by the same sequence.

Theorem 7.1. We have
∑

k≥0 |U2k+1(231, 4312)|x
k = C(xC(x)),

where C(x) = 1−
√
1−4x
2x is the generating function of the sequence of Catalan numbers.

Proof: Recall that a uniquely sorted permutation π = π1 · · ·π2k+1 is called nice if the point (1, π1)
is the southwest endpoint of a hook whose northeast endpoint is (2k + 1, 2k + 1). Consider π ∈
U2k+1(231, 4312) and, for now, assume that π is nice. Since π avoids 231, we are able to write π =
π1λµ(2k + 1), where λ ∈ Sπ1−1(which is nonempty because, by assumption, 1 is a descent) and µ is a

permutation of π1 +1, . . . , 2k. Since λ is a subsequence of π, it avoids 231. Since π avoids 4312, λ must

avoid 312, so λ is layered.

Note that the first layer in λ cannot be a single point. If it were, λ2 would be an ascent top and thus a

NE endpoint of a hook. But the only descent top before λ2 is π1, which lies above λ2, a contradiction.

Let m be the largest integer such that the normalization of λ1 · · ·λ2m+1 is in U2m+1(231, 312) and

such that λ2m+1 is the first entry in a layer of size at least two. We let τ = λ1 · · ·λ2m+1. Since the first

layer of λ has size at least two, and the single entry λ1 is in U1(231, 312), such a τ always exists. Let σ
be the remaining entries of λ, so that τσ = λ.
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Now, let π′ = π1σµ, that is, the permutation obtained by removing τ and (2k + 1) from π. We claim

that π′ ∈ U2k−2m−1(231, 4312). Because π′ is a subsequence of π, it avoids 231 and 4312. Since to

obtain π′ we remove one permutation of length 2m + 1 and one of length 1, we have that π′ has length

2k − 2m− 1.

Since π ∈ U2k+1 and τ ∈ U2m+1, the permutations π and τ have k descents and m descents, respec-

tively. Thus when we take out τ , π′ loses m descents. Because all of σ lies below π1, we have that π1

remains a descent top in π′. Since (2k + 1, 2k + 1) has the maximal height in the plot of π, the point

(2k, π2k) was not a descent top of π, so when we remove 2k+1, π′ does not lose any descents. Originally

λ2m+1 was not the last entry in a decreasing block, so it was a descent top in π but now is not in τ . Thus

π′ has k −m− 1 = 2k−2m−1−1
2 descents.

All that is left to check is that π′ has a CHC. Note that τ , when considered its own permutation, is

uniquely sorted, and appears all the way on the left of π, save for π1. Thus in π all hooks with an endpoint

in τ have the other endpoint in τ , except for the last point in τ , which is a descent top in π and thus is the

SW endpoint of some hook Hi. Then when we remove τ and (2k + 1, 2k + 1) to obtain π′, all hooks in

π′ are preserved except H1, which is missing a NE endpoint, and Hi, which is missing a SW endpoint.

We create the hook H ′
1 connecting π′

1 to the NE endpoint of Hi, which resolves the issue and results in

a CHC of π′. Thus, π′ ∈ U2k−2m−1(231, 4312). Now, let π′′ be the normalization of π′ and τ ′ be the

normalization of τ . We have obtained (π′′, τ ′) ∈ U2k−2m−1(231, 4312) × U2m+1(231, 312) from the

original π.

We now show this process is reversible. Given (π′′, τ ′) ∈ U2k−2m−1(231, 4312)× U2m+1(231, 312),
we can insert the plot of τ ′ under π′′

1 and merge its last block with the first block in π′′
2 · · ·π

′′
2k−2m−1. We

then append (2k+1) to recover π. Then, for the CHC, we create hookH1 between π1 and π2k+1 and create

a new hook between the NE endpoint of π′′
1 ’s hook and the new descent top created by merging τ . The

remaining hooks are unaffected by the merge. Thus, this decomposition is bijective, so nice permutations

in U2k+1(231, 4312) correspond to pairs of permutations in U2k−2m−1(231, 4312)× U2m+1(231, 312).

From Lemma 3.3, we have that |U2m+1(231, 312)| = Cm, so
∑

m≥0 |U2m+1(231, 312)|x
m = C(x).

Reindexing gives
∑

n≥1 |Un(231, 312)| = xC(x2). Let B(x) =
∑

k≥0 |U2k+1(231, 4312)|x
k and

B̃(x) =
∑

n≥1 |Un(231, 4312)|x
n. Then nice permutations in U2k+1(231, 4312) are counted by the

generating function [B̃(x)][xC(x2)][x] = x2C(x2)B̃(x). The rest of the proof is identical to that of The-

orem 8.1 in Defant (2020c): using the generating function for nice permutations in U2k+1(231, 4312) to

count all such permutations, we can prove that B̃(x) = x + xC(x2)B̃(x)2, from which it follows that

B(x) = C(xC(x)), as desired. Refer to Defant’s proof for details.
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H1

H2

H3

H4

H5

H6

τ

π′

π′

H ′
1

H6

H5

Fig. 18: Decomposing the nice permutation π into τ and π
′.

8 Conclusion

The theorems in this paper prove nine out of the eighteen conjectures in Defant (2020c), which enumerate

classes of the form U2k+1(τ
(1), τ (2)), where τ (1) has length 3 and τ (2) has length 4. The nine remaining

conjectures are given again in Table 2.

Patterns OEIS Sequence

312, 1243 A122368

231, 1243 A001700

132, 2341

132, 4123
A109081

312, 2341 A006605

Patterns OEIS Sequence

312, 3241 A279569

312, 4321 A063020

132, 4231 A071725

231, 4321 A056010

Tab. 2: The remaining conjectural OEIS sequences enumerating sets of the form U2k+1(τ
(1)

, τ
(2)).

It should be noted that the remaining conjectures include U2k+1(231, 1243) being counted by
(
2k−1

k

)
,

which is the same sequence counting the two classes in Section 4. Decomposition gives that for a per-

mutation π in this class, we can write π = DD′τI where D,D′ are decreasing, I is increasing, and τ is

vee and is below D and I but is above D′. However, the author was unable to find a way to count these

permutations and encourages the reader to try.

The other eight remaining classes are more difficult because, while some are counted by special lattice

paths according to the OEIS, these paths seem to either not have the correct length or not have the correct

properties to create bijections like the ones in this paper. For example, the elements of U2k+1(132, 2341)
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and U2k+1(132, 4123) are counted by Motzkin paths of length 2k−3 with no downsteps in even positions.

But general Motzkin paths do not require a specific number of down and up steps and 2k − 3 is less than

2k+1, so it would be difficult to find a bijection that associates descents and ascents in these permutations

with certain patterns of steps. That said, these remaining classes could be enumerated through other

methods such as the direct counting that we do in Theorem 4.1, or, more likely, generating functions.

Another possible route would be defining new types of lattice paths that are in bijection with these classes

and then enumerating the new paths, which should be easier since there is a greater body of work on the

properties of and counting of lattice paths.

Also, according to the data generated in Defant (2020c), the 24 sequences counting classes of the form

U2k+1(τ) where τ has length four appear to be new and thus studying these classes is likely to be more

challenging than the classes studied in this paper. According to the same author, the sequence counting

U2k+1(231, 4123) is also not in the OEIS.

Beyond this, the natural next step is to enumerate classes of the form U(τ (1), τ (2)), where τ (1) and

τ (2) both have length 4, for there is previous work devoted to counting general permutations avoiding

two patterns of length four that could prove to be very useful; see Bóna (1887); Kitaev (2011); Linton

et al. (2010). Moreover, some of these classes have nice descriptions, such as the class of skew-merged

permutations (which avoid 3412 and 2143) and the class of separable permutations (which avoid 2413

and 3142).
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