
ar
X

iv
:2

10
7.

14
16

1v
2

 [
m

at
h.

C
O

]
 7

 S
ep

 2
02

1

Discrete Mathematics and Theoretical Computer Science DMTCS vol. 23:3, 2021, #7

A tight lower bound for the online bounded

space hypercube bin packing problem∗

Yoshiharu Kohayakawa1† Flávio Keidi Miyazawa2‡

Yoshiko Wakabayashi1§

1 Institute of Mathematics and Statistics, University of São Paulo, Brazil
2 Institute of Computing, University of Campinas, Brazil

received 30th July 2021, accepted 20th Aug. 2021.

In the d-dimensional hypercube bin packing problem, a given list of d-dimensional hypercubes must be packed

into the smallest number of hypercube bins. Epstein and van Stee [SIAM J. Comput. 35 (2005)] showed that the

asymptotic performance ratio ρ of the online bounded space variant is Ω(log d) and O(d/ log d), and conjectured

that it is Θ(log d). We show that ρ is in fact Θ(d/ log d), using probabilistic arguments.

Keywords: Hypercube packing, online bin packing, asymptotic performance ratio, online bounded space packing

1 Introduction

The bin packing problem is an iconic problem in combinatorial optimization, which has been investigated

intensively from many different viewpoints. In particular, it has served as a proving ground for new

approaches to the development and analysis of approximation and online algorithms, as well as for the

development of average case analysis techniques (see Coffman Jr. et al. (1997, 2013)).

We prove a lower bound for a variant of the bin packing problem, in which the items to be packed are

d-dimensional hypercubes, also referred to as d-hypercubes or simply hypercubes, when the dimension

is clear. More precisely, we prove a tight lower bound for the online bounded space d-hypercube bin

packing problem, settling an open problem raised by Epstein and van Stee (2005). Before we state our

result (Theorem 5), we introduce the required concepts and definitions and discuss briefly the relevant

literature.

The d-hypercube bin packing problem (d-CPP) is defined as follows. We are given a list L of items,

where each item h in L is a d-hypercube of side length s(h) ≤ 1, and an unlimited number of bins, each

of which is a unit d-hypercube (that is, a d-hypercube of side length 1). The goal is to find a packing P of

∗This research was partially supported by CAPES (Finance Code 001).
†Partially supported by CNPq (311412/2018-1, 423833/2018-9) and FAPESP (2018/04876-1).
‡Partially supported by CNPq (314366/2018-0, 425340/2016-3) and FAPESP (2015/11937-9, 2016/01860-1).
§Partially supported by CNPq (306464/2016-0, 423833/2018-9) and FAPESP (2015/11937-9). FAPESP is the São Paulo Re-

search Foundation. CNPq is the National Council for Scientific and Technological Development of Brazil.

ISSN 1365–8050 © 2021 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://arxiv.org/abs/2107.14161v2

2 Yoshiharu Kohayakawa, Flávio Keidi Miyazawa, Yoshiko Wakabayashi

the items in L into the smallest possible number of bins. More precisely, we have to assign each item h
to a bin, and specify its position in that bin. We require that the items be placed parallel to the axes of the

bin and, crucially, we require that the items in a bin should not overlap. The size |P| of the packing P is

the number of used bins (those with assigned items).

The d-hypercube bin packing problem (d-CPP) is in fact a special case of the d-dimensional bin packing

problem (d-BPP), in which one has to pack d-dimensional parallelepipeds into d-dimensional unit bins.

For d = 1, both problems reduce to the well known bin packing problem.

In the online variant of d-CPP, the items arrive sequentially and each item must be placed in some bin

as soon as it arrives, without knowledge of the next items. The online bounded space variant of d-CPP

is a restricted variant of online d-CPP. Whenever a new empty bin is used in the packing process, it is

considered an open bin and it remains so until it is considered closed, after which point it is not allowed

to accept other items. In this variant, regardless of the instance I , at every point of the process, not more

than M bins should be open, where M is some constant that does not depend on I .

As usual for bin packing problems, we consider the asymptotic performance ratio to measure the quality

of algorithms. For an algorithm A and an input list L, let A(L) be the number of bins used by the solution

produced by A for the list L. Furthermore, let OPT(L) = min |P|, where the minimum is taken over all

possible packings P of L into unit bins. The asymptotic performance ratio of A is

R∞
A = lim sup

n→∞
sup
L

{

A(L)

OPT(L)
: OPT(L) = n

}

. (1)

Given a packing problem Π, the optimal asymptotic performance ratio for Π is

R∞
Π = inf {R∞

A : A is an algorithm for Π} . (2)

Many results have been obtained for online d-BPP and d-CPP (see, e.g., Balogh et al. (2019, 2012);

Blitz et al. (2017); Christensen et al. (2017); Heydrich and van Stee (2016); Seiden (2002); van Vliet

(1992)). In our brief discussion of the literature below, we restrict ourselves to the online bounded space

versions of d-BPP and d-CPP.

For online bounded space 1-BPP, Lee and Lee (1985) gave an algorithm called HARMONICM with

asymptotic performance ratio at most (1 + ε)Π∞, where ε → 0 as M → ∞, and Π∞ ≈ 1.69103 is a

certain explicitly defined constant. These authors also proved that no algorithm for online bounded space

1-BPP can have asymptotic performance ratio smaller than Π∞. For online bounded space d-BPP for

general d, a lower bound of Πd
∞ was implicitly proved by Csirik and van Vliet (1993), and Epstein and

van Stee (2005) proved an asymptotically matching upper bound.

For online bounded space d-CPP, Epstein and van Stee (2005) proved that its asymptotic performance

ratio is Ω(log d) and O(d/ log d), and conjectured that it is Θ(log d). They also gave an optimal algorithm

for this problem, but left as an interesting open problem to determine its asymptotic performance ratio.

Later, Epstein and van Stee (2007) gave lower and upper bounds for d ∈ {2, . . . , 7}.

Our main contribution is an Ω(d/ log d) lower bound for online bounded space d-CPP. In view of

previous results by Epstein and van Stee (2005), we obtain that the asymptotic performance ratio of this

problem is Θ(d/ log d), settling an open problem posed by those authors. To prove our lower bound, we

follow a well known approach (see Lee and Lee (1985) and Yao (1980)), which requires the proof of the

existence of a packing with a suitably large ‘weight’, for a certain definition of weight. The novelty here

is that we prove the existence of such a packing with the probabilistic method.

Online bounded space hypercube bin packing 3

To conclude this section, we mention that the technique that we present here may also be used to obtain

lower bounds for the prices of anarchy of a game theoretic version of d-CPP, called selfish d-hypercube bin

packing game. As this topic requires the introduction of a number of concepts, we just mention the main

results for readers familiar with this line of research: for every large enough d, the asymptotic price of

anarchy (respectively, strong price of anarchy) of the selfish d-hypercube bin packing game is Ω(d/ log d)
(respectively, Ω(log d)). The proof of one of the results can be found in Kohayakawa et al. (2017). A

preliminary version of this work (Kohayakawa et al. (2018)) appeared in the proceedings of LATIN 2018.

2 Notation and homogeneous packings

The d-hypercubes Q+
k = Qd

k(ε) defined below will be important in what follows.

Definition 1. Let d ≥ 2 be an integer. For every integer k ≥ 2 and ε > 0, let

Q+
k = Qd

k(ε) =

(

0,
1 + ε

k

)d

=

{

x ∈ R : 0 < x <
1 + ε

k

}d

⊂ R
d (3)

be the open d-hypercube of side length (1 + ε)/k ‘based’ at the origin.

2.1 Homogeneous packings

We shall be interested in certain types of packings of hypercubes into a unit bin.

Definition 2 (Homogeneous packings H+
k = Hd

k(ε)). Let d ≥ 2 be fixed. For any integer k ≥ 2
and 0 < ε ≤ 1/(k−1), a packing of (k−1)d copies of Q+

k = Qd
k(ε) into a unit bin is said to be a packing

of type H+
k = Hd

k(ε). Packings of type H+
k will be called homogeneous packings.

In the definition above, the upper bound on ε guarantees that (k − 1)d copies of Q+
k can be packed

into a unit bin (and hence H+
k exists): it suffices to note that, under that assumption on ε, we have

(k− 1)(1+ ε)/k ≤ 1. Homogeneous packings are important because they can be used to create instances

for which any bounded space algorithm performs badly (see Epstein and van Stee (2005, 2007)).

3 The central lemma and the main theorem

The key result used in the proof of our main theorem (Theorem 5) is the existence of a certain packing,

stated in Lemma 4 below. Since this lemma is somewhat technical, we first informally describe a related

result.

Consider the S − 1 homogeneous packings H+
k (k = 2, . . . , S), where S = ⌈cd/ log d⌉ for a small

positive constant c. Suppose also that 0 < ε ≤ ε0(d) for some small ε0(d). Suppose we assemble a list I
of d-hypercubes from these S − 1 homogeneous packings H+

k by selecting 90% of the members of each

such H+
k . The following holds: (*) there is a packing of I into a single unit bin as long as d is sufficiently

large. This fact is behind the proof of our central lemma, Lemma 4, stated in what follows. Fact (*) might

look surprising at first sight, as the homogeneous packings H+
k appear to have reasonably high occupancy.

We now give some definitions needed for the statement of Lemma 4.

Definition 3 (ε-packings). A packing U of d-hypercubes into a unit bin is called an ε-packing if, for every

member Q of U , there is some integer k ≥ 2 such that Q is a copy of Q+
k = Qd

k(ε).

4 Yoshiharu Kohayakawa, Flávio Keidi Miyazawa, Yoshiko Wakabayashi

Let U be an ε-packing for some ε > 0. Let

K(U) = {k ≥ 2: U contains a copy of Q+
k }. (4)

For every k ∈ K(U), let

νk(U) be the total number of copies of Q+
k in U . (5)

Clearly, we have 0 ≤ νk(U) ≤ (k− 1)d for every k (recall that ε > 0). Finally, we define the weight of U
as

w(U) =
∑

k∈K(U)

νk(U)

(k − 1)d
. (6)

We shall be interested in ε-packings U with large weight. Our main lemma is as follows.

Lemma 4 (Central lemma). There is an absolute constant d0 for which the following holds for any d ≥ d0.

For any 0 < ε ≤ d−2, the unit bin admits an ε-packing U with

w(U) ≥
d

5 log d
. (7)

In (7) and in what follows, log x stands for the natural logarithm of x. The proof of Lemma 4 is

postponed to Section 4. We now deduce our main result, Theorem 5, from Lemma 4, following the

approach used by Lee and Lee (1985). For experts in the area, given Lemma 4, the proof of Theorem 5 is

routine. The short proof below is included for the benefit of non-experts.

Theorem 5 (Main Theorem). There is an absolute constant d0 such that, for any d ≥ d0, the asymptotic

performance ratio of the online bounded space d-hypercube bin packing problem is at least d/10 log d.

Proof: Let A be any algorithm for the online bounded space d-hypercube bin packing problem. Let M
be the maximum number of bins that A leaves open during its execution. To prove that A has asymptotic

performance ratio at least d/10 logd if d is large enough, we construct a suitable instance I for A.

Let d0 be as in Lemma 4 and suppose d ≥ d0. Fix any ε with 0 < ε ≤ d−2 and let U be a packing as

in the statement of Lemma 4. The instance I will be constructed as follows. First, we choose a suitable

integer N and take 2MN copies of U . We then construct I by arranging the hypercubes in these copies in

a linear order, with all the hypercubes of the same size appearing together. Let us now formally describe I.

Let N =
∏

k∈K(U)(k− 1)d. Recall that U contains νk(U) copies of Q+
k for every k ∈ K(U). Let K =

|K(U)| and suppose K(U) = {k1, . . . , kK}. The instance I that we shall construct is the concatenation

of K segments, say I = I1 . . .IK , with each segment Iℓ (1 ≤ ℓ ≤ K) composed of a sequence

of f(ℓ) = 2MNνkℓ
(U) copies of Q+

kℓ
. This completes the definition of our instance I.

The following assertion, to be used later, concerning the offline packing of the hypercubes in I is clear,

as we obtained I by rearranging the hypercubes in 2MN copies of U .

The hypercubes in I can be packed into at most 2MN unit bins. (8)

We now prove that, when A is given the instance I above, it will have performance ratio at least as bad

as w(U)/2. In view of (7) in Lemma 4, this will complete the proof of Theorem 5.

Online bounded space hypercube bin packing 5

Let us examine the behaviour of A when it is given input I. Fix 1 ≤ ℓ ≤ K and suppose that A has

already seen the hypercubes in I1 . . . Iℓ−1 and it has already packed them somehow. We now consider

what happens when A examines the f(ℓ) hypercubes in Iℓ, which are all copies of Q+
kℓ

.

Clearly, since ε > 0, the f(ℓ) copies of Q+
kℓ

in Iℓ cannot be packed into fewer than

f(ℓ)

(kℓ − 1)d
=

2MNνkℓ
(U)

(kℓ − 1)d
≥

MNνkℓ
(U)

(kℓ − 1)d
+M (9)

unit bins. Therefore, even if some hypercubes in Iℓ are placed in bins still left open after the processing

of I1 . . .Iℓ−1, the hypercubes in Iℓ will add at least MNνkℓ
(U)/(kℓ− 1)d new bins to the current output

of A. Thus, the total number of bins that A will use when processing I is at least

∑

k∈K(U)

MNνk(U)

(k − 1)d
= MN

∑

k∈K(U)

νk(U)

(k − 1)d
= MN w(U). (10)

In view of (8), it follows that the asymptotic performance ratio of A is at least

MN w(U)

2MN
=

1

2
w(U), (11)

as claimed. This completes the proof of Theorem 5.

4 Proof of Lemma 4

The ε-packing U whose existence is asserted in our central lemma, Lemma 4, will be described in terms

of certain ‘codes’, that is, sets of ‘codewords’ or simply ‘words’. We shall use such codes to ‘place’ copies

of certain Q+
k = Qd

k(ε) in the packing U . We make this precise in Section 4.1. The proof of the existence

of appropriate codes will be given in Section 4.2. The proof of Lemma 4 is given in Section 4.3.

4.1 Placing hypercubes according to codewords

Let d and k ≥ 2 be fixed. Let a d-letter word w ∈ [k]d from the alphabet [k] = {1, . . . , k} be given.

In what follows, we shall fix some 0 < ε ≤ ε0(d) and we shall consider translations Q(w) = Q(k)(w)
of the hypercube Q+

k specified by such words w in a certain way (for the definition of Q+
k = Qd

k(ε),
recall (3)). Furthermore, later, we shall consider certain sets Lk ⊂ [k]d of such words and we shall define

packings of the form PLk
= {Q(w) : w ∈ Lk}. Note that PLk

is composed of copies of Q+
k . To obtain

the packing U whose existence is asserted in Lemma 4, we shall consider the union of such packings PLk

for k = 2, . . . , S, with S = ⌈2d/9 log d⌉ and certain families L = {Lk : 2 ≤ k ≤ S} (see Lemma 13).

Let us now define Q(w) = Q(k)(w), the translation of Q+
k specified by w = (w1, . . . , wd) ∈ [k]d.

For w = (wi)1≤i≤d with wi < k for every i, we let Q(w) be the translation

x[w] +Q+
k = {x[w] + z : z ∈ Q+

k } (12)

of Q+
k , where

x[w] =
1 + ε

k
(w1 − 1, . . . , wd − 1). (13)

6 Yoshiharu Kohayakawa, Flávio Keidi Miyazawa, Yoshiko Wakabayashi

Thus, while Q+
k has its ‘base point’ at the origin, Q(w) has its base point at x[w] (see Q(w) and Q(w′′)

in Figure 1).

In what follows, we shall always have 0 < ε < 1/(k− 1). Therefore, if wi < k for every i, then Q(w)
is contained in the unit hypercube [0, 1]d, whereas if wi = k for some i, then x[w]+Q+

k = {x[w]+z : z ∈
Q+

k } with x[w] as defined in (13) is not contained in [0, 1]d (see Q′ in Figure 1). Since we want Q(w) to

be contained in [0, 1]d for every w ∈ [k]d, we actually define x[w] as in (15) below.

Definition 6 (Base point coordinates of Q(w)). For every k ≥ 2 and 0 < ε < 1/(k − 1), let

x(k)(v) = x(k)
ε (v) =

(1 + ε)(v − 1)

k
, if 1 ≤ v < k,

1−
1 + ε

k
, if v = k.

(14)

For w = (w1, . . . , wd) ∈ [k]d, let

x[w] = (x(k)(w1), . . . , x
(k)(wd)). (15)

Finally, for convenience, for 1 ≤ v ≤ k, let

y(k)(v) = x(k)(v) +
1 + ε

k
. (16)

i

j

x(k)(1) = 0

x(k)(2) = y(k)(1) (1 + ε)/k

x(k)(3) = y(k)(2) 2(1 + ε)/k

x(k)(k − 1) = y(k)(k − 2) (k − 2)(1 + ε)/k

y(k)(k − 1) (k − 1)(1 + ε)/k

y(k)(k) = 1 1

x(k)(k) 1− (1 + ε)/k

Q(w)

Q(w′)

Q(w′′)

Q′

Fig. 1: Projections on the (i, j)-plane of hypercubes Q(w), Q(w′) and Q(w′′) with wi = wj = 2, w′
i = 1

and w′
j = k, and w′′

i = 3 and w′′
j = k − 1. The hypercube Q′ is not contained in [0, 1]d.

We now state three simple facts that the reader may find useful to check on their own to get used to the

definitions above. First, note that P = {Q(w) : w ∈ [k − 1]d} is a packing of (k − 1)d copies of Q+
k into

Online bounded space hypercube bin packing 7

the unit bin [0, 1]d; that is, P is a packing of type H+
k (recall Definition 2). Secondly, {Q(w) : w ∈ [k]d}

is not a packing. Finally, {Q(w) : w ∈ [k]d with wi 6= k − 1 for every i} is a packing (and is also a

packing of type H+
k).

Note that, because ε < 1/(k − 1), for every k ≥ 2, we have

0 = x(k)(1) < y(k)(1) = x(k)(2) < y(k)(2) = x(k)(3) < · · · < y(k)(k − 2)

= x(k)(k − 1) < x(k)(k) < y(k)(k − 1) < y(k)(k) = 1 (17)

(see Figure 1). For every k ≥ 2 and 1 ≤ v ≤ k, let

I(k)(v) = (x(k)(v), y(k)(v)) ⊂ [0, 1]. (18)

Finally, note that

Q(w) = Q(k)(w) = x[w] +Q+
k = I(k)(w1)× · · · × I(k)(wd) ⊂ [0, 1]d. (19)

We close this section observing the following.

Fact 7. The following assertions hold for any positive S.

(i) Suppose 2 ≤ k < k′ ≤ S and 0 < ε ≤ S−2. Then

y(k)(k − 1) < x(k′)(k′). (20)

In particular, the intervals I(k)(v) (1 ≤ v < k) are disjoint from I(k
′)(k′).

(ii) For any 2 ≤ k ≤ S, the intervals I(k)(v) (1 ≤ v ≤ k) are pairwise disjoint, except for the single

pair formed by I(k)(k − 1) and I(k)(k).

Proof: Assertion (ii) is clear (recall (17)). The second assertion in (i) follows from inequality (20),

and therefore it suffices to verify that inequality. We have y(k)(k − 1) = x(k)(k − 1) + (1 + ε)/k =
(k−1)(1+ε)/k = 1+ε−(1+ε)/k. Moreover, x(k′)(k′) = 1−(1+ε)/k′. Therefore, (20) is equivalent

to

ε < (1 + ε)

(

1

k
−

1

k′

)

. (21)

Since k + 1 ≤ k′ ≤ S and ε ≤ S−2, inequality (21) does hold.

4.2 Separated families of gapped codes

Let an integer d ≥ 2 be fixed. We shall consider sets of words Lk ⊂ [k]d = {1, . . . , k}d for k ≥ 2.

We refer to such Lk as codes or k-codes. As discussed in the beginning of Section 4.1, we shall design

such Lk to specify packings PLk
= {Q(w) : w ∈ Lk}.

We start with the following definition.

Definition 8 (Gapped codes). Suppose k ≥ 2 and let a k-code Lk ⊂ [k]d be given. We say that Lk

misses j at coordinate i0 if every word w = (wi)1≤i≤d in Lk is such that wi0 6= j. Furthermore, Lk is

said to be gapped if, for each 1 ≤ i ≤ d, either Lk misses k − 1 at i or Lk misses k at i.

8 Yoshiharu Kohayakawa, Flávio Keidi Miyazawa, Yoshiko Wakabayashi

Suppose Lk is a gapped code, and suppose w = (wi)1≤i≤d and w′ = (w′
i)1≤i≤d are distinct words

in Lk. Then Q(w) and Q(w′) do not overlap: this can be checked from (19) and Fact 7(ii). Thus, if Lk is

gapped, then

PLk
= {Q(w) : w ∈ Lk} (22)

is a packing.

We now introduce a certain notion of ‘compatibility’ between two codes Lk and Lk′ , so that PLk

and PL
k′

can be put together to obtain a packing if they come from ‘compatible’ codes Lk and Lk′ .

Definition 9 (Separated codes). Suppose 2 ≤ k < k′ and Lk ⊂ [k]d and Lk′ ⊂ [k′]d are given. We say

that Lk and Lk′ are separated if, for any w = (wi)1≤i≤d ∈ Lk and any w′ = (w′
i)1≤i≤d ∈ Lk′ , there is

some i such that wi < k < k′ = w′
i.

Suppose Lk and Lk′ are gapped and separated and suppose k < k′ ≤ S and ε ≤ S−2 for some S
(we shall later set S to be a certain value S(d)). Consider the packings PLk

and PL
k′

as defined in (22).

Fact 7(i) and (19) imply that PLk
∪ PL

k′
is a packing. Indeed, let w = (wi)1≤i≤d ∈ Lk and any w′ =

(w′
i)1≤i≤d ∈ Lk′ be given. Then, by definition, there is some i such that wi < k < k′ = w′

i. This implies

that Q(w) = Q(k)(w) and Q(w′) = Q(k′)(w′) are disjoint ‘in the ith dimension’ (see Fact 7(i)).

Definition 10 (Separated families). Let L = (Lk)2≤k≤S be a family of k-codes Lk ⊂ [k]d. If, for

every 2 ≤ k < k′ ≤ S, the codes Lk and Lk′ are separated, then we say that L is a separated family of

codes.

Remark 11. For 2 ≤ k ≤ d, let Lk =
{

w = (wi)1≤i≤d ∈ [k]d : wk = k and wi < k for all i 6= k
}

.

Then L = (Lk)2≤k≤d is a separated family of gapped codes. Fix 0 < ε ≤ d−2. Consider P =
⋃

2≤k≤d PLk
with PLk

as in (22). Since each Lk is gapped, the Pk are packings. Also, since L =

(Lk)2≤k≤d is a separated family, P is a packing. Furthermore, we have νk(P) = |Lk| = (k − 1)d−1

(recall (5)) and w(P) =
∑

2≤k≤d 1/(k− 1) ∼ log d (recall (6)). The existence of P implies a weak form

of Theorem 5 (namely, a lower bound of Ω(log d) instead of Ω(d/ log d)).

Remark 11 above illustrates the use we wish to make of separated families of gapped codes. Our focus

will now shift onto producing much ‘better’ families than the one explicitly defined in Remark 11. Indeed,

we now prove Lemma 13 below, which asserts the existence of such better families. We shall need the

following auxiliary lemma.

Lemma 12. There is an absolute constant d0 such that, for any d ≥ d0, there are sets F1, . . . , Fd ⊂ [d]
such that (i) for every 1 ≤ k ≤ d, we have |Fk| = ⌈d/2⌉ and (ii) for every 1 ≤ k < k′ ≤ d, we

have |Fk ∩ Fk′ | < 7d/26.

Proof: Let r = ⌈d/2⌉. We select each Fk (1 ≤ k ≤ d) among the r-element subsets of [d] uniformly

at random, with each choice independent of all others. Let s = 7d/26. Note that, for any k 6= k′, we

have E(|Fk ∩ Fk′ |) = r2/d. Let λ = r2/d. Let

t = s− λ ≥ s− (d/2 + 1)2/d ≥
7d

26
−

1

d

(

d2

4
+ d+ 1

)

≥
d

52
− 2 ≥

d

53
, (23)

as long as d is large enough. We may now apply a Chernoff bound for the hypergeometric distribution

(see, e.g., Janson et al. (2000), Theorem 2.10, inequality (2.12)) to obtain that

P(|Fk ∩ Fk′ | ≥ s) = P(|Fk ∩ Fk′ | ≥ λ+ t) ≤ exp

(

−
2(d/53)2

⌈d/2⌉

)

≤ e−3d/532 (24)

Online bounded space hypercube bin packing 9

for every large enough d. Therefore, the expected number of pairs {k, k′} with 1 ≤ k < k′ ≤ d for

which |Fk ∩Fk′ | ≥ s is less than d2 exp(−3d/532), which tends to 0 as d → ∞. Therefore, for any large

enough d, a family of sets F1, . . . , Fd as required does exist.

We are now ready to state and prove the lemma that asserts the existence of a separated family of gapped

codes that is ‘better’ than the one defined in Remark 11.

Lemma 13 (Many large, separated gapped codes). There is an absolute constant d0 ≥ 2 such that, for

any d ≥ d0, there is a separated family L = (Lk)2≤k≤S of gapped k-codes Lk ⊂ [k]d such that

|Lk| ≥
10

11
(k − 1)d (25)

for every 2 ≤ k ≤ S, where

S =

⌈

2d

9 log d

⌉

. (26)

Proof: Let S be as in (26) and let F1, . . . , Fd be as in Fact 12. In what follows, we only use the Fk

for 2 ≤ k ≤ S. For each 2 ≤ k ≤ S, we construct Lk ⊂ [k]d in two parts. Suppose first that we have L′
k

with

L′
k ⊂ ([k] \ {k − 1})Fk = {w = (wi)i∈Fk

: wi ∈ [k] \ {k − 1} for all i ∈ Fk}. (27)

We then set

Lk = L′
k × [k − 1][d]\Fk

= {w = (wi)1≤i≤d : ∃w
′ = (w′

i)i∈Fk
∈ L′

k such that wi = w′
i for all i ∈ Fk

and wi ∈ [k − 1] for all i ∈ [d] \ Fk}.

(28)

Note that, by (27) and (28), the k-codeLk will be gapped (k−1 is missed at every i ∈ Fk and k is missed at

every i ∈ [d]\Fk). We shall prove that there is a suitable choice for the L′
k with |L′

k| ≥ (10/11)(k−1)|Fk|,

ensuring that L = (Lk)2≤k≤S is separated. Since we shall then have

|Lk| = |L′
k|(k − 1)d−|Fk| ≥

10

11
(k − 1)d, (29)

condition (25) will be satisfied and Lemma 13 will be proved. We now proceed with the construction of

the codes L′
k (2 ≤ k ≤ S).

Fix 2 ≤ k ≤ S. For 2 ≤ ℓ < k, let J(ℓ, k) = Fk \ Fℓ, and note that

|J(ℓ, k)| >

⌈

d

2

⌉

−
7

26
d ≥

3

13
d. (30)

Let v = (vi)i∈Fk
be an element of ([k] \ {k − 1})Fk chosen uniformly at random. For every 2 ≤ ℓ < k,

let us say that v is ℓ-bad if vi 6= k for every i ∈ J(ℓ, k). We have

P(v is ℓ-bad) =

(

1−
1

k − 1

)|J(ℓ,k)|

≤ e−|J(ℓ,k)|/S ≤ exp

(

−
3d

13⌈2d/9 logd⌉

)

≤ d−1, (31)

10 Yoshiharu Kohayakawa, Flávio Keidi Miyazawa, Yoshiko Wakabayashi

for every large enough d. Let us say that v is bad if it is ℓ-bad for some 2 ≤ ℓ < k. It follows from (31)

that

P(v is bad) ≤ Sd−1 ≤
1

4 log d
≤

1

11
(32)

if d is large enough. Therefore, at least (10/11)(k − 1)|Fk| words v ∈ ([k] \ {k − 1})Fk are not bad, as

long as d is large enough. We let L′
k ⊂ ([k] \ {k − 1})Fk be the set of such good words.

To complete the proof, it remains to show that the family L = (Lk)2≤k≤S is separated. More precisely,

we show that with the above choice of L′
k (2 ≤ k ≤ S), the family L = (Lk)2≤k≤S with Lk as defined

in (28) is separated.

To this end, fix 2 ≤ ℓ < k ≤ S. We show that Lℓ and Lk are separated. Let u = (ui)1≤i≤d ∈ Lℓ

and w = (wi)1≤i≤d ∈ Lk be given. By the definition of Lk, there is v = (vi)i∈Fk
∈ L′

k such that wi = vi
for all i ∈ Fk. Furthermore, since v ∈ L′

k is not a bad word, it is not ℓ-bad. Therefore, there is i0 ∈
J(ℓ, k) = Fk \ Fℓ for which we have vi0 = k. Observing that i0 /∈ Fℓ and recalling the definition of Lℓ,

we see that ui0 < ℓ < k = vi0 = wi0 , as required.

The proof of Lemma 13 is now complete.

4.3 The packing U in Lemma 4

Fix L = (Lk)2≤k≤S , a separated family of gapped k-codes Lk ⊂ [k]d. We now give, for every sufficiently

small ε > 0, the construction of a packing Uε(L) of d-hypercubes into the unit bin [0, 1]d using L and

prove that Uε(L) is indeed a packing. Choosing L as in Lemma 13 above, we shall deduce Lemma 4 by

taking U = Uε(L).

Definition 14 (Packing Uε = Uε(L)). Suppose L = (Lk)2≤k≤S is a separated family of gapped k-codes

Lk ⊂ [k]d. Let 0 < ε ≤ S−2. We put

Uε = Uε(L) =
⋃

2≤k≤S

PLk
, (33)

where PLk
is as in (22).

In Lemma 15 below, we compile the properties that we need of Uε. For the relevant notation, recall (4),

(5) and Definition 3.

Lemma 15. Suppose L = (Lk)2≤k≤S is a separated family of non-empty gapped k-codes Lk ⊂ [k]d.

Suppose 0 < ε ≤ S−2. Let Uε = Uε(L) be the family of all the hypercubes Q(w) = Q(k)(w) ⊂ [0, 1]d

with w ∈ Lk and 2 ≤ k ≤ S. Then the following assertions hold: (i) the hypercubes in Uε are pairwise

disjoint and form an ε-packing; (ii) for every 2 ≤ k ≤ S, we have νk(Uε) = |Lk|; (iii) |K(Uε)| = S − 1.

Proof: Let us first check that the hypercubes Q(w) in Uε are pairwise disjoint. We remark that, when

introducing the notions of gapped and separated codes, we already discussed the reason why the Q(w)
in Uε are indeed pairwise disjoint. However, we give a formal proof here for completeness. Let w =
(wi)1≤i≤d ∈ Lk and w′ = (w′

i)1≤i≤d ∈ Lk′ with 2 ≤ k ≤ k′ ≤ S be given. Consider Q(w) = Q(k)(w)

and Q(w′) = Q(k′)(w′). We have to show that

Q(w) ∩Q(w′) = ∅. (34)

Online bounded space hypercube bin packing 11

Suppose first that k = k′. In that case, bothw andw′ are in Lk = Lk′ and we may suppose that w 6= w′.

Thus, there is some 1 ≤ i ≤ d such that wi 6= w′
i. Furthermore, since Lk is gapped, either k − 1 or k is

missed by Lk at i. In particular, the pair {wi, w
′
i} cannot be the pair {k − 1, k} and therefore

I(k)(wi) ∩ I(k)(w′
i) = ∅ (35)

(recall Fact 7(ii)). Expression (19) applied toQ(w) andQ(w′), together with (35), confirms (34) when k =
k′.

Suppose now that k < k′. Since Lk and Lk′ are separated, there is some 1 ≤ i0 ≤ d such that wi0 <
k < k′ = w′

i0
. Fact 7(i) tells us that

I(k)(wi0) ∩ I(k
′)(w′

i0) = ∅. (36)

Expression (19) applied to Q(w) and Q(w′), together with (36), confirms (34) in this case also. We

therefore conclude that Uε is indeed a packing.

The hypercubes in Uε are copies of the hypercubesQ+
k for 2 ≤ k ≤ S, and thereforeUε is an ε-packing.

This concludes the proof of Lemma 15(i). Assertions (ii) and (iii) are clear.

We are now ready to prove Lemma 4.

Proof of Lemma 4: Let d0 be as in Lemma 13. We may and shall suppose that d0 ≥ e2 and that d0 is

large enough so that, for every d ≥ d0, the last inequality in (37) below holds. We prove that Lemma 4

holds with this choice of d0. Let d ≥ d0 and 0 < ε ≤ d−2 be given. Let S = ⌈2d/9 logd⌉. Note

that ε ≤ d−2 ≤ S−2. Let L = (Lk)2≤k≤S be a separated family of gapped k-codes as given by

Lemma 13. Lemma 15 tells us that Uε = Uε(L) is an ε-packing with

w(Uε) =
∑

k∈K(Uε)

νk(Uε)

(k − 1)d
=

∑

k∈K(Uε)

|Lk|

(k − 1)d

≥
10

11
(S − 1) =

10

11

(⌈

2d

9 log d

⌉

− 1

)

≥
d

5 log d
. (37)

Thus, to prove Lemma 4, it suffices to take U = Uε.

5 Concluding remarks

We have not optimized the numerical constants in our calculations above. In particular, the constant 10 in

Theorem 5 can be made arbitrarily close to 4, although d0 would grow as we do so. We note that, since

the problem posed by Epstein and van Stee (2005) is of an asymptotic nature (d → ∞), the specific value

of d0 is not particularly relevant.

Our approach for finding a certain good packing in this paper is based on establishing the existence of

certain specific families of compatible codes by the probabilistic method. We hope similar ideas will be

useful in other related contexts.

12 Yoshiharu Kohayakawa, Flávio Keidi Miyazawa, Yoshiko Wakabayashi

References

J. Balogh, J. Békési, and G. Galambos. New lower bounds for certain classes of bin packing algorithms.

Theoret. Comput. Sci., 440/441:1–13, 2012. ISSN 0304-3975. doi: 10.1016/j.tcs.2012.04.017. URL

https://doi.org/10.1016/j.tcs.2012.04.017.

J. Balogh, J. Békési, G. Dósa, L. Epstein, and A. Levin. Lower bounds for several online vari-

ants of bin packing. Theory Comput. Syst., 63(8):1757–1780, 2019. ISSN 1432-4350. doi:

10.1007/s00224-019-09915-1. URL https://doi.org/10.1007/s00224-019-09915-1.

D. Blitz, S. Heydrich, R. van Stee, A. van Vliet, and G. J. Woeginger. Improved lower bounds for online

hypercube and rectangle packing. arXiv, 2017. abs/1607.01229.

H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali. Approximation and online algorithms for multidi-

mensional bin packing: a survey. Comput. Sci. Rev., 24:63–79, 2017. ISSN 1574-0137. doi: 10.1016/

j.cosrev.2016.12.001. URL https://doi.org/10.1016/j.cosrev.2016.12.001.

E. G. Coffman Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing: a survey.

In D. Hochbaum, editor, Approximation Algorithms for NP-hard Problems, chapter 2, pages 46–93.

PWS, 1997. ISBN 978-0-53494-968-6.

E. G. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo. Bin packing approximation algo-

rithms: survey and classification. In P. M. Pardalos, D.-Z. Du, and R. L. Graham, editors, Handbook

of Combinatorial Optimization, pages 455–531. Springer New York, New York, NY, 2013. ISBN

978-1-4419-7997-1. doi: 10.1007/978-1-4419-7997-1 35. URL https://doi.org/10.1007/

978-1-4419-7997-1_35.

J. Csirik and A. van Vliet. An on-line algorithm for multidimensional bin packing. Oper. Res. Lett., 13

(3):149–158, 1993. ISSN 0167-6377. doi: 10.1016/0167-6377(93)90004-Z. URL https://doi.

org/10.1016/0167-6377(93)90004-Z.

L. Epstein and R. van Stee. Optimal online algorithms for multidimensional packing problems. SIAM J.

Comput., 35(2):431–448, 2005. ISSN 0097-5397. doi: 10.1137/S0097539705446895. URL https:

//doi.org/10.1137/S0097539705446895.

L. Epstein and R. van Stee. Bounds for online bounded space hypercube packing. Discrete Optim., 4(2):

185–197, 2007. ISSN 1572-5286. doi: 10.1016/j.disopt.2006.11.005. URL https://doi.org/

10.1016/j.disopt.2006.11.005.

S. Heydrich and R. van Stee. Beating the harmonic lower bound for online bin packing. In ICALP 2016,

volume 55 of LIPIcs, pages 41:1–41:14; newer version: arXiv:1511.00876, Dagstuhl, Germany, 2016.

ISBN 978-3-95977-013-2. doi: 10.4230/LIPIcs.ICALP.2016.41.

S. Janson, T. Łuczak, and A. Ruciński. Random graphs. Wiley-Interscience, New York, 2000. ISBN

0-471-17541-2.

Y. Kohayakawa, F. K. Miyazawa, and Y. Wakabayashi. A tight lower bound for an online hypercube

packing problem and bounds for prices of anarchy of a related game. arXiv, 2017. abs/1712.06763.

Online bounded space hypercube bin packing 13

Y. Kohayakawa, F. K. Miyazawa, and Y. Wakabayashi. A tight lower bound for an online hypercube

packing problem and bounds for prices of anarchy of a related game. In M. A. Bender, M. Farach-

Colton, and M. A. Mosteiro, editors, LATIN 2018: Theoretical Informatics - 13th Latin American

Symposium, Buenos Aires, Argentina, April 16-19, 2018, Proceedings, volume 10807 of Lecture Notes

in Computer Science, pages 697–711. Springer, 2018. doi: 10.1007/978-3-319-77404-6 51. URL

https://doi.org/10.1007/978-3-319-77404-6_51.

C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. J. ACM, 32(3):562–572, 1985. ISSN

0004-5411. doi: 10.1145/3828.3833. URL https://doi.org/10.1145/3828.3833.

S. S. Seiden. On the online bin packing problem. J. ACM, 49(5):640–671, 2002. ISSN 0004-5411. doi:

10.1145/585265.585269. URL https://doi.org/10.1145/585265.585269.

A. van Vliet. An improved lower bound for on-line bin packing algorithms. Inf. Process. Lett., 43(5):

277–284, 1992. ISSN 0020-0190. doi: 10.1016/0020-0190(92)90223-I. URL https://doi.org/

10.1016/0020-0190(92)90223-I.

A. C. C. Yao. New algorithms for bin packing. J. ACM, 27(2):207–227, 1980. ISSN 0004-5411. doi:

10.1145/322186.322187. URL https://doi.org/10.1145/322186.322187.

