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In this paper, we prove a collection of results on graphical indices. We determine the extremal graphs attaining the

maximal generalized Wiener index (e.g. the hyper-Wiener index) among all graphs with given matching number or

independence number. This generalizes some work of Dankelmann, as well as some work of Chung. We also show

alternative proofs for two recent results on maximizing the Wiener index and external Wiener index by deriving it

from earlier results. We end with proving two conjectures. We prove that the maximum for the difference of the

Wiener index and the eccentricity is attained by the path if the order n is at least 9 and that the maximum weighted

Szeged index of graphs of given order is attained by the balanced complete bipartite graphs.

Keywords: topological indices, average distance, Wiener index, eccentricity, Szeged index, extremal graphs

1 Introduction
Let G be a simple connected graph, as we only work with connected graphs in this paper. We denote

its vertex set by V (G) and its edge set by E(G). The independence number of a graph G, denoted by

α(G), is the size of the largest independent vertex set. The matching number of a graph G is the size of

a maximum independent edge subset of G, we will denote it by m(G) or m. We will denote by T(n,m)
the set of all trees with n vertices and matching number m. A path Pn is a path of order n.

Let d(u, v) denote the distance between vertices u and v in a graph G. The diameter d(G) of a graph

equals maxu,v∈V (G) d(u, v). The eccentricity of a vertex v, ε(v) equals maxu∈V (G) d(u, v). The eccen-

tricity of a graph G is the sum of the eccentricities over all vertices, i.e. ε(G) =
∑

v∈V ε(v).
The degree of the vertex u will be denoted deg(u). For an edge e = uv, nu(e) will be equal to the

number of vertices x for which d(x, u) < d(x, v). The Wiener index of a graph G equals the sum of

distances between all unordered pairs of vertices, i.e.

W(G) =
∑

{u,v}⊂V (G)

d(u, v).

The mean distance of the graph G equals µ(G) = W(G)

(n2)
. Some general form of mean distance can be

derived from the notion of power means.
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Definition 1.1 The jth power mean of n positive real numbers x1, x2, . . . , xn is

Mj(x1, . . . , xn) =
j

√

x
j
1 + x

j
2 + . . .+ x

j
n

n
.

When j = 0, M0(x1, . . . , xn) = n
√
x1x2 . . . xn.

Furthermore M∞(x1, . . . , xn) = max{x1, x2, . . . , xn},M−∞(x1, . . . , xn) = min{x1, x2, . . . , xn}.

Other graphical indices used in this paper, are the hyper-Wiener index, the external Wiener index,

terminal Wiener index, Szeged index and weighted Szeged index. They are defined respectively as

WW(G) =
1

2

∑

{u,v}⊂V (G)

d2(u, v) + d(u, v)

Wex(G) =
∑

u,v∈V (G),min{deg(u),deg(v)}=1

d(u, v)

TW(G) =
∑

u,v∈V (G),deg(u)=deg(v)=1

d(u, v)

Sz(G) =
∑

e={u,v}∈E(G)

nu(e) · nv(e)

wSz(G) =
∑

e={u,v}∈E(G)

(deg(u) + deg(v)) · nu(e) · nv(e)

In Section 2 we give an alternative proof for a theorem of Dankelmann Dankelmann (1994) on the

maximum Wiener index of a connected graph with given order and matching number. We prove this for a

notion of generalized Wiener index Wf , implying the result for e.g. the hyper-Wienerindex. Due to a re-

lation between order, matching number and independence number, we also observe a power mean version

of a result of Chung Chung (1988). We present alternative, short proofs for the main results of Dimitrov

et al. (2019) and Jiang and Li (2019) based on results known before in Sections 3 and 4 respectively. Also

we give a proof for Conjecture 4.3 in Darabi et al. (2021) in Section 5 and for Conjecture 1 in Bok et al.

(2019) in Section 6.

2 Maximum generalized Wiener index given m or α

Theorems 2.14, 3.10 and 4.7 in the survey of Xu et al. (2014) give the extremal graphs attaining the

minimum hyper-Wiener index among all graphs with given order and matching number, for the family of

graphs being the connected graphs, the trees and the unicyclic graphs respectively. Some general version

was proven in Chen et al. (2017) as the result holds for a more general class of indices represented by F.

In this section we will prove the analog for the maximum. The general statement works for a different

class of distance-based indices.
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Definition 2.1 The generalized Wiener indices are of the form

Wf (G) =
∑

{u,v}⊂V (G)

f (d(u, v))

where f is a convex function satisfying f(0) = 0 which is strictly increasing on R
+.

Note that when we take f ≡ Id or f : x 7→
(

x+1
2

)

, we get the Wiener index or the hyper-Wiener index,

respectively. The condition that f(0) = 0 is just a handy convention, as Wf is just shifted with
(

n
2

)

c if

one shifts f with a constant c. The additional constraint that f is convex (when comparing with the result

in Chen et al. (2017)) is added to have the same extremal graph for the whole class of indices.

Let An,m be a path with 2m − 1 vertices, with one leaf of the path connected to ⌈n−2m+1
2 ⌉ different

vertices and the other leaf with ⌊n−2m+1
2 ⌋ pendent vertices, i.e. it is a balanced double broom with

n− (2m− 1) leaves when n ≥ 2m+ 1 and if n = 2m, it is a path.

2m− 2 ⌊n−(2m−1)
2 ⌋⌈n−(2m−1)

2 ⌉

Fig. 1: Extremal graph An,m

For any generalized Wiener indexWf , we will prove that An,m is the unique extremal graphG attaining

the maximum value of Wf (G) among all graphs having ordern and matching numberm. This was known

already for the Wiener index by Dankelmann Dankelmann (1994).

We will use a kind of tree rearrangements, which we call subtree pruning and regrafting (SPR). It was

defined in Cambie (2019), but for completeness we give the definition here again.

Definition 2.2 (SPR) Let G be a graph. Given a rooted subtree S of G, such that the root d = S ∩ H.

Pruning S from G is removing the whole structure S excluding the root d. Regrafting S at a vertex v,

means that we are taking a copy S′ of S which we insert at v, letting its root d′ coincide with v. No

additional edges are drawn in this process.

S

dv dv

S′

dv

Fig. 2: the graph G, S being pruned from G and S being regrafted at v

We know that extremal graphs are trees, since deleting an edge which is not part of a maximum match-

ing will increase the generalized Wiener index as at least one distance strictly increases.

We will use the notation Wf (T(n,m)) = max{Wf (G) | G ∈ T(n,m)}. For m = 1, the extremal

graphs are stars. So from now onwards, we assume m > 1, which implies that the diameter of the extremal

graph (being a tree) is at least 3.
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The first proposition we need for the proof is the following.

Proposition 2.3 For fixed n, when m1 < m2 and the sets T(n,m1) and T(n,m2) are both nonempty,

then Wf (T(n,m1)) < Wf (T(n,m2)).

Proof: Assume this proposition is not true. In that case there exist some n and m such that T(n,m)
and T(n,m + 1) are both nonempty and Wf (T(n,m)) ≥ Wf (T(n,m + 1)). For some fixed n, we

take the least integer m for which Wf (T(n,m)) ≥ Wf (T(n,m + 1)) holds and take an extremal graph

G ∈ T(n,m) with Wf (G) = Wf (T(n,m)).
Since G is a tree which is not a path (as a path reaches the largest possible matching number), we

can choose a leaf ℓ and a vertex w of degree at least 3 such that d(w, ℓ) is the smallest among all such

choices. Considering G as a rooted tree in w, there are at least three branches, the path P from ℓ to w

being one of them. Let S be a branch different from P and S′ be the union of the remaining branches

different from P and S. Here we do not consider w as a vertex of S nor of S′. We can prune the subtree

S (with root w) and regraft it at ℓ. After this operation, the set of distances between P and S or S′ is

the same as before, while the distance between any vertex of S′ and any vertex of S has increased with

d(w, ℓ). Since f is a strictly increasing function, this implies that Wf has strictly increased by performing

the SPR operation, while the matching number has not increased with more than one. This implies that

Wf (G) = Wf (T(n,m)) ≥ Wf (T(n, i)) for every i ≤ m + 1 was not true. This contradiction implies

that the proposition is true. ✷

Let G be an extremal graph and u0 and ud be two vertices such that the distance between them equals

the diameter and the path P between them equals u0u1 . . . ud. If G is the path P , we are in a trivial case

since P itself is of the form An,m. In the other case, there are some subtrees attached to the path P . The

following proposition gives more information about them.

Proposition 2.4 There are no vertices of P different from u1 and ud−1 having degree at least 3.

Proof: If the proposition is not true, there is an extremal graph G with a subtree S connected to some

ui with 1 < i < d − 1. Let G1 and G2 be the graphs by pruning and regrafting S at u1 resp. ud−1.

Let H be the graph G\S, i.e. the graph G when S is pruned Note that every neighbour of a leaf will be

in a maximum matching. In particular, without loss of generality, we can assume u0u1 and ud−1ud are

edges in a maximum matching of H,G,G1 or G2. This implies that the matching number of both G1

and G2 is exactly equal to m(H) + m(S), while the matching number of G, m(G), is at least equal to

m(H) +m(S) (and plausible one larger). So the matching number of both G1 and G2 is not larger than

the matching number of G. Let S1 be the copy of S which is connected to u1 and S2 be the copy of S

which is connected to ud−1. We will prove that

(d− 1− i)Wf (G1) + (i− 1)Wf (G2) > (d− 2)Wf (G). (1)

For every v ∈ H, v′ ∈ S (here we take v′ in S1 as the vertex corresponding to the original v′ and

similarly in S2) we have (d − 1 − i)dG1(v
′, v) + (i − 1)dG2(v

′, v) ≥ (d − 2)dG(v
′, v) since (d −

1 − i)dG(u1, v) + (i − 1)dG(ud−1, v) ≥ (d − 2)dG(ui, v). Since f is convex and strictly increasing,

(d − 1 − i)f (dG1(v
′, v)) + (i − 1)f (dG2(v

′, v)) ≥ (d − 2)f (dG(v
′, v)) . From this and the fact that

it is strict for v = ui, Equation (1) follows. Hence at least one of the two graphs G1 or G2 has a larger

generalized Wiener index than G and so taking into account Proposition 2.3 we conclude G was not

extremal. ✷
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Theorem 2.5 Let G be a graph of order n with matching number m. When f is a strictly increasing,

convex function, then Wf (G) ≤ Wf (An,m) with equality if and only if G ∼= An,m.

Proof: As a consequence of Proposition 2.4, the extremal graph is a path u1u2u3 . . . ud−1 with a pendent

vertices to u1 and b pendent vertices to ud−1, where a, b ≥ 1. The maximum of the generalized Wiener

index Wf for such a graph with matching number equals m clearly needs a diameter being equal to 2m
if n ≥ 2m+ 1 and is the path if n = 2m. Since

Wf (G) = Wf (P2m−1) + (a+ b)

d−1
∑

i=1

f(i) +
(a+ b)(a+ b− 1)

2
f(2) + ab (f(d)− f(2))

with f strictly increasing, i.e. f(d) − f(2) > 0, the maximum occurs when |a − b| ≤ 1 as we are

considering the nontrivial case with d ≥ 3 (as m ≥ 2) and a+ b = n− (2m− 1) being fixed. ✷

As an immediate corollary, we determine the extremal graphs attaining the maximum generalized

Wiener index among all graphs having order n and independence number α for some regime.

Theorem 2.6 If G is a connected graph with independence number n − 1 ≥ α ≥ n
2 , then Wf (G) ≤

Wf (An,n−α), with equality if and only if G = An,n−α .

Proof: Note that for any graph, the sum α + m ≤ n, since given an independent set I and a matching

M , any edge of M contains at least one vertex which is not in I. This implies that m ≤ n − α ≤ n
2 .

Applying Proposition 2.3 (recall extremal graphs with respect to m are trees) and Theorem 2.5, we have

that Wf (G) ≤ Wf (An,n−α). Since the graph An,n−α has independence number α, it is the unique

extremal graph. ✷

In the case 2 ≤ α < n
2 , the proof of Dankelmann Dankelmann (1994) can be extended to Wf , as well.

In that case the extremal graph being the balanced dumbbell graph Dn,α of diameter 2α − 1. This is the

graph obtained when connecting two vertices from two cliques of almost equal order ⌈n
2 ⌉ − α + 2 and

⌊n
2 ⌋ − α+ 2 by a path of length 2α− 3.

2α− 3 K
⌊n−(2α−2)

2 ⌋
K

⌈n−(2α−2)
2 ⌉

Fig. 3: Extremal graph Dn,α

Theorem 2.7 If G is a connected graph with independence number 2 ≤ α < n
2 , then Wf (G) ≤

Wf (Dn,α), with equality if and only if G = Dn,α .

As corollaries, we get power mean versions of the result of Chung Chung (1988), which states that the

average distance is bounded by the independence number.

Theorem 2.8 Let µj(G) be the jth power mean of the distances {d(u, v)}{u,v}⊂V (G). Then for j ≥ 1

and any connected graph G, one has µj(G) ≤ Mj (2α(G) − 1, 1) .
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Proof: The function f : x 7→ xj is a convex function on R
+ when j ≥ 1. Note that for this f , we have

µj(G) = j

√

Wf G

(n2)
. So from the previous two theorems, we know the maximum is attained when G equals

An,n−α or Dn,α . Note that for every 1 ≤ i ≤ α−1, there are more pairs of vertices {u, v} with d(u, v) =
i then pairs with d(u, v) = 2α− i in the extremal graph. Combining with Mj(1, 2α− 1) ≥ Mj(i, 2α− i)
(true by the inequality of Jensen), we conclude. ✷

By the observation that (2α− 1)j +1 ≤ (2α)j when j ≥ 1, we also have the following corollary. Note

that for j = 1, it is exactly the original result of Chung.

Corollary 2.9 For every j ≥ 1 and graph G, we have µj(G) ≤ 2
j−1
j α(G). Equality holds if and only if

j = α(G) = 1.

3 Maximum external Wiener index of graphs

In this section, we give a short alternative proof for the main result in Dimitrov et al. (2019), which proves

Conjecture 11 in Gutman et al. (2016). We show that the conjecture is basically a corollary of a theorem

in Gutman et al. (2009).

Remark that if T is a spanning tree of a graph G, then Wex(G) ≤ Wex(T ) since degT (u) ≤ degG(u)
and dG(u, v) ≤ dT (u, v).

Note that for any two vertices u and v in a tree, there are two leaves such that the path between them

goes through u and v. This implies that adding an edge between two non-neighbours of any tree will

strictly decrease the external Wiener index as at least one term got smaller (or even vanishes). As a

consequence, any extremal graph is a tree.

Hence the result will follow from the following lemma, as we know the extremal graphs are trees.

Lemma 3.1 Let T be a tree of order n with ℓ leaves. Then

∑

u,v∈V (G):deg(u)>1,deg(v)=1

d(v, u) ≤ ℓ
(n− ℓ)(n− ℓ+ 1)

2
,

TW(T ) ≤ ℓ(ℓ− 1) +

⌊

ℓ2

4

⌋

(n− ℓ− 1).

Proof: Let U = {u ∈ V (G), deg(u) > 1} be the sets of nonleafs, which has size n − ℓ. Note that for

every leaf v, G[U ∪ {v}] is a connected graph and hence

∑

U

d(v, u) ≤
n−ℓ
∑

i=1

i =
(n− ℓ)(n− ℓ+ 1)

2
.

Equality holds if and only if G[U ] is a path and v is connected to an endvertex of G[U ]. The second part

is Theorem 4 of Gutman et al. (2009), with the addition that it is also true for ℓ ∈ {2, 3}. ✷

Theorem 3.2 The graphs on n vertices with the maximum external Wiener index Wex are balanced

double brooms.



Five results on maximizing topological indices in graphs 7

Proof: Assume T is the extremal graph and it has ℓ leaves. Note that

Wex(T ) =
∑

u,v∈V (G):deg(u)>1,deg(v)=1

d(v, u) + TW(T )

is bounded by

ℓ
(n− ℓ)(n− ℓ+ 1)

2
+ ℓ(ℓ− 1) +

⌊

ℓ2

4

⌋

(n− ℓ− 1)

due to Lemma 3.1. Equality in the first part holds if and only if T is a double broom. A double broom

for which equality holds in the second equality need to be balanced and balanced double brooms attain

equality. The maximum among all graphs is now attained by the double brooms having ℓ leaves, where

2 ≤ ℓ ≤ n− 1 is an integer maximizing the expression. ✷

4 Maximum Wiener index of unicyclic graphs with given biparti-

tion

In this section, we show that the answer to Problem 11.6 in Knor et al. (2016) is mainly a corollary of the

proof of Problem 11.4 in the same survey, which was adressed in Cambie (2019). The problem, being the

unsolved part in Du, was recently solved in Jiang and Li (2019) and Bok et al. (2019). Nevertheless, one

can observe that the proof by deducing it from earlier work is much shorter.

We start with proving a lemma dealing with the case that the cycle is not minimal.

Lemma 4.1 Among all unicyclic graphs of order n ≥ 2k containing an even cycle C2k, the Wiener index

is maximized by the graph formed by attaching a path of order n− 2k to a vertex of a C2k.

Proof: We can prove this by induction, the n = 2k case being the trivial base case as C2k is the only

unicyclic graph on 2k vertices containing a C2k. Assume the lemma is true for n−1 ≥ 2k. Any unicyclic

graph G of order n > 2k containing a C2k has at least one leaf v. Let H = G\v. Note that the distance

from v to the C2k is at most n − 2k and the diameter of G is at most n − k. At least k − 1 consecutive

distances between v and vertices of C2k appear twice, these are at most n− 2k+1 up to n− k− 1. Thus
∑

u∈H d(v, u) ≤
∑n−k

i=1 i +
∑n−k−1

i=n−2k+1 i and together with the induction hypothesis on H , we get the

result. ✷

Using the notation as has been done in Cambie (2019) (Figure 9), the theorem is stated below.

Theorem 4.2 The maximum Wiener index among all n-vertex unicyclic graphs with bipartition sizes p, q

(1 < p ≤ q) is attained by exactly one graph, G4
⌈ q−p

2 ⌉,⌊ q−p
2 ⌋,2p−4

.

Proof: Note that a graph G having bipartition of sizes q ≥ p has a matching number m which is at most

p. If q ≥ p + 3, the result is a consequence of Theorem 7.1 and Proposition 2.1 from Cambie (2019)

applied on n = p+ q and m = p. If q ∈ {p, p+1}, we have to take the maximum over all possible graphs

containing an even cycle.
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The maximum for the graphs in Lemma 4.1 is attained when k = 2. There are multiple ways to see

this. Let G be C2k with a path Pn−2k attached to it. Let v be a neighbour of the vertex with degree 3, or

a random vertex of G = C2k if n = 2k. Then
∑

u,w∈G\v

d(u,w) ≤ W (Pn−1) and
∑

u∈G\v

d(u, v) ≤ 2 · 1 + 2 · 2 + 3 + . . .+ (n− 3).

Equality holds if and only if k = 2.
If q = p + 2, we know the extremal graph containing a C4 with n = 2p + 2 and m ≤ p is

G4
n/2−m,n/2−m,2m−4 by Section 7 in Cambie (2019). FurthermoreW (G4

n/2−m,n/2−m,2m−4) < W (G4
1,1,2p−4)

if m < p.

The graph G4
1,1,2p−4 has a larger Wiener index than the extremal graphs in Lemma 4.1 for k ≥ 3, from

which we conclude again. For this it is enough to note that for all k ≥ 3, we have

W (G4
1,1,2k−6) =

4

3
k3 − 19

3
k + 11 > k3 = W (C2k),

as adding the path of order n− 2k to both structures only makes the difference larger. ✷

5 Maximum difference of Wiener Index and Eccentricity

In this section, we prove Conjecture 4.3 in Darabi et al. (2021).

Theorem 5.1 For n ≥ 9, among all graphs with order n, W (G) − ε(G) is maximized by Pn. Moreover,

Pn is the unique extremal graph.

To start with, we prove that we can focus on trees as deleting an edge does not decrease the quantity

(W − ε), where (W − ε)(G) denotes W (G) − ε(G).

Lemma 5.2 Let G be a graph with order n ≥ 9 and radius at least 3. Let e be an edge such that G\e is

connected. Then (W − ε)(G) ≤ (W − ε)(G\e).

Proof: Let e = uv and assume (W −ε)(G) > (W −ε)(G\e). Suppose the shortest cycle in G containing

e is Ck. Note that distances do not decrease when deleting edges, so we have to focus on the eccentricities

that increase. Let z be a vertex not belonging to Ck for which the eccentricity increases when deleting e.

Without loss of generality we can assume d(z, u) < d(z, v). Let eccG\e(z) = dG\e(z, t) for a vertex t

(where possible t = v). Then we know that d(z, t) < dG\e(z, t), so the shortest path from z to t in G uses

the edge uv and so d(z, t) = d(z, v) + d(v, t). This also implies that d(v, t) = dG\e(v, e). Combining

these observations with the definition of eccentricity and the triangle inequality, we get that

eccG\e(z)− eccG(z) ≤ dG\e(z, t)− d(z, t)

≤ dG\e(z, v) + dG\e(v, t)− (d(z, v) + d(v, t))

= dG\e(z, v)− d(z, v).

As the difference in eccentricity for z is cancelled by the difference of distance between z and v, while z

was taken arbitrary, (W − ε)(G) > (W − ε)(G\e) implies that

(W − ε)(Ck) > (W − ε)(Pk) ⇔
k

2

⌊

k2

4

⌋

− k

⌊

k

2

⌋

>

(

k + 1

3

)

−
⌊

3

4
k2 − k

2

⌋

(2)



Five results on maximizing topological indices in graphs 9

which is only the case if k ∈ {3, 5} and then the difference is exactly equal to 1.

Case: k = 3 To have a contradiction, both ecc(u) and ecc(v) need to increase when deleting e. This

implies there is a vertex w such that 3 ≤ ecc(u) = d(w, u) < dG\e(w). Let v2 be the neighbour of

v on a shortest path in G from v to w. Then dG\e(v2, u) = d(v2, u) + 1. So if eccG\e(v2) = ecc(v2),
we have an additional difference that (in the expansion of W (G\e) − W (G)) is at least 1, leading to a

contradiction. If eccG\e(v2) > ecc(v2) ≥ 3, there is an other vertex x not belonging to the C3 such that

dG\e(x, v2) > d(x, v2) and we conclude again.

Case: k = 5 In this case, let v2 be the neighbour from v in the C5 different from u. When doing the

check in the reduced case that (W − ε)(Ck) > (W − ε)(Pk), we take into account that the eccentricity

of v2 goes up by 1 in C5. So (W − ε)(G) > (W − ε)(G\e) is only possible if eccG\e(v2) > ecc(v2).
But since ecc(v2) ≥ 3, there is a vertex x not belonging to the C5 for which dG\e(v2, x) > d(v2, x). As

we did not take this difference into account before when looking to (W − ε)(G) − (W − ε)(G\e), we

conclude that (W − ε)(G) ≤ (W − ε)(G\e) again. ✷

Having proven this lemma, it is essentially enough to prove it for trees, once checking the result for

graphs with radius at least 2. For this a bit of work is needed (as one can expect due to the behaviour of

the extremal graphs for n ≤ 8).

Proof Proof of Theorem 5.1: First, one can check that W (G)− ε(G) is smaller than (W − ε)(Pn) when

15 ≥ n ≥ 9 in case G has radius at most 2. For n = 9, a brute force check confirms. For n = 10, if the

diameter is at most 3, then W (G) ≤ 97 and ε(G) ≥ 10 and we are done. If the diameter is 4, we have

W (G) ≤ 117 and ε(G) ≥ 2 · 4 + 2 · 3 + 6 · 2 = 26, so W (G) − ε(G) ≤ 91 < 95 = (W − ε)(P10).
The cases 11 ≤ n ≤ 15 work similarly. For n ≥ 16, note that the diameter of G is bounded by 4 and so

W (G) ≤ 4
(

n
2

)

< (W − ε)(Pn).
So from now on, we only have to consider graphs with radius at least 3 and hence by Lemma 5.2 we

can first focus on trees. A bruteforce check by computer over all trees of order 9 ≤ n ≤ 20 verifies

the theorem for these values. For n ≥ 21, we first observe that the diameter of an extremal graph is at

least 7, since otherwise (W − ε)(G) ≤ 6
(

n
2

)

− 3n < (W − ε)(Pn). Now we can prove the statement by

induction. If the diameter d equals n− 1, we have the path Pn. If the diameter is smaller, d ≤ n− 2, one

can remove a leaf v which is not part of the diameter. Now the eccentricities of all vertices different from

v are the same in G and G\v. By the induction hypothesis, we have (W − ε)(G\v) ≤ (W − ε)(Pn−1).
Furthermore we have

(W − ε)(G)− (W − ε)(G\v) =
∑

u∈G\v

d(u, v)− ecc(v)

< 1 + 2 + . . .+ (n− 2)

= (W − ε)(Pn)− (W − ε)(Pn−1)

from which we conclude. This implies that Pn is the unique tree maximizing (W −ε)(G). By Lemma 5.2

no graph with a spanning tree which is not a path can be extremal (note that the radius does not decrease

when removing edges). Since the cycle Cn (and the path Pn itself) is the only graph which has only Pn

a spanning graph, but (W − ε)(Cn) < (W − ε)(Pn) for n > 5, as concluded from the computation in

Equation 2, the path Pn is the unique extremal graph. ✷

Additionally, we add two remarks on the work in Darabi et al. (2021) about the minimum for W − ε.

In their Theorem 3.2, the authors prove that the minimum for (W − ε)(T ) among trees is attained by
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caterpillars. More precisely, the extremal tree is Pn when n ≤ 6 and if n ≥ 7, the extremal tree is attained

for the star Sn−1 with one edge subdivided. This is mainly a corollary of the following lemma, as it

implies that we only have to compare a few possible trees.

Lemma 5.3 Among all trees with fixed diameter d and order n, the minimum of (W − ε) occurs if and

only if we have a path Pd+1 of diameter d with the n − d − 1 remaining vertices connected to the same

vertex on the path, which is a central vertex if d is odd, or a central vertex or neighbour of it, if d is even.

Proof: LetU be the set of vertices different from the ones on the diameter v0v1 . . . vd. Then
∑

u,v∈U d(u, v) ≤
2
(

n−d−1
2

)

with equality if and only if they are all connected to the same vertex on the diameter. We note

that for every u ∈ U ,
∑

0≤i≤d d(u, vi) − ε(v) is minimal if u is connected to a central vertex and equal-

ity is also possible if it is connected to a neighbouring vertex of a central vertex when d + 1 is odd as

then there is only one central vertex. Here we use that d(vj , vi) + d(vj , vd−i) ≥ d − 2i where uj is the

neighbour of u and 0 ≤ i < d
2 . ✷

We now also determine this minimum among all graphs.

Proposition 5.4 For every graph G of order n, we have (W − ε)(G) ≥
⌈

n(n−4)
2

⌉

.

Proof: For every vertex v, one has
∑

u∈V \v d(u, v)− 2ε(v) ≥ n− 4, since all distances are at least equal

to one, there is a vertex u with d(u, v) = ε(v) and an other one with d(w, v) ≥ ε(v) − 1. Summing over

all vertices v, we conclude that 2(W − ε)(G) ≥ n(n− 4). Dividing by 2 and observing that (W − ε)(G)
is always an integer, we conclude. ✷ The minimum of (W − ε)(G) is attained by the complement of

{

n
2K2 if n is even,
n−1
2 K2 ∪K1 or n−3

2 K2 ∪ P3 if n is odd.

For n ≥ 6, this is the exact characterization of the extremal graphs. The graph P4 for n = 4 and the one

sketched in Figure 4 for n = 5 are also extremal.

Fig. 4: Additional extremal graph for n = 5

6 Maximum weighted Szeged index

In this section, we prove the following open conjecture, posed in Bok et al. (2019).

Conjecture 6.1 (Conjecture 1 in Bok et al. (2019)) For any n-vertex graph G, the weighted Szeged in-

dex of G, wSz(G), is upper-bounded by wSz(K⌊n
2 ⌋,⌈n

2 ⌉) and equality is only attained by the balanced

complete bipartite graph K⌊n
2 ⌋,⌈n

2 ⌉, or K3 if n = 3.
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First, we make the following crucial observation.

Lemma 6.2 For any edge e = uv ∈ E(G), we have nu(e) + nv(e) + deg(u) + deg(v) ≤ 2n.

Proof: Since nu(e) + nv(e) ≤ n, this is trivial when deg(u) + deg(v) ≤ n. If deg(u) + deg(v) > n,

then u and v have at least deg(u)+deg(v)−n neighbours x in common, which satisfy d(x, u) = d(x, v)
and hence do not belong to Nu(e) nor Nv(e). Hence nu(e)+nv(e) ≤ n− (deg(u)+ deg(v)−n) which

is equivalent with nu(e) + nv(e) + deg(u) + deg(v) ≤ 2n. ✷

Let the degrees of the vertices of the graph be a1, a2, . . . , an. For an edge e = uv whose end vertices

have degree ai and aj , let xe =
ai+aj

2 be the average degree of the two endvertices.

Then by double counting, we find the following two equalities (the first one being the hand shaking

lemma)

Lemma 6.3 We have
∑

i

ai = 2|E| and
∑

i

a2i = 2
∑

e

xe.

Next, we prove two propositions which are the main ingredients for the proof.

Proposition 6.4 For every edge e = uv, we have

(deg(u) + deg(v)) · nu(e) · nv(e) ≤ 2

⌊

n2

4

⌋

(n− xe).

Proof: Combining nu(e) · nv(e) ≤
(

nu(e)+nv(e)
2

)2

(by AM-GM) and Lemma 6.2, we have

(deg(u) + deg(v)) · nu(e) · nv(e) ≤ 2xe(n− xe)
2.

Now we have xe(n− xe) ≤
⌊

n2

4

⌋

if n is even or when n is odd and xe 6= n
2 (as 2xe is integral).

When xe = n
2 , then Lemma 6.2 gives nu(e) + nv(e) ≤ n and hence nu(e) · nv(e) ≤ ⌊n2

4 ⌋ and the

conclusion holds again. ✷

Proposition 6.5 For any graph G, we have

∑

e

2 (n− xe) ≤ n

⌊

n2

4

⌋

.

Proof: Using Lemma 6.3, we get

∑

e

2 (n− xe) = 2|E|n− 2
∑

e

xe

=
∑

i

ai(n− ai)

≤ n⌊n
2

4
⌋.
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✷

Proof Proof of Conjecture 6.1: Combining Proposition 6.4 and Proposition 6.5, we find that the weighted

Szeged index of the graph satisfies

wSz(G) =
∑

e

(deg(u) + deg(v)) · nu(e) · nv(e)

≤
⌊

n2

4

⌋

∑

e

2 (n− xe)

≤ n

(⌊

n2

4

⌋)2

= wSz(K⌊n
2 ⌋,⌈n

2 ⌉)

If n is even, equality holds if and only there is equality in every step. In particular ai =
n
2 for all i and

thus nu(e) = nv(e) = n
2 for every edge e = uv, which also implies that the graph should be triangle-

free as well since nu(e) + nv(e) = n for every edge e. But then u and v are connected with disjoint

independent sets of order n
2 and since the degree of every vertex is exactly n

2 , we conclude G ∼= Kn
2
,n
2

.

If n = 3, we see that wSz(K3) = wSz(K2,1) and these two graphs are the only extremal ones.

If n ≥ 5 is odd, equality holds if and only if G ∼= K⌊n
2 ⌋,⌈n

2 ⌉. Note that all ai need to be equal to ⌊n
2 ⌋ or

⌈n
2 ⌉ to have equality in Proposition 6.5. Note that we also need equality in Lemma 6.2 for every edge to

have equality in Proposition 6.4. So it is impossible that xe < n
2 and if xe > n

2 , we have a triangle with

three vertices which all need to have degree ⌈n
2 ⌉ and do not create other triangles, which is impossible.

Hence the conclusion follows as xe =
n
2 for every edge, i.e. the end vertices of any edge have degree ⌊n

2 ⌋
and ⌈n

2 ⌉. ✷
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