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Fici, Restivo, Silva, and Zamboni define a k-antipower to be a word composed of k pairwise distinct, concatenated words of equal

length. Berger and Defant conjecture that for any sufficiently well-behaved aperiodic morphic word w, there exists a constant c

such that for any k and any index i, a k-antipower with block length at most ck starts at the i-th position of w. They prove their

conjecture in the case of binary words, and we extend their result to alphabets of arbitrary finite size and characterize those words

for which the result does not hold. We also prove their conjecture in the specific case of the Fibonacci word.
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1 Introduction

This paper settles certain cases of a conjecture posed by Berger and Defant (2020) concerning antipowers, first intro-

duced by Fici et al. (2018). They define a k-antipower to be a word that is the concatenation of k pairwise distinct

blocks of equal length. For example, 011000 is a 3-antipower, as 01, 10, 00 are pairwise distinct. A variety of papers

have been produced on the subject in the following years including Badkobeh et al. (2018); Burcroff (2018); Defant

(2017); Fici et al. (2019); Gaetz (2021); Kociumaka et al. (2019); Narayanan (2020), with Defant (2017); Gaetz (2021);

Narayanan (2020) finding bounds on antipower lengths in the Thue-Morse word.

Clearly one can construct periodic words without long antipowers, but what about other words? An aperiodic

infinite word is defined as a word with no periodic suffix, and an infinite word w is recurrent if every finite substring

of w appears in w infinitely many times as a substring. We say w is uniformly recurrent if for every integer a, there

is a larger integer b such that every length-a substring of w appears as a substring in every length-b substring of w.

Here, substrings are sequences of consecutive letters in a word. Fici et al. asked whether such words can avoid long

antipowers, and came to the following conclusion:

Theorem 1 (Fici et al. (2018)). • Every infinite aperiodic word contains a 3-antipower.

• There exist infinite aperiodic words avoiding 4-antipowers.

• There exist infinite recurrent aperiodic words avoiding 6-antipowers.

Berger and Defant complete this question with the following theorem:

Theorem 2 (Berger and Defant (2020)). Every infinite aperiodic recurrent word contains a 5-antipower.
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Berger and Defant then investigated whether more restrictions on words can force the inclusion of large antipowers.

Specifically, they look at morphic words. We denote the size of the finite alphabet A as m. Infinite words over A are

infinite to the right, so prefixes of infinite words are finite, while suffixes are infinite. Let A∗ denote the set of finite

words over A, let Aω be the set of infinite words over A, and let A∞ = A∗ ∪ Aω. A morphism of A∞ is a function

µ : A∞ → A∞ such that for words u, v with u finite, µ(uv) = µ(u)µ(v). So, µ is determined by its values on the

letters in A. Let |w| denote the length of a word w. An r-uniform morphism is one where |µ(a)| = r for all a ∈ A,

and a morphism that is r-uniform for some r is called uniform. For the rest of this paper, we assume r ≥ 2 for an

r-uniform morphism.

A morphism µ is called prolongable on a if µ(a) starts with the letter a. If we have such a µ and a, then repeatedly

applying µ(a) results in a limiting infinite word µω(a). We work with an infinite pure morphic word w, which is equal

to µω(a) for some a ∈ A and r-uniform morphism µ that is prolongable on a. As µ(a) begins with a, we have that

µn(a) is a prefix of µn+1(a), so µω(a) is well-defined as the limit of µn(a) as n goes to ∞.

For example, consider the Thue-Morse word t, defined as µω(0) for µ(0) = 01, µ(1) = 10. Here µ is a 2-uniform

morphism, which is prolongable on 0 (and 1). We have that t = 0110100110010110 · · · .
Conjecture 3 (Berger and Defant (2020)). Every sufficiently well-behaved morphic word w has a constant c such that

for any k, a k-antipower with block length at most ck starts at each index of w.

They settle Conjecture 3 in a certain special case, proving the following theorem:

Theorem 4 (Berger and Defant (2020)). Every aperiodic, uniformly recurrent binary word w generated by a uniform

morphism has a constant c such that for any k, a k-antipower with block length at most ck starts at each index of w.

In this paper, we first extend this result to alphabets of arbitrary size. We then prove Conjecture 3 in the case of the

Fibonacci word, a special case of a word generated by a non-uniform morphism. Specifically, we prove the following

two theorems:

Theorem 5. Suppose w is an aperiodic, uniformly recurrent word generated by a uniform morphism (over any finite

size alphabet). Then at every index of w starts a k-antipower with block length at most ck for some constant c only

depending on w.

Theorem 6. There is a constant c ≤ 4√
5
φ ≈ 2.89 such that for any k, at any index of the Fibonacci word starts a

k-antipower with block length at most ck.

Theorem 6 is the first instance of a proof of Conjecture 3 in the case of a word generated by a non-uniform morphism.

Theorem 5 was later proved independently by Postic (2019); our proof is an alternative one, as it does not rely on

results about recognizability.

2 Antipowers in Uniform Morphic Words

A conjugate of a word w is a cyclic rotation of w, that is, any word vu if w = uv for words u, v. A word is primitive if

it equals none of its conjugates, i.e. it is not periodic. For any word v, let v[i,j] denote the substring of v starting at index

i and ending one before j, where v is 0-indexed. Also, let vi be the i-th letter in v. For example, if v = 01101001,

then v[2,6] = 1010 is the string consisting of the middle four letters of v, and v0 = 0.

We use the following fact about the complexity of infinite words.

Lemma 7 (Lothaire (2002)). Let w be an infinite aperiodic word. Then, for all positive integers k, the number of

distinct substrings of length k in w is at least k + 1.

If an aperiodic word w has exactly k + 1 substrings of each length k, then w is called Sturmian.

We are now in a position to prove the conjecture posed by Berger and Defant in the case of aperiodic, uniformly

recurrent words generated by a uniform morphism. We use a method similar to their proof of Theorem 4, which solves

Conjecture 3 for such words over a binary alphabet.



Antipowers in Uniform Morphic Words and the Fibonacci Word 3

Lemma 8. Let w be an aperiodic, uniformly recurrent infinite word generated by an r-uniform morphism µ. Let t
be a substring of w such that every two letter substring of w is a substring of t. Let s be a substring of w such that

s = ftg for some letters f, g ∈ A, so that s contains t and is one letter longer on each side. Fix n, and suppose that

µn(s) is a substring of w, so µn(s) = w[γ,γ+s·rn] for some γ. If the remainder when γ is divided by rn is i, then

gcd(i, rn) > rn

m2 .

Proof: Let S = {µn(a)|a ∈ A}.

First, we will prove that if a, b ∈ A are such that ab is a substring of w, then (µn(ab))[rn−i,2rn−i] is in S. (*)

Since ab is a substring of t, which is in s, we have that ab = s[c,c+2] for some integer c, meaning that µn(ab) is a

substring of µn(s) with

µn(ab) = µn(s)[crn,(c+2)rn].

Then, since µn(s) = w[γ,γ+s·rn], we have that

(µn(ab))[rn−i,2rn−i] =µn(s)[(c+1)rn−i,(c+2)rn−i]

=w[(γ−i)+(c+1)rn,(γ−i)+(c+2)rn]

=µn(w(γ−i)/rn+(c+1)) ∈ S.

Now, we claim that for all positive integers p, if the remainder when p · i is divided by rn is x, then for any substring

ab of w for a, b ∈ A, we have (µn(ab))[rn−x,2rn−x] ∈ S. We prove this claim by induction on p. We have already

proved the base case p = 1. Suppose that the statement is true for some p with pi having remainder x when divided

by rn.

Fix a, b ∈ A such that ab is a substring of w.

Case 1: x + i ≤ rn. Take c ∈ A such that cab is a substring of s. Then there are letters d, e ∈ A such that

(µn(cab))[rn−i,3rn−i] = µn(de) by the claim (*). Therefore,

(µn(ab))[rn−x−i,2rn−x−i] =(µn(cab))[2rn−x−i,3rn−x−i]

=(µn(de))[rn−x,2rn−x] ∈ S.

Case 2: x + i > rn. Take c ∈ A such that abc is a substring of s. Then there are letters d, e ∈ A such that

(µn(abc))[rn−i,3rn−i] = µn(de) by the claim (*). Therefore,

(µn(ab))[rn−x−i+rn,2rn−x−i+rn] =µn((abc))[2rn−x−i,3rn−x−i]

=(µn(de))[rn−x,2rn−x] ∈ S.

Now suppose that for sake of contradiction, gcd(i, rn) = j ≤ rn

m2 . Then, we have that w[crn−p·j,(c+1)rn−p·j] ∈ S
for any p, c such that crn − pj ≥ 0. Hence, the total number of distinct substrings of length rn in w is at most

m + (j − 1)m2 ≤ rn, since we can write any such substring as either µn(a) for a ∈ A or (µn(ab))[rn−x,2rn−x] for

a, b ∈ A and 0 < x < j. However, if w is aperiodic, then it must have at least rn + 1 distinct substrings of length rn

by Lemma 7.

Proof of Theorem 5:

Take n such that rn

m2 ≥ k. Let s be as in the statement of Lemma 8. Because w is uniformly recurrent, there is a

constant y such that s is a substring of any length-y substring of w. Then, consider the word starting at a given index

a with k blocks of size rn · y + 2rn − 1. Since each block covers at least y blocks of size rn that are in µn(A), each

block contains a copy of µn(s) that starts at an index divisible by rn. Suppose that the i-th block and the j-th block

are equal.
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Then, since the j-th block starts at an index shifted to the left by (j − i) modulo rn compared to the i-th block, the

j-th block must have a copy of µn(s) starting at an index congruent to (j − i) modulo rn. That is, we have

w[crn−(j−i),(c+1)rn−(j−i)] = µn(s)

for some integer c. But |j − i| < k ≤ rn

m2 , so gcd(j − i, rn) ≤ |j − i| < rn

m2 , which is impossible by Lemma 8.

Therefore, we have constructed a k-antipower starting at every index, and we are done.

Now, we aim to classify the infinite aperiodic uniformly recurrent words that arise from a uniform morphism.

Classifying the uniformly recurrent words is easier than classifying aperiodic words, as we see below.

Lemma 9 (Proposition 5.2, Queffélec (2010)). Let w = µω(0) over an alphabet A of size m for an r-uniform

morphism µ be such that w contains all letters in A. Then w is uniformly recurrent if and only if µm−1(a) contains 0
for all letters a in w.

Having classified uniformly recurrent words, we turn to aperiodic words. We will determine criteria for a word to

not be aperiodic.

Definition. A word w is eventually periodic if there is some integer n such that deleting the first n letters of w makes

it periodic.

Lemma 10. Suppose that w is an eventually periodic word generated by an injective r-uniform morphism µ. Then,

the period of w is not divisible by r.

Proof: Suppose that the period of w is divisible by r and equals kr for some k. Then, if we start far enough along in

the word and take w[nr,nr+kr] for a large enough integer n, we get that w[nr,nr+kr] is a repeating unit of w and is equal

to µ(a1)µ(a2) · · ·µ(ak) for letters a1, a2, . . . , ak. But then a1a2 · · · ak is a repeating unit of w since w = µ−1(w),
contradicting the minimality of the period kr.

Lemma 11. Suppose that w is an eventually periodic, recurrent word. Then w is periodic.

Proof: For sake of contradiction, suppose that w is only eventually periodic, with period ℓ and starting index i > 0.

Let s = w[i−1,i+l] , with length ℓ+ 1. Because w is recurrent, s must appear infinitely many times in w as a substring,

so it appears in the periodic part of w as a substring. But since that part has period ℓ, the first and last letters in s must

be the same, contradicting the fact that i is the starting point of the periodic part of w. So, w is periodic.

Lemma 12. Suppose that w is a periodic infinite word with minimal repeating unit t, i.e., t is the smallest word such

that w = tω. Then t is primitive.

Proof: Suppose that t equals one of its conjugates. Let t have length ℓ, and equal itself shifted by i. Then, t0 = ti =
t2i = · · · , so t0 = tx for any x that is the remainder of an integer multiple of i modulo l. If gcd(i, ℓ) = ℓ′, we have

that t[0,ℓ′] = t[ℓ′,2ℓ′] = · · · so t itself is repeating with a period ℓ′, which is impossible as t is the minimal repeating

unit of w.

Theorem 13. Let w be a periodic word generated by an injective r-uniform morphism µ. Then, the minimal repeating

unit of w has no letter appearing twice.

Proof:

Suppose we have a periodic word w generated by an r-uniform morphism µ applied to 0. Let the period of w be

denoted ℓ. Then, rℓ is a non-minimal period for w. If rℓ
k = lcm(r, ℓ) < rℓ, then rℓ

k is a non-minimal period for w for
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some k dividing ℓ. Then since w = µ(w) is periodic with period r ℓ
k , the word µ−1(w) = w must be periodic with

period ℓ
k as the mapping µ is injective.

Hence, ℓ
k is a period for w, contradicting the minimality of ℓ. So, ℓ and r are relatively prime. If ℓ = r then we are

done. Otherwise, let the length ℓ repeating unit be t. We have two cases: the period ℓ is either less than or greater than r.

Case 1: ℓ < r. Suppose that t has a duplicate letter, say wi = wj for 0 ≤ i < j < ℓ. Then, since µ(w) = w, we

have that w[ir,(i+1)r] = w[jr,(j+1)r]. In particular, w[ir,ir+l] = w[jr,jr+l]. However, since t is primitive, we must have

that ir ≡ jr mod ℓ or (j − i)r ≡ 0 mod ℓ. But 0 < j − i < ℓ and r is relatively prime to l, so this is impossible.

Therefore t has no duplicate letters.

Case 2: ℓ > r. We generalize the previous case. Suppose that t has a duplicate letter, say wi = wj for 0 ≤ i < j < ℓ.
Then, for every k, we have that w[irk,(i+1)rk] = w[jrk,(j+1)rk]. In particular, we can take k such that rk ≥ ℓ. Then,

since t is primitive, we must have irk ≡ jrk mod ℓ, or (j − i)rk ≡ 0 mod ℓ, which is impossible as rk is relatively

prime to l and 0 < j − i < l.

Therefore, for a periodic word generated by an injective uniform morphism, the repeating unit must consist of

distinct letters. If the repeating unit has length l, then w has l distinct letters. Any periodic word starting with 0
and consisting of a repeating unit of l distinct letters can be generated by an r-uniform morphism as long as r is

relatively prime to l. For example, the word 012301230123 · · · can be written as µω(0) with µ(0) = 01230, µ(1) =
12301, µ(2) = 23012, µ(3) = 30123. So, except for a small class of exceptional words that we have characterized,

all words generated by a injective uniform morphism are aperiodic and uniformly recurrent, and therefore satisfy the

hypothesis of Theorem 5. Note that we have not classified which words generated by a noninjective uniform morphism

satisfy the hypothesis of Theorem 5.

3 Antipowers in the Fibonacci Word

We prove that the Fibonacci word f, which is equal to ϕω(0) for ϕ(0) = 01, ϕ(1) = 0 and thus pure morphic but not

generated by a uniform morphism, also satisfies Conjecture 3. Let φ = 1+
√
5

2 . An alternate characterization of the

Fibonacci word is given below by the following well-known fact.

Fact 14. The n-th digit in the Fibonacci word can be written as 2− (⌊(n+ 2)φ⌋ − ⌊(n+ 1)φ⌋).
Let the Fibonacci sequence be defined as F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3.

Lemma 15. Modulo 1, the real number Fnφ is congruent to −(−φ)−n.

Proof: By Binet’s formula, Fn = 1√
5
(φn − (−φ)−n) is an integer. So,

Fnφ =
1√
5
(φn+1 + (−φ)−n+1)

=Fn+1 +
1√
5
((−φ)−n+1 + (−φ)−n−1)

=Fn+1 − (−φ)−n.

Denote the fractional part of x as {x}.
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Proposition 16. Fix a positive integer n. Given a positive integer ℓ, if

φ−n+1 ≤ min({ℓ · 2Fnφ}, 1− {ℓ · 2Fnφ}),

then

f[x,x+2Fn] 6= f[x+ℓ·2Fn,x+ℓ·2Fn+2Fn]

for all indices x ∈ N.

Proof: For a block f[x,x+2Fn], consider the fractional parts of the 2Fn + 1 numbers (x + 1)φ, (x + 2)φ, . . . , (x +
2Fn+1)φ. Whether the fractional part of (i+2)φ is greater than or less than the fractional part of (i+1)φ determines

whether or not the i-th digit of f is 0 or 1 by Fact 14.

Now, when we add ℓ · 2Fn to the block [x, x + 2Fn) for some positive integer ℓ, we are shifting the numbers

(x + 1)φ, . . . , (x + 2Fn + 1)φ by ℓ · 2Fnφ. So, we are adding the fractional part of ℓ · 2Fnφ to the numbers

{(x + 1)φ}, {(x + 2)φ}, . . . , {(x + 2Fn + 1)φ}, and then subtracting 1 from the numbers that are now at least 1.

If {(x+ ℓ · 2Fn)φ} = {xφ}+ {(ℓ · 2Fn)φ} − 1, then we say that {xφ} wraps around. Note that {xφ} wraps around

if and only if {xφ} ∈ [1− {ℓ · 2Fnφ}, 1).
If both {(i+2)φ} and {(i+1)φ}wrap around or both don’t wrap around when adding ℓ·2Fnφ, then the (i+ℓ·2Fn)-th

digit is the same as the i-th digit; otherwise, it is different. If the two digits are the same for all i with x ≤ i < x+2Fn,

then either every such fractional part {iφ} for x + 1 ≤ i ≤ x + 2Fn + 1 wraps around, meaning that they all belong

to {xφ} ∈ [1 − {ℓ · 2Fnφ}, 1), or every such fractional part doesn’t wrap around, meaning that they all belong to

[0, 1− {ℓ · 2Fnφ}). We will show that neither of these two conditions are possible under the assumption on ℓ, which

will prove the proposition.

We consider the set of points S = {{(x+ 1)φ}, {(x+ 2)φ}, . . . , {(x+ 2Fn + 1)φ}} on the circle [0, 1] where we

identify 0 and 1. If all elements in S wrap around, then the largest gap between two consecutive points in S is at least

1− {ℓ · 2Fnφ}, as the interval [0, 1− {ℓ · 2Fnφ}) contains no points in S. If no element in S wraps around, then the

largest gap between two consecutive points in S is at least {ℓ · 2Fnφ}, as the interval [1− {ℓ · 2Fnφ}, 1) contains no

points in S. Thus the largest gap between two consecutive points of S being at least min({ℓ · 2Fnφ}, 1− {ℓ · 2Fnφ})
is a necessary (but not sufficient) condition for the i-th and (i+ ℓ · 2Fn)-th digits of the Fibonacci word to be the same

for all x ≤ i < x+ 2Fn.

Now, we claim that the largest gap between any two consecutive points in S is at most φ−n+1. This is because

if i ≤ x + Fn + 1, then the distance between {iφ} and {(i + Fn)φ} is φ−n, and the distance between {iφ} and

{(i + Fn−1)φ} is φ−n+1. In fact, the residue of iφ modulo 1 is between those of (i + Fn)φ and (i + Fn−1)φ.

Similarly, if we look at i ≥ x + Fn + 1, then iφ is close to and between (i − Fn)φ and (i − Fn−1)φ modulo 1.

Therefore, every point in S has another point in S to its left and right at most φ−n+1 away, so the largest gap between

two consecutive points of S is at most φ−n+1.

Then if φ−n+1 ≤ min({ℓ · 2Fnφ}, 1 − {ℓ · 2Fnφ}), the largest gap between two consecutive points in S is not at

least min({ℓ · 2Fnφ}, 1− {ℓ · 2Fnφ}), so the necessary condition for the blocks to be equal is not satisfied and

f[x,x+2Fn] 6= f[x+ℓ·2Fn,x+ℓ·2Fn+2Fn].

Proposition 17. At any index in f and any positive integer n, there is an ⌊Fn

√
5
2 ⌋-antipower starting at that index with

block length 2Fn.

Proof: Let x be any index in f. We consider the ⌊
√
5
2 Fn⌋ blocks of the form f[x+ℓ·2Fn,x+(ℓ+1)·2Fn], where 0 ≤

ℓ < ⌊
√
5
2 Fn⌋, and show that they are pairwise different. The distance between any two blocks is m · 2Fn for some
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0 ≤ m < ⌊
√
5
2 Fn⌋. We aim to show that all such m satisfy the hypothesis of Proposition 16, namely that

φ−n+1 ≤ min({m · 2Fnφ}, 1− {m · 2Fnφ}).

We have that φ−n+1 ≤ 2φ−n = min({2Fnφ}, {(1 − 2Fnφ)}), with the latter equality by Lemma 15. Then for

m ≤ ⌊ 1
2φ−n ⌋, we have

min({m · 2Fnφ}, {(1−m · 2Fnφ)}) = min(m · 2φ−n, 1−m · 2φ−n).

Since for m ≤ ⌊ 1
2φ−n ⌋ − 1 we have m · 2φ−n > φ−n+1 and 1 − m · 2φ−n > 2φ−n > φ−n+1, the hypothesis of

Proposition 16 is indeed satisfied for such m.

Therefore, at every index, there is a length-⌊φn

2 ⌋ antipower starting at that index with block length 2Fn. We have

⌊φn

2 ⌋ = ⌊
√
5
2 Fn + (−φ)−n

2 ⌋. Now, if Fn is even, then the distance from
√
5
2 Fn = (φ − 1

2 )Fn and the nearest integer

is φ−n, and if Fn is odd, then the distance is 1
2 − φ−n. In particular, the distance from

√
5
2 Fn to the nearest integer is

greater than φ−n

2 , which means that ⌊
√
5
2 Fn + (−φ)−n

2 ⌋ = ⌊
√
5
2 Fn⌋, and we are done.

We now give the proof that there is a linear bound on antipowers in the Fibonacci word.

Proof of Theorem 6: Let n be the smallest integer such that ⌊Fn

√
5
2 ⌋ is at least k. Then, starting at any given index

a of f, there is a k-antipower with block length 2Fn by Proposition 17. We have Fn = φFn−1 + (−φ)−n, and that

⌊Fn−1

√
5
2 ⌋ ≤ k − 1, so

2Fn

k
=

2Fn

Fn

√
5/2

Fn

Fn−1

Fn−1

√
5/2

k

=
4√
5

(

φ+
(−φ)−n

Fn−1

)

Fn−1

√
5/2

k

=
4√
5
φ

(

1− (−φ)−n−1

Fn−1

)

Fn−1

√
5/2

k
.

Since Fn−1

√
5/2 is less than and at least (φ)−n+1 away from k, and

Fn−1

√
5

2 > Fn−1, we have that
Fn−1

√
5/2

k <

1 + (φ)−n+1

Fn−1
, so 2Fn

k < 4√
5
φ.

Recall that a word is Sturmian if there are exactly k+1 distinct substrings of length k in f for all k. As the Fibonacci

word is a Sturmian word (see Lothaire (2002)), we cannot have a k-antipower starting at any index with block length

less than k − 1. So, if we let γi(k) be the smallest block length that starts a k-antipower at index i, we have that for

any i,

1 ≤ lim inf
k→∞

γi(k)

k
≤ 4√

5
,

1 ≤ lim sup
k→∞

γi(k)

k
≤ 4√

5
φ.

The reasoning for these bounds is as follows: for all k and all indices i, by Theorem 6 we have that there is a

k-antipower starting at i with block length at most 4√
5
φ, so γi(k) ≤ 4√

5
φ for all k. This fact implies the weaker

condition of the upper bound on the lim sup of
γi(k)
k . Furthermore, for infinitely many k, specifically those k equal to
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⌊Fn

√
5
2 ⌋, we have that there is a k-antipower with block length 2Fn, and 2Fn

⌊Fn

√
5

2
⌋

approaches 4√
5

for large n, giving

the upper bound on the lim inf of
γi(k)
k . The lower bounds follow from the fact that γi(k) ≥ k − 1, so

γi(k)
k ≥ 1− 1

k ,

a number that approaches 1.

Based on empirical data, we conjecture the following.

Conjecture 18. Let Fn be an even Fibonacci number. Then, there is an (Fn − 1)-antipower with block length
Fn

2 + Fn−1 that is a prefix of f.

If this conjecture were true, we would have the following:

1 ≤ lim inf
k→∞

γ0(k)

k
≤

√
5

2
.
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