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Rémy Belmonte1 Michael Lampis1 Valia Mitsou2
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In DEFECTIVE COLORING we are given a graphG and two integers χd,∆
∗ and are asked if we can χd-colorG so that

the maximum degree induced by any color class is at most ∆∗. We show that this natural generalization of COLORING

is much harder on several basic graph classes. In particular, we show that it is NP-hard on split graphs, even when one
of the two parameters χd,∆

∗ is set to the smallest possible fixed value that does not trivialize the problem (χd = 2
or ∆∗ = 1). We also give a simple treewidth-based DP algorithm which, together with the aforementioned hardness
for split graphs, also completely determines the complexity of the problem on chordal graphs.

We then consider the case of cographs and show that, somewhat surprisingly, DEFECTIVE COLORING turns out to
be one of the few natural problems which are NP-hard on this class. We complement this negative result by showing
that DEFECTIVE COLORING is in P for cographs if either χd or ∆∗ is fixed; that it is in P for trivially perfect graphs;
and that it admits a sub-exponential time algorithm for cographs when both χd and ∆∗ are unbounded.
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1 Introduction
In this paper we study the computational complexity of DEFECTIVE COLORING, which is also known
in the literature as IMPROPER COLORING: given a graph and two parameters χd,∆

∗ we want to color
the graph with χd colors so that every color class induces a graph with maximum degree at most ∆∗.
DEFECTIVE COLORING is a very natural generalization of GRAPH COLORING, which corresponds to
the case ∆∗ = 0. As a result, since the introduction of this problem more than thirty years ago (Cowen
et al. (1986); Andrews and Jacobson (1985)) a great deal of research effort has been devoted to its study.
Among the topics that have been investigated are its extremal properties (Frick and Henning (1994); Kim
et al. (2014, 2016); Borodin et al. (2013); Achuthan et al. (2011); Goddard and Xu (2016)), especially on
planar graphs and graphs on surfaces (Cowen et al. (1997); Archdeacon (1987); Choi and Esperet (2016);
Havet and Sereni (2006)), as well as its asymptotic behavior on random graphs (Kang and McDiarmid
(2010); Kang et al. (2008)). Lately, the problem has attracted renewed interest due to its applicability to
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Chordal graphs Cographs
NP-hard on Split if χd ≥ 2 NP-hard

Theorem 21 Theorem 6
NP-hard on Split if ∆∗ ≥ 1 In P if χd or ∆∗ is fixed

Theorem 20 Theorems 15,16

In P if χd,∆
∗ fixed Solvable in nO

(
n
4/5

)
Theorem 25 Theorem 17
In P on Trivially perfect for any χd,∆

∗

Theorem 13

Split

Perfect

Chordal
Cographs

Interval

Trivially Perfect

Tab. 1: Summary of results

communication networks, with the coloring of the graph modeling the assignment of frequencies to nodes
and ∆∗ representing some amount of tolerable interference. This has led to the study of the problem on
Unit Disk Graphs Havet et al. (2009) as well as various classes of grids Araújo et al. (2012); Bermond
et al. (2010); Archetti et al. (2015). Weighted generalizations have also been considered Bang-Jensen and
Halldórsson (2015); Gudmundsson et al. (2016). More background can be found in the survey by Frick
(1993) or Kang’s PhD thesis (Kang (2008)).

Our main interest in this paper is to study the computational complexity of DEFECTIVE COLORING
through the lens of structural graph theory, that is, to investigate the classes of graphs for which the prob-
lem becomes tractable. Since DEFECTIVE COLORING generalizes GRAPH COLORING we immediately
know that it is NP-hard already in a number of restricted graph classes and for small values of χd,∆

∗.
Nevertheless, the fundamental question we would like to pose is what is the additional complexity brought
to this problem by the freedom to produce a slightly improper coloring. In other words, we ask what are
the graph classes where even though GRAPH COLORING is easy, DEFECTIVE COLORING is still hard
(and conversely, what are the classes where both are tractable). Though some results of this type are
already known (for example Cowen et al. (1997) prove that the problem is hard even on planar graphs for
χd = 2), this question is not well-understood. Our focus on this paper is to study DEFECTIVE COLORING
on subclasses of perfect graphs, which are perhaps the most widely studied class of graphs where GRAPH
COLORING is in P. The status of the problem appears to be unknown here, and in fact its complexity on
interval and even proper interval graphs is explicitly posed as an open question in Havet et al. (2009).

Our results revolve around two widely studied classes of perfect graphs: split graphs and cographs. For
split graphs we show not only that DEFECTIVE COLORING is NP-hard, but that it remains NP-hard even
if either χd or ∆∗ is a constant with the smallest possible non-trivial value (χd ≥ 2 or ∆∗ ≥ 1). To
complement these negative results we provide a treewidth-based DP algorithm which runs in polynomial
time if both χd and ∆∗ are constant, not only for split graphs, but also for chordal graphs. This generalizes
a previous algorithm of Havet et al. (2009) on interval graphs.

We then go on to show that DEFECTIVE COLORING is also NP-hard when restricted to cographs. We
note that this result is somewhat surprising since relatively few natural problems are known to be hard for
cographs. We complement this negative result in several ways. First, we show that DEFECTIVE COL-
ORING becomes polynomially solvable on trivially perfect graphs, which form a large natural subclass
of cographs. Second, we show that, unlike the case of split graphs, DEFECTIVE COLORING is in P on
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cographs if either χd or ∆∗ is fixed. Both of these results are based on dynamic programming algorithms.
Finally, by combining the previous two algorithms with known facts about the relation between χd and
∆∗ we obtain a sub-exponential time algorithm for DEFECTIVE COLORING on cographs. We note that the
existence of such an algorithm for split graphs is ruled out by our reductions, under the Exponential Time
Hypothesis. Table 1 summarizes our results. For the reader’s convenience, it also depicts an inclusion
diagram for the graph classes that we mention.

2 Preliminaries and Definitions
We use standard graph theory terminology, see e.g. Diestel (2012). In particular, for a graph G = (V,E)
and u ∈ V we use N(u) to denote the set of neighbors of u, N [u] denotesN(u)∪{u}, and for S ⊆ V we
use G[S] to denote the subgraph induced by the set S. We use ω(G) to denote the size of the maximum
clique of G. A proper coloring of G with χ colors is a function c : V → {1, . . . , χ} such that for all
i ∈ {1, . . . , χ} the graph G[c−1(i)] is an independent set. We will focus on the following generalization
of coloring:

Definition 1 If χd,∆
∗ are positive integers then a (χd,∆

∗)-coloring of a graphG = (V,E) is a function
c : V → {1, . . . , χd} such that for all i ∈ {1, . . . , χd} the maximum degree of G[c−1(i)] is at most ∆∗.

We call the problem of deciding if a graph admits a (χd,∆
∗)-coloring, for given parameters χd,∆

∗,
DEFECTIVE COLORING. For a graph G and a coloring function c : V → N we say that the deficiency of
a vertex u is |N(u) ∩ c−1(c(u))|, that is, the number of its neighbors with the same color. The deficiency
of a color class i is defined as the maximum deficiency of any vertex colored with i.

We recall the following basic facts about DEFECTIVE COLORING:

Lemma 2 (Kang (2008)) For any χd,∆
∗ and any graph G = (V,E) with χd ·∆∗ ≥ |V | we have that G

admits a (χd,∆
∗)-coloring.

Proof: Partition V arbitrarily into χd sets of size at most d|V |/χde and color each set with a different color.
The maximum deficiency of any vertex is at most

⌈
|V |
χd

⌉
− 1 ≤ |V |χd

≤ ∆∗. 2

Lemma 3 (Kang (2008)) If G admits a (χd,∆
∗)-coloring then ω(G) ≤ χd · (∆∗ + 1).

Proof: For the sake of contradiction, assume that G has a clique of size χd · (∆∗ + 1) + 1, then any
coloring of G with χd colors must give the same color to strictly more than ∆∗ + 1 vertices of the clique,
which implies that these vertices have deficiency at least ∆∗ + 1. 2

Let us now also give some quick reminders regarding the definitions of the graph classes we consider
in this paper.

A graph G = (V,E) is a split graph if V = K ∪ S where K induces a clique and S induces an
independent set. A graph G is chordal if it does not contain any induced cycles of length four or more.
It is well known that all split graphs are chordal; furthermore it is known that the class of chordal graphs
contains the class of interval graphs, and that chordal graphs are perfect. For more information on these
standard containments see Brandstädt et al. (1999).

A graph is a cograph if it is either a single vertex, or the disjoint union of two cographs, or the com-
plete join of two cographs Seinsche (1974). Note that the class of cographs is easily seen to be closed
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under complement. As a result, complete k-partite graphs are cographs (their complement is a union of
cliques, which are themselves cographs); this fact will be used later. A graph is trivially perfect if in all
induced subgraphs the maximum independent set is equal to the number of maximum cliques Golumbic
(1978). Trivially perfect graphs are exactly the cographs which are chordal Yan et al. (1996), and hence
are a subclass of cographs, which are a subclass of perfect graphs. We recall that GRAPH COLORING
is polynomial-time solvable in all the mentioned graph classes, since it is polynomial-time solvable on
perfect graphs Grötschel et al. (1988), though of course for all these classes simpler and more efficient
combinatorial algorithms are known.

We will also use the notion of treewidth for the definition of which we refer the reader to Bodlaender
and Koster (2008); Cygan et al. (2015).

3 NP-hardness on Cographs
In this section we establish that DEFECTIVE COLORING is already NP-hard on the very restricted class
of cographs. To this end, we show a reduction from 4-PARTITION.

Definition 4 In 4-PARTITION we are given a set A of 4n elements, a size function s : A → N+ which
assigns a value to each element, and a target integer B. We are asked if there exists a partition of A into
n sets of four elements (quadruples), such that for each set the sum of its elements is exactly B.

4-PARTITION has long been known to be strongly NP-hard, that is, NP-hard even if all values are
polynomially bounded in n. In fact, the reduction given in Garey and Johnson (1979) establishes the
following, slightly stronger statement.

Theorem 5 4-PARTITION is strongly NP-complete if A is given to us partitioned into four sets of equal
size A1, A2, A3, A4 and any valid solution is required to place exactly one element from each Ai, i ∈
{1, . . . , 4} in each quadruple.

Theorem 6 DEFECTIVE COLORING is NP-complete even when restricted to complete k-partite graphs.
Therefore, DEFECTIVE COLORING is NP-complete on cographs.

Proof: We start our reduction from an instance of 4-PARTITION where the set of elementsA is partitioned
into four equal-size sets as in Theorem 5. We first transform the instance by altering the sizes of all
elements as follows: for each element x ∈ Ai we set s′(x) := s(x) + 5iB + 55n2B and we also set
B′ := B+B ·

∑4
i=1 5i+4·55n2B. After this transformation our instance is “ordered”, in the sense that all

elements ofAi+1 have strictly larger size than all elements ofAi. Furthermore, it is not hard to see that the
answer to the problem did not change, as any quadruple that used one element from each Ai and summed
up toB now sums up toB′. In addition, we observe that in the new instance the condition that exactly one
element must be used from each set is imposed by the element sizes themselves: a quadruple that contains
two or more elements of A4 will have sum strictly more than B′, while one containing no elements of A4

will have sum strictly less than B′. Similar reasoning can then be applied to A3, A2. We note that the
element sizes now have the extra property that s′(x) ∈ (B′/4 − 5B′/n2, B′/4 + 5B′/n2). Indeed, the
largest possible size is at mostM = B+54B+55Bn2, whileB′/4 ≥ 55Bn2, soM−B′/4 ≤ 54B+B ≤
5B′/n2. Similarly, the smallest value is at least L = 1 + 5B + 55Bn2 while B′/4 ≤ 55Bn2 + 55B so
B′/4− L ≤ 55B
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We now construct an instance of DEFECTIVE COLORING as follows. We set ∆∗ = B′ and χd = n.
To construct the graph G, for each element x ∈ A2 ∪A3 ∪A4 we create an independent set of s′(x) new
vertices which we will call Vx. For each element x ∈ A1 we construct two independent sets of s′(x) new
vertices each, which we will call V 1

x and V 2
x . Finally, we turn the graph into a complete 5n-partite graph,

that is, we add all possible edges while retaining the property that all sets Vx and V ix remain independent.
Let us now argue for the correctness of the reduction. First, suppose that there exists a solution to our

(modified) 4-PARTITION instance where each quadruple sums to B′. Number the quadruples arbitrarily
from 1 to n and consider the i-th quadruple (x1

i , x
2
i , x

3
i , x

4
i ) where we assume that for each j ∈ {1, . . . , 4}

we have xji ∈ Aj . Hence, s′(x1
i ) is minimum among the sizes of the elements of the quadruple. We now

use color i for all the vertices of the sets Vxj
i

for j ∈ {2, 3, 4} as well as the sets V 1
x1
i
, V 2
x1
i
. We continue in

this way using a different color for each quadruple and thus color the whole graph (since the quadruples
use all the elements ofA). We observe that for any color i the vertices with maximum deficiency are those
from V 1

x1
i

and V 2
x1
i
, and all these vertices have deficiency exactly x1

i + x2
i + x3

i + x4
i = B′. Hence, this is

a valid solution.
For the converse direction of the reduction, suppose we are given a (χd,∆

∗)-coloring of the graph we
constructed. We first need to argue that such a coloring must have a very special structure. In particular,
we will claim that in such a coloring each independent set Vx or V ix must be monochromatic. Towards
this end we formulate a number of claims.

Claim 7 Every color i is used on at most 5B′/4 + 25B′/n2 vertices.

Proof: We will assume that i is used at least 5B′/4+25B′/n2 +1 times and obtain a contradiction. Since
the size of the largest independent set Vx is at most B′/4 + 5B′/n2 we know that color i must appear in
at least six different independent sets. Among the independent sets in which i appears let Vx be the one
in which it appears the minimum number of times. The deficiency of a vertex colored with i in this set is
at least 5

6 |c
−1(i)| ≥ 25B′

24 > B′ = ∆∗. 2

Because of the previous claim, which states that no color appears too many times, we can also conclude
that no color appears too few times.

Claim 8 Every color i is used on at least 5B′/4− 50B′/n vertices.

Proof: First, note that |V | ≥ 5nB′/4 − 25B′/n because we have created 5n independent sets each
of which has size more than B′/4 − 5B′/n2. By the previous claim any color j 6= i has |c−1(j)| ≤
5B′/4 + 25B′/n2. Therefore

∑
j 6=i |c−1(j)| ≤ (n − 1)(5B′/4 + 25B′/n2). We have |c−1(i)| =

|V | −
∑
j 6=i |c−1(j)| ≥ 5nB′

4 − 25B′

n − (n− 1) 5B′

4 − (n− 1) 25B′

n2 = 5B′

4 −
50B′

n + 25B′

n2 > 5B′

4 −
50B′

n .
2

Given the above bounds on the size of each color class we can now conclude that each color appears in
exactly five independent sets Vx.

Claim 9 For each color i the graph induced by c−1(i) is complete 5-partite.

Proof: First, observe that by the previous claim, there must exist at least 5 sets Vx or V ix that intersect
c−1(i), because |c−1(i)| ≥ 5B′/4−O(B′/n) while the size of each such set is at mostB′/4+O(B′/n2);
therefore, the size of any four sets is strictly smaller than |c−1(i)| (assuming of course that n is sufficiently
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large). Suppose now that c−1(i) intersects 6 different sets, and consider the independent set Vx on which
color i appears at least once but a minimum number of times. A vertex colored i in this set will have
deficiency at least 5

6 ( 5B′

4 −
50B′

n ) = 25B′

24 −O(B
′

n ), which is strictly greater than B′ for sufficiently large
n. Hence, color i appears in exactly 5 independent sets. 2

Claim 10 In any valid solution every maximal independent set of G is monochromatic.

Proof: Consider color i, which by the previous claim appears in exactly 5 independent sets. Suppose
that one of these is not monochromatic, say colors i, j appear in Vx. Without loss of generality let i be
the minority color, that is, i appears in at most |Vx|/2 vertices of Vx. Then we obtain a contradiction as
follows: the total number of times i is used in the graph is at most |c−1(i)| ≤ 4(B

′

4 + 5B′

n2 )+ 1
2 (B

′

4 + 5B′

n2 ),
where the first term uses the general upper bound on the size of all other independent sets where i appears,
and the second term uses the same upper bound on |Vx|. Thus, |c−1(i)| ≤ 9B′

8 +O(B
′

n2 ) which is strictly
smaller than 5B′

4 −
50B′

n , the minimum number of times that i must be used (for sufficiently large n). 2

We are now ready to complete the converse direction of the reduction. Consider the vertices of c−1(i),
for some color i. By the previous sequence of claims we know that they appear in and fully cover 5
independent sets Vx or V ix . We claim that for each j ∈ {2, 3, 4} any color i is used in exactly one Vx with
x ∈ Aj . This can be seen by considering the deficiency of the vertices of the smallest independent set
where i appears. The deficiency of these vertices is equal to x1

i +x2
i +x3

i +x4
i , which are the sizes of the

four larger independent sets. By the construction of the modified 4-PARTITION instance, any quadruple
that contains two elements of A4 will have sum strictly greater than B′. Hence, these elements must be
evenly partitioned among the color classes, and with similar reasoning the same follows for the elements
of A3, A2.

We thus arrive at a situation where each color i appears in the independent sets Vx4
i
, Vx3

i
, Vx2

i
as well

as two of the “small” independent sets. Recall that all “small” independent sets were constructed in two
copies of the same size V 1

x , V
2
x . We would now like to ensure that all color classes contain one small

independent set of the form V 1
x1
i
. If we achieve this the argument will be complete: we construct the

quadruple (x4
i , x

3
i , x

2
i , x

1
i ) from the color class i, and the deficiency of the vertices of the remaining small

independent set ensures that the sum of the elements of the quadruple is at most B′. By constructing
n such quadruples we conclude that they all have sum exactly B′, since the sum of all elements of the
4-PARTITION instance is (without loss of generality) exactly nB′.

To ensure that each color class contains an independent set V 1
x we first observe that we can always ex-

change the colors of independent sets V 1
x and V 2

x , since they are both of equal size (and monochromatic).
Construct now an auxiliary graph with χd vertices, one for each color class and a directed edge for each
x ∈ A1. Specifically, if for x ∈ A1 the independent set V 1

x is colored i and the set V 2
x is colored j we

place a directed edge from i to j (note that this does not rule out the possibility of self-loops). In the
auxiliary graph, each vertex that does not have a self-loop is incident on two directed edges. We would
like all such vertices to end up having out-degree 1, because then each color class would contain an inde-
pendent set of the form V 1

x . The main observation now is that in each weakly connected component that
contains a vertex u with out-degree 0 there must also exist a vertex v of out-degree 2. Exchanging the
colors of V 1

x and V 2
x corresponds to flipping the direction of an edge in the auxiliary graph. Hence, we

can take a maximal directed path starting at v and flip all its edges, while maintaining a valid coloring of
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the original graph. This decreases the number of vertices with out-degree 0 and therefore repeating this
process completes the proof. 2

4 Polynomial Time Algorithm on Trivially Perfect Graphs
In this section, we complement the NP-completeness proof from Section 3 by giving a polynomial time
algorithm for DEFECTIVE COLORING on the class of trivially perfect graphs, which form a large subclass
of cographs. We will heavily rely on the following equivalent characterization of trivially perfect graphs
given by Golumbic (1978):

Theorem 11 A graph is trivially perfect if and only if it is the comparability graph of a rooted tree.

In other words, for every trivially perfect graph G, there exists a rooted tree T such that making every
vertex in the tree adjacent to all of its descendants yields a graph isomorphic to G. We refer to T as the
underlying rooted tree of G. We recall that it is known how to obtain T from G in polynomial (in fact
linear) time Yan et al. (1996).

We are now ready to describe our algorithm. The following observation is one of its basic building
blocks.

Lemma 12 Let G = (V,E) be a trivially perfect graph, T its underlying rooted tree, and u ∈ V be an
ancestor of v ∈ V in T . Then N [v] ⊆ N [u].

Proof: Any vertex w ∈ N [v] must be either a descendant of v, in which case it is also a descendant of u
and w ∈ N [u], or another ancestor of v. However, because T is a tree, if w is an ancestor of v, then w is
either an ancestor or a descendant of u. 2

Theorem 13 DEFECTIVE COLORING can be solved in polynomial time on trivially perfect graphs.

Proof: Given a trivially perfect graph G = (V,E) with underlying rooted tree T = (V,E′) and two non-
negative integers χd and ∆∗, we compute a coloring of G using at most χd colors and with deficiency at
most ∆∗ as follows. First, we partition the vertices of T (and therefore of G) into sets V1, . . . , V`, where
` denotes the height of T , such that V1 contains the leaves of T and, for every 2 ≤ i ≤ `, Vi contains the
leaves of T \ (

⋃i−1
j=1 Vj). Observe that each set Vi is an independent set in G. We now start our coloring

by giving all vertices of V1 color 1. Then, for every 2 ≤ i ≤ `, we color the vertices of Vi by giving
each of them the lowest color available, i.e., we color each vertex u with the lowest j such that u has at
most ∆∗ descendants colored j. If for some vertex no color is available, that is, its subtree contains at
least ∆∗ + 1 vertices colored with each of the colors {1, . . . , χd}, then we return that G does not admit a
(χd,∆

∗)-coloring.
This procedure can clearly be performed in polynomial time and, if it returns a solution, it uses at most

χd colors. Furthermore, whenever the procedure uses color i on a vertex u it is guaranteed that u has
deficiency at most ∆∗ among currently colored vertices. Since any neighbor of u that is currently colored
with i must be a descendant of u, by Lemma 12 this guarantees that the deficiency of all vertices remains
at most ∆∗ at all times.

It now only remains to prove that the algorithm concludes that G cannot be colored with χd colors and
deficiency ∆∗ only when no such coloring exists. For this we will rely on the following claim which states
that any valid coloring can be “sorted”.
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Claim 14 If G admits a (χd,∆
∗)-coloring, then there exists a (χd,∆

∗)-coloring of G c such that, for
every two vertices u, v ∈ V (G), if v is a descendant of u, then c(v) ≤ c(u).

Proof: Let us consider an arbitrary (χd,∆
∗)-coloring c∗ : V (G) → {1, . . . , χd} of G. We describe a

process which, as long as there exist u, v ∈ V with u an ancestor of v and c∗(u) < c∗(v) transforms
c∗ to another valid coloring which is closer to having the desired property. So, suppose that such a pair
u, v exists, and furthermore, if many such pairs exist, suppose that we select a pair where u is as close to
the root of T as possible. As a result, we can assume that no ancestor u′ of u has color c∗(u), because
otherwise we would have started with the pair u′, v.

We will now consider two cases. Assume first that there exists a vertex x such that c∗(x) = c∗(v)
and x is an ancestor of u. We claim that swapping the colors of u and v yields a new coloring of G
with deficiency at most ∆∗. The only affected vertices are those colored c∗(u) or c∗(v). Regarding color
c∗(u), because by Lemma 12 N [v] ⊆ N [u] and color c∗(u) was moved from u to v, the deficiency of
every vertex colored c∗(u) in V \ {u, v} is at most as high as it was before, and the deficiency of v is at
most as high as the deficiency of u in c∗. Regarding color c∗(v) we observe that the deficiency of vertex x
remains unchanged, since both u, v are its neighbors, and the same is true for all ancestors of x. Since the
deficiency of x is at most ∆∗, by Lemma 12, the deficiency of every descendant of x colored with c∗(v)
is also at most ∆∗.

For the remaining case, suppose that no ancestor of u uses color c∗(v). Recall that we have also
assumed that no ancestor of u uses color c∗(u). We therefore transform the coloring as follows: in the
subtree rooted at u we exchange colors c∗(u) and c∗(v) (that is, we color all vertices currently colored
with c∗(u) with c∗(v) and vice-versa). Because no ancestor of u uses either of these two colors, this
exchange does not affect the deficiency of any vertex.

We can now repeat this procedure as follows: as long as there is a conflicting pair u, v, with u an
ancestor of v and c∗(u) < c∗(v) we select such a pair with u as close to the root as possible and, if there
are several such pairs, we select the one with maximum c∗(v). We perform the transformation explained
above on this pair and then repeat. It is not hard to see that every vertex will be used at most once as
an ancestor in this transformation, because after the transformation it will have the highest color in its
subtree. Hence we will eventually obtain the claimed property. 2

It follows from the previous claim that if a (χd,∆
∗)-coloring exists, then a sorted (χd,∆

∗)-coloring
exists where ancestors always have colors at least as high as their descendants. We can now argue that our
algorithm also produces a sorted coloring, with the extra property that whenever it sets c(u) = i we know
that any sorted (χd,∆

∗)-coloring of G must give color at least i to u. This can be shown by induction on
i: it is clear for the vertices of V1 to which the algorithm gives color 1; and if the algorithm assigns color
i to u, then u has ∆∗ + 1 descendants which (by inductive hypothesis) must have color at least i − 1 in
any valid sorted coloring of G. 2

5 Algorithms on Cographs
In this section we present algorithms that can solve DEFECTIVE COLORING on cographs in polynomial
time if either ∆∗ or χd is bounded; both algorithms rely on dynamic programming. After presenting them
we show how their combination can be used to obtain a sub-exponential time algorithm for DEFECTIVE
COLORING on cographs.
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5.1 Algorithm for Small Deficiency
We now present an algorithm that solves DEFECTIVE COLORING in polynomial time on cographs if ∆∗

is bounded. Before we proceed, let us sketch the main ideas behind the algorithm. Given a (χd,∆
∗)-

coloring c of a graph G, we define the type of a color class i, as the pair of two integers (si, di) where
si := min{|c−1(i)|,∆∗ + 1} and di is the maximum degree of G[c−1(i)]. In other words, the type of
a color class is characterized by its size (up to value ∆∗ + 1) and the maximum deficiency of any of its
vertices. We observe that there are at most (∆∗+ 1)2 possible types in a valid (χd,∆

∗)-coloring, because
si only takes values in {1, . . . ,∆∗ + 1} and di in {0, . . . ,∆∗}.

We can now define the signature of a coloring c as a tuple which contains one element for every possible
color type (s, d). This element is the number of color classes in c that have type (s, d), and hence is a
number in {0, . . . , χd}. We can conclude that there are at most (χd + 1)(∆∗+1)2 possible signatures that
a valid (χd,∆

∗)-coloring can have. Our algorithm will work via dynamic programming, using the fact
that any cograph can be seen as a union or join of two of its induced subgraphs. We therefore analyze
a given cograph into its constituent subgraphs in this way (obtaining a binary tree) and for each such
graph we will construct a binary table which states for each possible signature if the current graph admits
a (χd,∆

∗)-coloring with this signature. The obstacle now is to describe a procedure which, given two
such tables for graphs G1, G2 is able to generate the table of admissible signatures for their union and
their join. If we do this we can inductively compute such a table for all intermediate graphs used in the
construction of the input graph G and eventually for G itself.

Theorem 15 There is an algorithm which, given a cograph G and integers χd,∆
∗, decides if G admits a

(χd,∆
∗)-coloring in time O∗

(
χd

O((∆∗)4)
)

.

Proof: We use the ideas sketched above. Specifically, we say that a coloring signature S is a function
{1, . . . ,∆∗ + 1} × {0, . . . ,∆∗} → {0, . . . , χd} and a coloring c has signature S if for any (s, d) ∈
{1, . . . ,∆∗+1}×{0, . . . ,∆∗} the number of color classes with type (s, d) in c is S((s, d)). Our algorithm
will maintain a binary table T with the property that, for S a possible coloring signature we have T (S) = 1
if and only if there exists a (χd,∆

∗)-coloring of G with signature S. The size of T is therefore at most
(χd + 1)(∆∗+1)2 .

It is not hard to see how to compute T if G consists of a single vertex: the only color class then has
type (1, 0), so the only possible signature is the one that sets S((1, 0)) = 1 and S((s, d)) = 0 otherwise.

Now, suppose that G is either the union or the join of two graphs G1, G2 for which our algorithm
has already calculated the corresponding tables T1, T2. We will use the fact that for any valid (χd,∆

∗)-
coloring c of G with signature S, its restrictions to G1, G2 are also valid (χd,∆

∗)-colorings. If these
restrictions have signatures S1, S2 it must then be the case that T1(S1) = T2(S2) = 1. It follows that in
order to compute all the signatures for which we must have T (S) = 1 it suffices to consider all pairs of
signatures S1, S2 such that T1(S1) = T2(S2) = 1 and decide if it is possible to have a coloring of G with
signature S whose restrictions to G1, G2 have signatures S1, S2.

Given two signatures S1, S2 such that T1(S1) = T2(S2) = 1 we would therefore like to generate all
possible signatures S for colorings c of G such that S1, S2 represent the restriction of c to G1, G2. Every
color class of c will either consist of vertices of only one subgraph G1 or G2, or it will be the result of
merging a color class of G1 with a color class of G2. Our algorithm will enumerate all possible merging
combinations between color classes of G1 and G2.
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Let us now explain how we enumerate all merging possibilities. Let c1, c2 be (χd,∆
∗)-colorings of

G1, G2 with signatures S1, S2 respectively. In the remainder of this proof we explain how given these two
signatures we can generate all possible signatures of feasible colorings c of the union or join of G1, G2,
such that c has signatures S1, S2 when restricted to G1, G2 respectively. Essentially, the problem is that
some color classes of c1 can be merged with some color classes of c2 to produce color classes of the new
graph, so we need to consider all possible combinations in which this can happen.

If G is the join of G1, G2 we say that type (s1, d1) is mergeable with type (s2, d2) if s1 + d2 ≤ ∆∗

and s2 + d1 ≤ ∆∗. If G is the union of G1, G2 we say that any pair of types is mergeable. Furthermore,
if G is the join of G1, G2 and (s1, d1), (s2, d2) are mergeable types, we say that they merge into type
(min{s1 + s2,∆

∗ + 1},max{d1 + s2, d2 + s1}). If G is the union of G1, G2 we say that types (s1, d1)
and (s2, d2) merge into type (min{s1 +s2,∆

∗+1},max{d1, d2}). The intuition behind these definitions
is that a color class i of c1 is mergeable with a color class j of c2 if we can use a single color for
c−1
1 (i) ∪ c−1

2 (j) in G, and the type of this color class is the type into which the types of i, j merge.
Now, in order to enumerate all merging possibilities we construct an auxiliray bipartite graph G′ =

(A1, A2, E
′). The graph G′ consists of (∆∗ + 1)2 vertices on each side, each corresponding to a type.

We place an edge between two vertices if their corresponding types are mergeable (so if G is a union of
G1, G2 then G′ is a complete bipartite graph). We also give a weight to each vertex as follows: if u ∈ Ai
corresponds to type (s, d) we set w(u) = Si((s, d)). In words, the weight of a vertex that represents a
type is the number of color classes of that type in the coloring of the subgraphs.

We will now enumerate assignments of non-negative weights to the edges of G′ which satisfy the
condition that for all vertices u ∈ A1 ∪ A2 we have

∑
v∈N(u) w((u, v)) ≤ w(u). The idea here is that if

we increase the weight of the edge (u, v) by one, we mean that we merge a color that has type u in c1 with
a color that has type v in c2 to produce a color class in G. The constraint we imposed therefore means
that the total number of times we do this for color classes of type u cannot be higher than w(u), which is
the number of colors that have this type. It is not hard to see that the total number of valid edge-weight
assignments is at most (χd + 1)(∆∗+1)4 , since every edge must receive weight in {0, . . . , χd} and there
are at most (∆∗ + 1)4 edges. This is the step that dominates the running time of our algorithm.

For each of the enumerated assignments of G′ we can now calculate a signature S of a coloring of
G. For each type (s, d) let E(s,d) ⊆ E′ be the set of edges of G′ whose endpoints merge into type
(s, d). Let ui ∈ Ai be the vertices corresponding to type (s, d). We have S((s, d)) =

∑
i=1,2(w(ui) −∑

v∈N(ui)
w(ui, v))+

∑
e∈E(s,d)

w(e). We now check that the signature we computed refers to a coloring
with at most χd colors, that is, if

∑
S((s, d)) ≤ χd, where s ∈ {1, . . . ,∆∗ + 1} and d ∈ {0, . . . ,∆∗}.

In this case we set T (S) = 1. The observation that completes the proof is that for all valid colorings c of
G with signature S such that the restriction of c to G1, G2 has signatures S1, S2 there must exist a weight
assignment for which the above procedure finds the signature S. Hence, by examining all pairs of feasible
signatures S1, S2 we will discover all feasible signatures of G. 2

5.2 Algorithm for Few Colors
In this section we provide an algorithm that solves DEFECTIVE COLORING in polynomial time on
cographs if χd is bounded. The type of a color class i is defined in a similar manner as in the first
paragraph of Section 5.1. Specifically, for a given coloring c, we define the type of color i as the pair of
two integers (si, di) where si := min{|c−1(i)|,∆∗ + 1} and di is the maximum degree of G[c−1(i)].
Note that si ∈ {0, . . . ,∆∗ + 1}. What changes in this section is the signature S of a coloring c which
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is now defined as a function S : {1, . . . , χd} → {0, . . . ,∆∗ + 1} × {0, . . . ,∆∗}, which takes as input a
color class and returns its type.

Once again, we will construct a dynamic programming a table T which given a signature S set T (S) =
1 if the current graph has a (χd,∆

∗)-coloring with signature S. Our table will have size at most (∆∗ +
2)2χd , since this is an upper bound on the number of possible signatures. As in the previous section, we
shall describe how to compute table T of a graph G which is the union or the join of two graphs G1 and
G2 whose tables T1 and T2 are known.

Theorem 16 There is an algorithm which, given a cograph G and integers χd,∆
∗, decides if G admits a

(χd,∆
∗)-coloring in time O∗

(
(∆∗)O(χd)

)
.

Proof: The base case is when we have a single vertex u in the graph G. In this case, any coloring of u
is valid, so for all i ∈ {1, . . . , χd} we define a signature Si such that Si(i) = (1, 0) and Si(j) = (0, 0)
when i 6= j. Last, T (S) = 1 if and only if S = Si for any i.

Now, suppose that G is either the union or the join of two graphs G1, G2 for which we have already
calculated their corresponding tables. Once again we just need to consider all pairs of signatures S1, S2

such that T1(S1) = T2(S2) = 1 and decide if we can have a coloring of G with signature S whose
restrictions toG1, G2 have signatures S1, S2. Let S1, S2 be one such pair of signatures, for which Sj(i) =
(sij , d

i
j), j ∈ {1, 2}. We examine the cases of union and join separately.

Let us start with the case thatG is the union ofG1, G2. Define S such that for any i, S(i) = (min{si1 +
si2,∆

∗ + 1},max{di1, di2}) and set T (S) = 1.
The case whereG is the join ofG1, G2 is a little more complicated since we first need to check if, given

two precolored graphs the outcome of their join is valid, that for all colors i, the maximum degree of G[i]
remains at most ∆∗. This corresponds to checking for all colors i whether d = max{si1 + di2, s

i
2 + dj1} ≤

∆∗. Given that the above is true, we define S such that for any i, S(i) = (min{si1 + si2,∆
∗ + 1}, d) and

set S(T ) = 1.
The algorithm considers all pairs of elements of T1, T2, so it runs in time dominated by |Ti|2 =

O∗
(
(∆∗)O(χd)

)
. 2

5.3 Sub-Exponential Time Algorithm
We now combine the algorithms of Sections 5.1 and 5.2 in order to obtain a sub-exponential time algorithm
for cographs.

Theorem 17 DEFECTIVE COLORING can be solved in time nO
(
n
4/5

)
on cographs.

Proof: First, we remind the reader that, from Lemma 2, if ∆∗ · χd ≥ n then the answer is trivially yes.
Thus the interesting case is when ∆∗ · χd < n. Note that we also trivially have that ∆∗, χd ≤ n.

If ∆∗ ≤ 5
√
n, then the algorithm of Section 5.1 runs in O∗

(
χd

O((∆∗)4)
)

= n
O
(
n
4/5

)
time.

If ∆∗ > 5
√
n, then χd <

n
∆∗ < n

4
5 . In this case, the algorithm of Section 5.2 runs inO∗

(
(∆∗)O(χd)

)
=

n
O
(
n
4/5

)
time. 2
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6 Split and Chordal Graphs
In this section we present the following results: first, we show that DEFECTIVE COLORING is hard on
split graphs even when ∆∗ is a fixed constant, as long as ∆∗ ≥ 1; the problem is of course in P if ∆∗ = 0.
Then, we show that DEFECTIVE COLORING is hard on split graphs even when χd is a fixed constant,
as long as χd ≥ 2; the problem is of course trivial if χd = 1. These results completely describe the
complexity of the problem when one of the two relevant parameters is fixed. We then give a treewidth-
based procedure through which we obtain a polynomial-time algorithm even on chordal graphs when
χd,∆

∗ are bounded (in fact, the algorithm is FPT parameterized by χd + ∆∗). Hence these results give a
complete picture of the complexity of the problem on chordal graphs: the problem is still hard when one
of χd,∆

∗ is bounded, but becomes easy if both are bounded.
Let us also remark that both of the reductions we present are linear. Hence, under the Exponential Time

Hypothesis Impagliazzo et al. (2001), they establish not only NP-hardness, but also unsolvability in time
2o(n) for DEFECTIVE COLORING on split graphs, for constant values of χd or ∆∗. This is in contrast
with the results of Section 5.3 on cographs.

6.1 Hardness for Bounded Deficiency
In this section we show that DEFECTIVE COLORING is NP-hard for any fixed value ∆∗ ≥ 1. We will
describe a reduction from 3CNFSAT which for any given ∆∗ ≥ 1 produces an instance of DEFECTIVE
COLORING that has a (2n,∆∗)-coloring if the given formula is satisfiable. Suppose we are given a CNF
formula φ where X = {x1, . . . , xn} are the variables and C = {c1, . . . , cm} are the clauses and each
clause contains exactly 3 literals. We construct a graph G as follows:

• For each i ∈ {1, . . . , n} we construct a set Ui of 2∆∗ + 2 vertices; we partition Ui into two sets
UAi , UDi , each of size ∆∗, and two single vertices uBi , u

C
i . Let U =

⋃
i Ui.

• For each i ∈ {1, . . . , n} we construct a vertex zAi , a vertex zBi , and a vertex zDi .

• For each j ∈ {1, . . . ,m} we construct a vertex vj .

• We turn the vertices of U into a clique.

• For each i ∈ {1, . . . , n} we connect zAi to all of U except UDi ∪ {uBi , uCi }; we connect zBi to all of
U except UAi ∪ UDi ∪ {uCi }; we connect zDi to all of U except UAi ∪ {uBi , uCi }.

• For each j ∈ {1, . . . ,m} we connect vj to all of U except for the following: for each variable xi
that appears in cj positive, vj is not connected to UAi ∪ {uBi }; for each variable xi that appears in
cj negative, vj is not connected to UAi ∪ {uCi }.

Observe that the graph G we have constructed is split as U is a clique and the remaining vertices are an
independent set. We claim that this graph has a (2n,∆∗)-coloring if and only if φ is satisfiable.

Lemma 18 If φ is satisfiable then G has a (2n,∆∗)-coloring.

Proof: We first color U as follows: fix a satisfying assignment and consider the variable xi. If xi is set
to True then we color UAi ∪ {uBi } with color 2i − 1 and UDi ∪ {uCi } with color 2i; otherwise we color
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UAi ∪ {uCi } with color 2i− 1 and UDi ∪ {uBi } with color 2i. Note that now every vertex of the clique U
has deficiency exactly ∆∗ and we have used all colors.

We assign to vertex zAi color 2i and to vertex zDi color 2i − 1. Observe that zAi is not connected to
UDi ∪ {uBi , uCi }, which are the only vertices which may have color 2i at this point, so its deficiency is 0
and it does not affect the deficiency of any other vertex. Similarly, zDi has deficiency 0. We assign to zBi
the same color as uCi and this vertex also has deficiency 0.

Finally, for each j ∈ {1, . . . ,m} we consider the j-th clause of φ in order to color vj . Since the
assignment is satisfying, this clause contains a true literal, say involving the variable xi. We assign to vj
the color 2i− 1. If xi appears positive in clause cj then vj is not connected to UAi ∪ {uBi }, which are all
the vertices that have color 2i− 1, so its deficiency is 0. The reasoning is similar if xi appears negative in
cj . 2

Lemma 19 If G has a (2n,∆∗)-coloring, then φ is satisfiable.

Proof: First, observe that U is a clique of size 2n(∆∗ + 1), so the given coloring must use all colors in
U , each ∆∗ + 1 times. Furthermore, all vertices of U have deficiency exactly ∆∗ already in U , so they
cannot have any neighbors with the same color outside of U .

Because of the previous arguments, the color used in zAi can only appear in Ui inside the clique (as zAi
is connected to the rest of U ) and must appear there ∆∗+ 1 times. The same argument applies to zBi , z

D
i .

Therefore, if two distinct colors are used for the vertices in zAi , z
B
i , z

D
i , these colors cover all of Ui and

are not used anywhere else in U . In this case we say that the coloring of Ui is normal. Furthermore, it is
impossible to use three distinct colors for zAi , z

B
i , z

D
i .

Suppose that some Ui has a coloring that is not normal. Then zAi , z
B
i , z

D
i must use the same color. This

color appears ∆∗+ 1 times in U but cannot appear in U \Ui. Furthermore, it cannot appear in a neighbor
of zAi , z

B
i or zDi . It can therefore not appear in UAi (which is connected to zAi ), nor in UDi (which is

connected to zDi ), nor in uBi (which is connected to zBi ). So the only vertex where it may appear is uCi ,
contradicting the assumption that this color is used ∆∗ + 1 times in the clique. We conclude that all Ui
must have a normal coloring.

Since all Ui have a normal coloring, the 2∆∗ + 2 vertices of each Ui are colored with two colors, each
used ∆∗ + 1 times. Suppose without loss of generality that for all i the set Ui is colored with colors
2i − 1 and 2i and furthermore that 2i − 1 is used at least once in UAi . We claim that UAi must in fact be
monochromatic and colored completely with 2i− 1. This is trivially true if ∆∗ = 1; while when ∆∗ ≥ 2
if UAi uses both colors 2i − 1 and 2i, then no color is available for zAi . We now obtain an assignment to
φ as follows: we set xi to True if uBi has color 2i− 1; otherwise we set xi to False.

We claim that this assignment satisfies φ. Consider the j-th clause and let r be its assigned color.
Suppose r appears in the colors of Ui, so r = 2i−1 or r = 2i. It must be the case that r is not used in any
of the neighbors of vj , therefore the variable xi appears in cj . Suppose r = 2i. Then, the color 2i cannot
appear in UDi (which is connected to vj), which implies that UAi ∪UDi are colored fully with 2i− 1. This
can only happen if ∆∗ = 1, but in this case uBi , u

C
i are both colored 2i. Since one of them is connected

to vj we have a contradiction. Therefore, vj must be colored with 2i − 1. If vj is not connected to uBi
(so xi appears positive in cj) then uCi , u

D
i have color 2i, which means that uBi has color 2i − 1 and our

assignment satisfies the clause. Similarly, if vj is not connected to uCi (so xi appears negative in cj), then
uBi must have color 2i, so our assignment sets xi to False and satisfies cj . 2

The main theorem of this section follows from Lemmas 18 and 19.
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Theorem 20 DEFECTIVE COLORING is NP-hard on split graphs for any fixed ∆∗ ≥ 1.

6.2 Hardness for Bounded Number of Colors
Theorem 21 DEFECTIVE COLORING is NP-complete on split graphs for every fixed value of χd ≥ 2.

Proof: We reduce from the problem 3-SET SPLITTING, which takes as input a set of elements U , called
the universe, and a family F of subsets of U of size exactly 3, and asks whether there is a partition
(U1, U2) of U such that, for every set S ∈ F , we have S ∩U1 6= ∅ and S ∩U2 6= ∅. This problem is well-
known to be NP-complete Garey and Johnson (1979). Given an instance (U,F) of 3-SET SPLITTING and
a positive integer χd, we build a split graph G = (V,E) such that V = C1 ∪ C2 ∪ C∗ ∪ I ∪ Z1 ∪ Z2,
with |C1| = |C2| = |F|, |C∗| = (χd − 2) · (|F| + 2), |I| = |U | and |Z1| = |Z2| = χd · (|F| + 2).
We proceed by making all the vertices of C1 ∪ C2 pairwise adjacent. We then associate each set S of F
with two vertices v1

S and v2
S of C1 and C2 respectively, and every element x of U with a vertex wx of I .

For every pair x ∈ U, S ∈ F , we make wx adjacent to v1
S and v2

S if and only if x ∈ S. We complete
our construction by making all the vertices of Ci adjacent to all the vertices of Zi for i ∈ {1, 2}, and all
the vertices of C∗ adjacent to every vertex in V . Observe that the graph we constructed is split, since
C1 ∪ C2 ∪ C∗ induces a clique and I ∪ Z1 ∪ Z2 induces an independent set. We now claim that there
exists a partition (U1, U2) of U as described above if and only if G can be colored with at most χd colors
and deficiency at most ∆∗ = |F|+ 1.

For the forward direction, we color every vertex of C1 ∪ Z2 with color 1 and every vertex of C2 ∪ Z1

with color 2. For each wx ∈ I we color wx with 1 if x ∈ U1 and with 2 if x ∈ U2. We color the vertices
of C∗ equitably with the remaining χd − 2 colors. This produces the desired coloring of G.

For the converse, we first prove the following:

Claim 22 For any coloring of G with χd colors and deficiency at most ∆∗, all the vertices of C1 have the
same color. Similarly, all the vertices of C2 have the same color, and this color is distinct from that of the
vertices of C1. Additionally, the remaining χd − 2 colors are each used exactly ∆∗ + 1 times in C∗.

Proof: We first consider the colors given to the vertices of Z1 and Z2. Observe that since both sets have
size χd · (|F|+ 2) = χd · (∆∗+ 1), there is a color c1 that appears at least ∆∗+ 1 times in Z1 and a color
c2 that appears at least ∆∗ + 1 times in Z2. Since Z1 ⊂ N(u) for every vertex u ∈ C1 ∪ C∗, we obtain
that no vertex of C1 ∪ C∗ uses color c1. Using a similar argument, we obtain that no vertex of C2 ∪ C∗
uses color c2.

We will first prove that c1 6= c2. Indeed, suppose that c1 = c2. Since this color c1 does not appear
in C1 ∪ C2 ∪ C∗, we are left with χd − 1 available colors for these sets, where |C1 ∪ C2 ∪ C∗| =
χd · |F|+ 2χd− 4. To obtain a contradiction observe that at least one color class should have size at least
|C1∪C2∪C∗|

χd−1 > |F|+ 2 for sufficiently large F , which is more than ∆∗ + 1 vertices.
The above implies that C∗ must be colored using at most χd − 2 colors. Since C∗ is a clique of size

exactly (χd− 2) · (|F|+ 2) = (χd− 2) · (∆∗+ 1), it follows that C∗ is colored using χd− 2 colors, each
of which are used exactly ∆∗ + 1 times, as desired. Last, we conclude that vertices in C1 should only be
colored c2 and similarly vertices of C2 should receive color c1. 2



Defective Coloring on Classes of Perfect Graphs 15

By the previous claim C1 and C2 are both monochromatic and use different colors. Without loss of
generality suppose that C1 is colored with color 1 and C2 with color 2. Since every vertex of I is adjacent
to every vertex of C∗, we immediately obtain that I must be colored using only 1 or 2. It only remains
to show that for every set S of F , there exist elements x, y ∈ S such that vertex wx is colored with color
1 and vertex wy is colored with color 2. Then, the coloring of I will give us a partition of U . Assume
for contradiction that there exists a set S whose elements x, y and z all have the same color, say color 1.
From the above claim, we know that v1

S ∈ C1 uses color 1 and is adjacent to the other ∆∗ − 2 vertices
of C1, all of which also use color 1. Therefore, v1

S is adjacent to ∆∗ − 2 + 3 vertices using color 1, and
hence has deficiency ∆∗ + 1, a contradiction. This concludes the proof. 2

6.3 A Dynamic Programming Algorithm
In this section we present an algorithm which solves the problem efficiently on chordal graphs when χd

and ∆∗ are small. Our main tool is a treewidth-based procedure, as well as known connections between
the maximum clique size and treewidth of chordal graphs.

Theorem 23 DEFECTIVE COLORING can be solved in time (χd∆∗)O(tw)nO(1) on any graph G with n
vertices if a tree decomposition of width tw of G is supplied with the input.

Proof: We describe a dynamic programming algorithm which uses standard techniques, and hence we
sketch some of the details. Suppose that we are given a rooted nice tree decomposition of G (we use here
the definition of nice tree decomposition given in Bodlaender and Koster (2008)). For every bag B of
the decomposition we denote by B↓ the set of vertices of G that appear in B and bags below it in the
decomposition. For a coloring c : V → {1, . . . , χd} we say that the partial type of a vertex u ∈ B is
a pair consisting of c(u) and |c−1(c(u)) ∩ N(u) ∩ B↓|. In words, the type of a vertex is its color and
its deficiency in the graph induced by B↓. Clearly, if c is a valid coloring, any vertex can have at most
χd · (∆∗ + 1) types. Hence, if we define the type of B as a tuple containing the types of its vertices, any
bag can have one of at most (χd · (∆∗ + 1))tw types.

Our dynamic programming algorithm will now construct a table which for every bag B and every
possible bag type decides if there is a coloring of B↓ with the specified type for which all vertices of
B↓ \ B have deficiency at most ∆∗. The table is easy to construct for leaf bags and forget bags. For
introduce bags we consider all possible colors of the new vertex, and for each color we appropriately
compute its deficiency and update the deficiency of its neighbors in the bag, rejecting solutions where a
vertex reaches deficiency ∆∗ + 1. Finally, for join bags we consider any pair of partial solutions from the
two children bags that agree on the colors of all vertices of the bag and compute the deficiency of each
vertex as the sum of its deficiencies in the two solutions. 2

We now recall the following theorem connecting ω(G) and tw(G) for chordal graphs.

Theorem 24 (Robertson and Seymour (1986); Bodlaender (1998)) In chordal graphs ω(G) = tw(G)+1.
Furthermore, an optimal tree decomposition of a chordal graph can be computed in polynomial time.

Together with Lemma 3 this gives the following algorithm for chordal graphs.

Theorem 25 DEFECTIVE COLORING can be solved in time (χd∆∗)O(χd∆∗)nO(1) in chordal graphs.
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Proof: We use Theorem 24 to compute an optimal tree decomposition of the input graph and its maximum
clique size. If ω(G) > χd(∆∗ + 1) then we can immediately reject by Lemma 3. Otherwise, we know
that tw(G) ≤ χd(∆∗ + 1) from Theorem 24, so we apply the algorithm of Theorem 23. 2

7 Conclusions
Our results indicate that DEFECTIVE COLORING is significantly harder than GRAPH COLORING, even
on classes where the latter is easily in P. Though we have completely characterized the complexity of
the problem on split and chordal graphs, its tractability on interval and proper interval graphs remains an
interesting open problem as already posed in Havet et al. (2009).

Beyond this, the results of this paper point to several potential future directions. First, the algorithms we
have given for cographs are both XP parameterized by χd or ∆∗. Is it possible to obtain FPT algorithms?
On a related question, is it possible to obtain a faster sub-exponential time algorithm for DEFECTIVE
COLORING on cographs? Second, is it possible to find other natural classes of graphs, beyond trivially
perfect graphs, which are structured enough to make DEFECTIVE COLORING tractable? Finally, in this
paper we have not considered the question of approximation algorithms. Though in general DEFECTIVE
COLORING is likely to be quite hard to approximate (as a consequence of the hardness of GRAPH COL-
ORING), it seems promising to also investigate this question in classes where GRAPH COLORING is in
P.
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