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Let D be a strong balanced digraph on 2a vertices. Adamus et al. have proved that D is hamiltonian if d(u)+d(v) ≥

3a whenever uv /∈ A(D) and vu /∈ A(D). The lower bound 3a is tight. In this paper, we shall show that the extremal

digraph on this condition is two classes of digraphs that can be clearly characterized. Moreover, we also show that if

d(u) + d(v) ≥ 3a− 1 whenever uv /∈ A(D) and vu /∈ A(D), then D is traceable. The lower bound 3a− 1 is tight.

Keywords: bipartite digraph; degree sum condition; hamiltonian cycle

1 Terminology and introduction

In this paper, we consider finite digraphs without loops and multiple arcs. We shall assume that the

reader is familiar with the standard terminology on digraphs and refer the reader to [5] for terminology

not defined here. Let D be a digraph with vertex set V (D) and arc set A(D). For any x, y ∈ V (D), we

will write x → y if xy ∈ A(D), also write x ↔ y if x → y and y → x. For disjoint subsets X and

Y of V (D), X → Y means that every vertex of X dominates every vertex of Y , X ⇒ Y means that

there is no arc from Y to X and X 7→ Y means that both of X → Y and X ⇒ Y hold. For a vertex

set S ⊂ V (D), we denote by N+(S) the set of vertices in V (D) dominated by the vertices of S; i.e.

N+(S) = {u ∈ V (D) : vu ∈ A(D) for some v ∈ S}. Similarly, N−(S) denotes the set of vertices of

V (D) dominating vertices of S; i.e. N−(S) = {u ∈ V (D) : uv ∈ A(D) for some v ∈ S}. If S = {v}
is a single vertex, the cardinality of N+(v) (resp. N−(v)), denoted by d+(v) (resp. d−(v)) is called the

out-degree (resp. in-degree) of v in D. The degree of v is d(v) = d+(v) + d−(v). For a pair of vertex

sets X,Y of D, define (X,Y ) = {xy ∈ A(D) : x ∈ X, y ∈ Y }. Let←→a (X,Y ) = |(X,Y )|+ |(Y,X)|.
Let P = y0y1 . . . yk be a (y0, yk)-path of D. For i 6= j, yi, yj ∈ V (P ) we denote by yiPyj the subpath

of P from yi to yj . If 0 < i ≤ k, then the predecessor of yi on P is the vertex yi−1 and is also denoted by

y−i . If 0 ≤ i < k, then the successor of yi on P is the vertex yi+1 and is also denoted by y+i . A k-cycle

is a cycle of order k. A cycle factor in D is a collection of vertex-disjoint cycles C1, C2, . . . , Ct such that

V (C1) ∪ V (C2) ∪ · · · ∪ V (Ct) = V (D).
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A digraph D is said to be strongly connected or just strong, if for every pair of vertices x, y of D, there

is a path with endvertices x and y. A digraph D is called hamiltonian if it contains a hamiltonian cycle,

i.e., a cycle that includes every vertex of D. A digraph D is traceable if D possesses a hamiltonian path.

A digraph D is semicomplete, if for every pair of vertices x, y of D, xy or yx (or both) is in D.

A digraph D is bipartite when V (D) is a disjoint union of independent sets V1 and V2. It is called

balanced if |V1| = |V2|. A matching from V1 to V2 is an independent set of arcs with origin in V1 and

terminus in V2 (u1u2 and v1v2 are independent arcs when u1 6= v1 and u2 6= v2). If D is balanced, one

says that such a matching is perfect if it consists of precisely |V1| arcs. If D is bipartite and for every pair

of vertices x, y from distinct partite sets, xy and yx are in D, then D is called complete bipartite.

The cycle problems for digraphs are one of the central problems in graph theory and its applications

[5]. There are many degree or degree sum conditions for hamiltonicity in digraphs. The following result

of Meyniel on the existence of hamiltonian cycles in digraphs is basic and famous.

Theorem 1.1 [11] Let D be a strong digraph on n vertices where n ≥ 3. If d(x) + d(y) ≥ 2n− 1 for all

pairs of non-adjacent vertices x, y in D, then D is hamiltonian.

Recently, there is a renewed interest in various degree conditions for hamiltonicity in bipartite digraphs

(see, e.g., [1], [2], [3], [4], [7], [10], [12], [13], [14]). In particular, In [4], Adamus et al. gave a Meyniel-

type sufficient condition for hamiltonicity of balanced bipartite digraphs.

Definition 1.2 Let D be a balanced bipartite digraph of order 2a, where a ≥ 2. For an integer k, we will

say that D satisfies the condition Mk when d(u) + d(v) ≥ 3a+ k, for all pairs of non-adjacent vertices

u, v.

Theorem 1.3 [4] Let D be a balanced bipartite digraph on 2a vertices, where a ≥ 2. Then D is hamil-

tonian provided one of the following holds:

(a) D satisfies the condition M1, or

(b) D is strong and satisfies the condition M0.

In Section 3, we reduce the bound in Theorem 1.3(b) by 1 and prove that D is either hamiltonian

or isomorphic to a digraph in H1 or the digraph H2, see Examples 1.4 and 1.5 below. From this, we

determine the extremal digraph of Theorem 1.3(b). We also prove that a strong balanced bipartite digraph

of order 2a satisfying the condition M−1 is traceable. Our proofs are based on the arguments of [4].

Example 1.4 For an odd integer a ≥ 3, letH1 be a set of bipartite digraphs. For any digraph H1 inH1,

let V1 and V2 be partite sets of H1 such that V1 (resp. V2) is a disjoint union of S,R (resp. U,W ) with

|S| = |W | = a+1
2 , |U | = |R| = a−1

2 and A(H1) consists of the following arcs:

(a) rw and wr, for all r ∈ R and w ∈W ;

(b) us and su, for all u ∈ U and s ∈ S;

(c) ws, for all w ∈W and s ∈ S;

(d) there exist r ∈ R and u ∈ U such that ur ∈ A(H1). For every r ∈ R, dH1[U ](r) ≥
a−3
2 and for

every u ∈ U , dH1[R](u) ≥
a−3
2 .
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Note that H1 is strong and satisfies the condition M−1, but since |N+(S)| = |U | < |S|, there exists no

perfect matching from V1 to V2. Thus, H1 is non-hamiltonian.

Example 1.5 Let H2 be a bipartite digraph with partite sets X = {x1, x2, x3} and Y = {y1, y2, y3}. The

arc set A(H2) consist of the following arcs x1y2, y2x3, x3y3, y3x1 and the following 2-cycles x2 ↔ y2,

x2 ↔ y3, y1 ↔ x1 and y1 ↔ x3. Note that H2 is strong and the degree of every vertex in H2 is 4. Thus

H2 satisfies the condition M−1 as a = 3. Observe that H2 is non-hamiltonian (see Figure 1).

✉ ✉ ✉

✉ ✉ ✉

✲✛

✲✛ ✲✛

✲✛

✻ ✻

q✮

x1 y1 x3

y3 x2 y2

Figure 1. the digraph H2.

2 Lemmas

The proof of the main result will be based on the following several lemmas.

Lemma 2.1 Let D be a strong balanced bipartite digraph of order 2a, where a ≥ 2. If D satisfies the

condition M−1, then either D contains a cycle factor or D is isomorphic to a digraph in H1.

Proof: Let V1 and V2 denote two partite sets of D. Observe that D contains a cycle factor if and only

if there exist both a perfect matching from V1 to V2 and a prefect matching from V2 to V1. In order to

prove that D contains a perfect matching from V1 to V2 and a prefect matching from V2 to V1, by the Hall

theorem, it suffices to show that |N+(S)| ≥ |S| for every S ⊂ V1 and |N+(T )| ≥ |T | for every T ⊂ V2.

If there exists a non-empty set S ⊂ V1 such that |N+(S)| < |S|, then we will show that D is isomorphic

to a digraph in H1. Note that V2 \N+(S) 6= ∅. If |S| = 1, write S = {x}, then |N+(S)| < |S| implies

that d+(x) = 0. It is impossible in a strong digraph. Thus |S| ≥ 2. If |S| = a, then every vertex

from V2 \ N
+(S) has in-degree zero, which again contradicts strong connectedness of D. Therefore,

2 ≤ |S| ≤ a− 1.

For any x1, x2 ∈ S and w1, w2 ∈ V2 \N+(S), by the hypothesis of the lemma,

3a− 1 ≤ d(x1) + d(x2) ≤ 2|N+(S)|+ 2a (1)

and

3a− 1 ≤ d(w1) + d(w2) ≤ 2a+ 2(a− |S|). (2)

From these, we have |N+(S)| ≥ a−1
2 and |S| ≤ a+1

2 . If a is even, then |N+(S)| ≥ a
2 and |S| ≤ a

2 , which

is a contradiction to |N+(S)| < |S|. Thus a is odd and a−1
2 ≤ |N+(S)| ≤ |S| − 1 ≤ a+1

2 − 1 = a−1
2 ,

which means |N+(S)| = a−1
2 and |S| = a+1

2 . Moveover, all equalities hold in (1) and (2), which

means that d+(x1) = d+(x2) = |N+(S)|, d−(x1) = d−(x2) = a, d−(w1) = d−(w2) = a − |S|
and d+(w1) = d+(w2) = a. By the strong connectedness of D and the hypothesis of this lemma, D is

isomorphic to a digraph inH1. ✷

From the proof of Theorem 1.2 in [4], we have the following lemma. We provide its proof for com-

pleteness.
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Lemma 2.2 Let D be a bipartite digraph with partite sets V1 and V2. Suppose that Ci and Cj are two

vertex-disjoint cycles in D. If Ci and Cj cannot be mergered into a cycle with vertex set V (Ci)∪ V (Cj),

then←→a (V (Ci), V (Cj)) ≤
|V (Ci)|·|V (Cj)|

2 . Moreover, if ←→a (V (Ci), V (Cj)) =
|V (Ci)|·|V (Cj)|

2 , then for

any xi ∈ V (Ci) ∩ Vq and xj ∈ V (Cj) ∩ Vq , |{xix
+
j , xjx

+
i } ∩A(D)| = 1, with q ∈ {1, 2}.

Proof: Let q ∈ {1, 2}, xi ∈ V (Ci) ∩ Vq and xj ∈ V (Cj) ∩ Vq be arbitrary. Let x+
i be the successor of

xi in Ci and let x+
j be the successor of xj in Cj . Let Zq(xi, xj) be defined as {xix

+
j , xjx

+
i } ∩ A(D). If

|Zq(xi, xj)| = 2 for some xi, xj , then the cycles Ci and Cj can be merged into one cycle by deleting the

arcs xix
+
i and xjx

+
j and adding the arcs xix

+
j and xjx

+
i , a contradiction. So we may assume that

|Zq(xi, xj)| ≤ 1, for all xi ∈ V (Ci) ∩ Vq and xj ∈ V (Cj) ∩ Vq. (1)

Now, consider an arc uv ∈ (V (Ci), V (Cj)) and assume u ∈ Vq . Let v− denote the predecessor of v in

Cj . Then uv ∈ Zq(u, v
−). Similarly, if uv ∈ (V (Cj), V (Ci)), u ∈ Vq , and v− is the predecessor of v in

Ci, then uv ∈ Zq(v
−, u). Therefore

←→a (V (Ci), V (Cj)) ≤
2∑

q=1

∑

xi∈V (Ci)∩Vq

∑

xj∈V (Cj)∩Vq

|Zq(xi, xj)|,

and hence, by (1),

←→a (V (Ci), V (Cj)) ≤ 2 ·
|V (Ci)|

2
·
|V (Cj)|

2
.

Moreover, if ←→a (V (Ci), V (Cj)) =
|V (Ci)|·|V (Cj)|

2 , then the equality holds in (1), that is to say,

|{xix
+
j , xjx

+
i } ∩ A(D)| = 1, which completes the proof of the lemma. ✷

The next lemma shows two simple results.

Lemma 2.3 Let a1, a2, . . . , at be non-negative integers with a1 ≤ a2 ≤ · · · ≤ at and let A be a positive

integer. If a1 + a2 + · · ·+ at ≤ A, then the following hold.

(a) For any l ∈ {1, 2, . . . , t}, a1 + a2 + · · ·+ al ≤
lA
t

;

(b) If a1 + a2 = 2A
t

, then for all i 6= j ∈ {1, 2, . . . , t}, we have ai = A
t

, ai + aj = 2A
t

and

a1 + a2 + · · ·+ at = A.

Proof: (a) For a proof by contradiction, suppose that a1+a2+ · · ·+al >
lA
t

. Then al >
A
t

, as otherwise

a1 ≤ a2 ≤ · · · ≤ al ≤
A
t

implies a1+a2+ · · ·+al ≤
lA
t

, a contradiction. Then A
t
< al ≤ al+1 ≤ · · · ≤

at implies
(t−l)A

t
< al+1 + · · · + at ≤ A − (a1 + a2 + · · · + al) < A− lA

t
= (t−l)A

t
, a contradiction.

Hence a1 + a2 + · · ·+ al ≤
lA
t

.

(b) If t = 2, then there is nothing to prove. Now assume t ≥ 3. First a1 = a2 = A
t

, as otherwise

a2 > A
t

implies ai > A
t

, for all i ≥ 3. Then
(t−2)A

t
< a3 + · · · + at ≤ A − (a1 + a2) = (t−2)A

t
, a

contradiction. So ai ≥
A
t

, for all i ≥ 3. Then
(t−2)A

t
≤ a3+· · ·+at ≤ A−(a1+a2) =

(t−2)A
t

. It follows

that all equalities hold. Then ai =
A
t

for all i ∈ {1, 2, . . . , t}. So ai+aj =
2A
t

and a1+a2+· · ·+at = A.

✷

Theorem 2.4 [8, 9] Let D be a strong semicomplete bipartite digraph. If D contains a cycle factor, then

D is hamiltonian.
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3 Proof of the main result

Theorem 3.1 Let D be a strong balanced bipartite digraph of order 2a with partite sets V1 and V2, where

a ≥ 3. If D satisfies the condition M−1, then D is either hamiltonian or isomorphic to a digraph in H1

or the digraph H2.

Proof: Suppose that D is not isomorphic to a digraph in H1. By Lemma 2.1, D contains a cycle factor

C1, C2, . . . , Cs. Assume that s is minimum possible and D is not hamiltonian. So s ≥ 2. Without

loss of generality, assume that |V (C1)| ≤ |V (C2)| ≤ · · · ≤ |V (Cs)|. Clearly, |V (C1)| ≤ a. Denote

C1 = D − V (C1). By Lemma 2.2, the following holds:

←→a (V (C1) ∩ V1, V (C1)) +
←→a (V (C1) ∩ V2, V (C1))

=←→a (V (C1), V (C1)) =

s∑

i=2

←→a (V (C1), V (Ci)) (1)

≤
|V (C1)|(2a− |V (C1)|)

2
.

Without loss of generality, we may assume that

←→a (V (C1) ∩ V1, V (C1)) ≤
|V (C1)|(2a− |V (C1)|)

4
, (2)

as otherwise

←→a (V (C1) ∩ V2, V (C1)) ≤
|V (C1)|(2a− |V (C1)|)

4
. (3)

To complete the proof, we first give the following two claims.

Claim 1. For any two non-adjacent vertices x and y, if d(x) ≤ b, then d(y) ≥ 3a− 1− b.

Proof: By the hypothesis of this theorem, d(x) + d(y) ≥ 3a − 1. This together with d(x) ≤ b implies

d(y) ≥ 3a− 1− b. ✷

Claim 2. If s = 2 and D[V (C1)] is either a complete bipartite digraph, or a complete bipartite digraph

minus one arc with |V (C1)| ≥ 6, then there exists a vertex z ∈ V (C2) such that dC1
(z) = 0.

Proof: Suppose, on the contrary, that for every z ∈ V (C2), dC1
(z) > 0, where dC1

(z) = |N+(z) ∩
V (C1)|+ |N−(z)∩V (C1)|. Since D is strong, there exist arcs from C2 to C1. Without loss of generality,

assume that v → x, where v ∈ V (C2) ∩ V2 and x ∈ V (C1) ∩ V1. Let y be an arbitrary vertex in

V (C1) ∩ V2.

First, we observe that there exists a hamiltonian path Q from x to y in D[V (C1)]. If D[V (C1)] is a

complete bipartite digraph, it is obvious. Assume that D[V (C1)] is a complete bipartite digraph minus

one arcs, say e, with |V (C1)| ≥ 6. Denote m = |V (C1)|
2 . Let xiyi, i = 1, 2, . . . ,m, be a perfect

matching from V1 to V2 in D[V (C1)]. Without loss of generality, assume x = x1 and y = ym (This

is possible as there are at least m − 1 arc-disjoint perfect matchings from V1 to V2 in D[V (C1)] and
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m ≥ 3). Let P = x1y1x2y2 . . . xmym. If e /∈ {yixi+1 : i = 1, 2, . . . ,m − 1}, then P is the desired

path. If e ∈ {yixi+1 : i = 1, 2, . . . ,m − 1}, say e = yrxr+1, then P ∪ {x1yr, yrx2, xry1, y1xr+1} \
{x1y1, y1x2, xryr, yrxr+1} is the desired path.

According to the above observation, we can deduce that y 9 v+, where v+ is the successor of v in C2,

otherwise vxQyv+C2v is a hamiltonian cycle of D, a contradiction. By the arbitrariness of y, this means

that d−C1
(v+) = 0. By dC1

(v+) > 0, we have d+C1
(v+) > 0. Similarly, we can obtain that d−C1

(w) = 0,

for every w ∈ V (C2), a contradiction to the fact that D is strong. The proof of the claim is complete. ✷

We now consider the following two cases.

Case 1. |V (C1)| = 2.

Let V (C1) ∩ V1 = {x1} and V (C1) ∩ V2 = {y1}. By (1),

dC1
(x1) + dC1

(y1) ≤ 2a− 2 (4)

and by (2),

dC1
(x1) ≤ a− 1. (5)

So d(x1) = dC1
(x1) + dC1

(x1) ≤ a+ 1.

Assume d(x1) ≤ a. By Claim 1, d(z) ≥ 3a − 1 − a = 2a − 1, for any z ∈ V (D) such that z and

x1 are non-adjacent. It is easy to see that D is a semicomplete bipartite digraph. By Theorem 2.4, D is

hamiltonian, a contradiction.

Now assume d(x1) = a+ 1. By Claim 1, for any x′ ∈ V1 \ {x1}, d(x′) ≥ 3a− 1− (a+1) = 2a− 2.

By (4) and dC1
(x1) = a − 1, dC1

(y1) ≤ a − 1 and so d(y1) ≤ a + 1. Similarly, we can also obtain

d(y1) = a + 1. Hence, for any y′ ∈ V2 \ {y1}, d(y′) ≥ (3a − 1) − (a + 1) = 2a− 2. In fact, we have

shown that for any w ∈ V (D) \ {x1, y1}, d(w) ≥ 2a− 2.

Assume that |V (C2)| = 2. Write C2 = x2y2x2, where x2 ∈ V1 and y2 ∈ V2. Analogously, we can also

obtain that d(x2) = d(y2) = a+1. Note that d(x2) ≥ 2a−2. Thus, 2a−2 ≤ d(x2) = a+1. From this, we

have a ≤ 3 and so a = 3 and s = 3. Write C3 = x3y3x3, where x3 ∈ V1 and y3 ∈ V2. Analogously, we

can also obtain that d(x3) = d(y3) = a+ 1. By Theorem 2.4, D is not a semicomplete bipartite digraph.

Hence, there exist two vertices from different partite sets such that they are not adjacent. Without loss of

generality, assume that x1 and y2 are not adjacent. By d(x1) = a + 1 = 4 and d(y2) = a + 1 = 4, we

have that x1 ↔ y3 and x3 ↔ y2. By Lemma 2.2,←→a (V (C2), V (C3)) ≤ 2. So x2 and y3 are not adjacent.

Then d(x2) = a + 1 = 4 implies that x2 ↔ y1. Note that D is hamiltonian, a contradiction (see Figure

2).
✉ ✉

✉ ✉

✉ ✉

✲✛

✲✛

✲✛

✸

✰
✸

✰ ❫

❪
x1 y1

x2 y2

x3 y3

Figure 2. The case when |V (C2)| = 2.

Next assume that |V (C2)| ≥ 4. From this, |V (Ci)| ≥ 4, for i = 3, . . . , s. Let D′ = D − {x1, y1}
and a′ = a − 1. First we claim that s = 2. It suffices to show that D′ is hamiltonian. For a′ = 2 and
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a′ = 3, it is obvious. Recall that for any u ∈ V (D′), dD(u) ≥ 2a− 2. Thus, dD′(u) ≥ 2a− 4 = 2a′− 2.

Thus, for any two non-adjacent vertices u and v in D′, dD′(u) + dD′(v) ≥ 2(2a′ − 2). If a′ ≥ 5, then

2(2a′ − 2) ≥ 3a′ + 1. By Theorem 1.3(a), D′ is hamiltonian. If a′ = 4, then 2(2a′ − 2) ≥ 3a′. If D′

is strong, then by Theorem 1.3(b), D′ is hamiltonian. Next assume that D′ is not strong. In this case,

s = 3 and C2, C3 are both 4-cycles. Write C2 = x2y2x3y3x2, where xi ∈ V1 and yi ∈ V2, for i = 2, 3.

Since D′ is not strong, without loss of generality, assume that C2 ⇒ C3. So dD′(x2) ≤ 2 + 4 = 2a′ − 2
and dD′(y2) ≤ 2a′ − 2. Combining this with dD′(x2) ≥ 2a′ − 2 and dD′(y2) ≥ 2a′ − 2, we have that

dD′(x2) = dD′(y2) = 2a′−2 = 2a−4. Recall that dD(x2) ≥ 2a−2 and dD(y2) ≥ 2a−2. So x2 ↔ y1
and x1 ↔ y2. This means that C1 can be merged with C2 by replacing the arc x2y2 on C2 with the path

x2y1x1y2, a contradiction. Hence s = 2. Write C2 = x2y2 . . . xayax2, where xi ∈ V1 and yi ∈ V2, for

i = 2, . . . , a. By Claim 2, there exists a vertex z ∈ V (C2) such that dC1
(z) = 0, say x2. Thus, x2 and

y1 are not adjacent and d(x2) ≤ 2a− 2. From this with d(x2) ≥ 2a− 2, we have that d(x2) = 2a− 2,

which implies that x2 ↔ yi, for i = 2, . . . , a. Recalling that dC2
(x1) = dC2

(y1) = a− 1, that is to say,
←→a (V (C1), V (C2)) = 2(a− 1) = |V (C1)|·|V (C2)|

2 . By Lemma 2.2, for any xi, yi ∈ V (C2),

|{xiy1, x1yi} ∩ A(D)| = 1 and |{yi−1x1, y1xi} ∩A(D)| = 1. (6)

Since y1 and x2 are not adjacent, by (6), we have ya → x1 and x1 → y2.

First consider the case when a = 3. By dC2
(x1) = dC2

(y1) = a − 1, we have x1 7→ y2 and y3 7→ x1

and y1 ↔ x3. If x3 → y2, then x3y2x2y3x1y1x3 is a hamiltonian cycle, a contradiction. Hence, y2 7→ x3.

If y3 → x3, then y3x3y1x1y2x2y3 is a hamiltonian cycle, a contradiction. Hence x3 7→ y3. Then D is

isomorphic to the digraph H2 (see Figure 1.)

Next consider the case when a ≥ 4. Assume that xa → y1. By (6), x1 9 ya. Furthermore, ya 9

x3, otherwise x1y2x2yax3C2xay1x1 is a hamiltonian cycle, a contradiction. Hence d(ya) ≤ 2a − 2.

Combining this with d(ya) ≥ 2a − 2, we have d(ya) = 2a − 2, which implies x3 7→ ya and ya ↔ xi,

for i = 4, . . . , a. Moreover, y1 9 x3, otherwise y1x3yax1y2x2y3C2xay1 is a hamiltonian cycle, a

contradiction. From this, we see that d(x3) ≤ 2a − 2. Combining this with d(x3) ≥ 2a − 2, we have

d(x3) = 2a − 2, which implies y3 ↔ x3. However, x3yax4C2xay1x1y2x2y3x3 is a hamiltonian cycle,

a contradiction. Now we assume xa 9 y1. Since dC2
(y1) = a− 1 and y1 and x2 are not adjacent, there

exists a vertex xi ∈ {x3, . . . , xa−1} such that xi → y1. Take r = max{i : i ∈ {3, . . . , a− 1} and xi →
y1}. By the choose of r, for every j ∈ {r + 1, . . . , a}, xj 9 y1. Then by (6), x1 → yj . If xj → y2,

then xry1x1yjC2x2yrC2xjy2C2xr is a hamiltonian cycle, a contradiction. Hence xj 9 y2. Combining

this with xj 9 y1 and d(xj) ≥ 2a − 2, we have d(xj) = 2a − 2. Hence xj → {yj, yj−1} → xj . But

xry1x1yaxaya−1 . . . yrx2C2xr is a hamiltonian cycle, a contradiction.

Case 2. |V (C1)| ≥ 4.

In this case, a ≥ 4. Let x1, x2 ∈ V (C1) ∩ V1 be distinct and chosen so that←→a ({x1, x2}, V (C1)) is

minimum. By Lemma 2.3(a) and (2),←→a ({x1, x2}, V (C1)) ≤ 2a − |V (C1)|, that is to say, dC1
(x1) +

dC1
(x2) ≤ 2a−|V (C1)|. Since any vertex in C1 has at most |V (C1)| arcs to other vertices in C1 (as there

are
|V (C1)|

2 vertices from V2 inC1) and |V (C1)| ≤ a, we get 3a−1 ≤ d(x1)+d(x2) ≤ 2a+|V (C1)| ≤ 3a.
From this |V (C1)| = a− 1 or |V (C1)| = a. Before we consider these two cases, we claim the following.

Clearly, s = 2.

Claim 3. For any u ∈ V (C2), dC1
(u) > 0.
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Proof: Suppose, on the contrary, that there exists u0 ∈ V (C2) such that dC1
(u0) = 0. Then 3a − 1 ≤

d(u0) + d(xi) ≤ |V (C2)| + |V (C1)| + dC2
(xi), for i = 1, 2. From this, dC2

(xi) ≥ a − 1. Thus

2(a− 1) ≤ dC2
(x1) + dC2

(x2) ≤ 2a− |V (C1)|, which means |V (C1)| ≤ 2, a contradiction. ✷

From Claims 2 and 3, we know that D[V (C1)] is not a complete bipartite digraph. Let y1, y2 ∈
V (C1) ∩ V2 be distinct and chosen such that←→a ({y1, y2}, V (C2)) is the minimum.

Claim 4. If dC2
(x1) + dC2

(x2) = 2a− |V (C1)|, then dC2
(y1) + dC2

(y2) ≤ 2a− |V (C1)|.

Proof: If dC2
(x1)+dC2

(x2) = 2a−|V (C1)|, then by Lemma 2.3(b) and (2),←→a (V (C1)∩V1, V (C2)) =
|V (C1)|·(2a−|V (C1)|)

4 . Then by (1), ←→a (V (C1) ∩ V2, V (C2)) ≤
|V (C1)|·(2a−|V (C1)|)

4 . By Lemma 2.3(a),
←→a ({y1, y2}, V (C2)) ≤ 2a− |V (C1)|, that is, dC2

(y1) + dC2
(y2) ≤ 2a− |V (C1)|. ✷

Now we return to the proof of the theorem and consider the following subcases.

Subcase 2.1. |V (C1)| = a− 1.

In this case, |V (C1)| = a− 1 ≥ 4, that is a ≥ 5, and |V (C2)| = a+ 1.

Claim 5. For any two non-adjacent vertices u, v ∈ V (C1), if dC2
(u) + dC2

(v) ≤ 2a − |V (C1)|, then

dC2
(u) + dC2

(v) = 2a− |V (C1)| and dC1
(u) = dC1

(v) = |V (C1)|.

Proof: By hypothesis, 3a− 1 ≤ d(u) + d(v) = dC2
(u) + dC2

(v) + dC1
(u) + dC1

(v) ≤ 2a− |V (C1)|+
2|V (C1)| = 3a− 1. If follows that dC2

(u) + dC2
(v) = 2a− |V (C1)| and dC1

(u) = dC1
(v) = |V (C1)|.

✷

By Claim 5, dC2
(x1) + dC2

(x2) = 2a − |V (C1)| and dC1
(x1) = dC1

(x2) = |V (C1)|. By (2)

and Lemma 2.3(b), for any x′, x′′ ∈ V (C1) ∩ V1, dC2
(x′) + dC2

(x′′) = 2a − |V (C1)|. By Claim 5,

dC1
(x′) = dC1

(x′′) = |V (C1)|. Then D[V (C1)] is a complete bipartite digraph, a contradiction.

Subcase 2.2. |V (C1)| = a.

In this case, |V (C2)| = a. By

3a− 1 ≤ d(x1) + d(x2)

= dC1
(x1) + dC1

(x2) + dC2
(x1) + dC2

(x2) (7)

≤ 2a+ dC2
(x1) + dC2

(x2),

we have dC2
(x1) + dC2

(x2) ≥ a− 1. Combining this with dC2
(x1) + dC2

(x2) ≤ 2a− |V (C1)| = a, we

have dC2
(x1) + dC2

(x2) = a− 1 or dC2
(x1) + dC2

(x2) = a.

First suppose dC2
(x1)+dC2

(x2) = 2a−|V (C1)| = a. By Lemma 2.3(b) and (2), dC2
(xi)+dC2

(xj) =
a, for any xi, xj ∈ V (C1)∩ V1. Since D[V (C1)] is not a complete bipartite digraph, there exists a vertex

x′ ∈ V (C1)∩V1 such that dC1
(x′) ≤ a−1. For any xk ∈ (V (C1)∩V1)\{x′}, 3a−1 ≤ d(x′)+d(xk) =

(dC1
(x′) + dC1

(xk)) + (dC2
(x′) + dC2

(xk)) ≤ (a − 1 + a) + a = 3a − 1. So dC1
(x′) = a − 1 and

dC1
(xk) = a, which implies that D[V (C1)] is a complete bipartite digraph minus one arc. According

to Claims 2 and 3, |V (C1)| = 4. Write C1 = x1y1x2y2x1 and C2 = x3y3x4y4x3, where xi ∈ V1

and yi ∈ V2, for i = 1, 2, 3, 4. Without loss of generality, assume that dC1
(x1) = 3 and y2 7→ x1.

According to Claim 4, dC2
(y1) + dC2

(y2) ≤ a. Then 3a− 1 ≤ d(y1) + d(y2) ≤ 2a− 1 + a = 3a− 1
implies that dC2

(y1) + dC2
(y2) = a, which means dC1

(x3) + dC1
(x4) = a. By symmetry, we can
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deduce that D[V (C2)] is a complete bipartite digraph minus one arc. Without loss of generality, assume

that dC2
(x3) = a − 1. Then 3a − 1 ≤ d(x1) + d(x3) ≤ 2(a − 1) + dC2

(x1) + dC1
(x3), that is,

dC2
(x1) + dC1

(x3) ≥ a + 1. Without loss of generality, assume that dC2
(x1) ≥

a
2 + 1. Combining

this with dC2
(x1) + dC2

(x2) = a, we have dC2
(x2) ≤

a
2 − 1. Then 3a − 1 ≤ d(x2) + d(x3) ≤

(a+ a
2 − 1)+ (a− 1+ dC1

(x3)) implies that dC1
(x3) ≥

a
2 +1. From this with dC1

(x3) + dC1
(x4) = a,

we have dC1
(x4) ≤

a
2 − 1. But d(x2) + d(x4) ≤ 2a+ 2(a2 − 1) = 3a− 2, a contradiction.

Now suppose dC2
(x1) + dC2

(x2) = a − 1. From (7), dC1
(x1) = dC1

(x2) = a. If a = 4, then

D[V (C1)] is a complete bipartite digraph, a contradiction. Next assume that a ≥ 6. By Claims 2 and 3,

D[V (C1)] is not a complete bipartite digraph minus one arc. Denote V (C1) ∩ V1 = {x1, x2, . . . , xa
2
}

and without loss of generality, assume that dC2
(x1) ≤ dC2

(x2) ≤ · · · ≤ dC2
(xa

2
). By the choice of x1

and x2 and dC2
(x1) + dC2

(x2) = a− 1, we know that dC2
(x1) ≤

a
2 − 1. Denote dC2

(x1) =
a
2 − k, with

k ≥ 1. So dC2
(x2) =

a
2 + k − 1 and dC2

(xi) ≥
a
2 + k − 1, for i = 3, . . . , a

2 . By (2),

dC2
(x1) + dC2

(x2) + · · ·+ dC2
(xa

2
) ≤

a2

4
. (8)

Since D[V (C1)] is neither a complete bipartite digraph nor a complete bipartite digraph minus one arc,

either there exists a vertex xi ∈ V (C1) ∩ V1 such that dC1
(xi) ≤ a − 2 or there exist at least two

vertices xi and xj such that dC1
(xi) = a − 1 and dC1

(xj) = a − 1. If a = 6, then dC1
(x3) ≤ a − 2.

By 3a − 1 ≤ d(x1) + d(x3) ≤ (a + a
2 − k) + (a − 2 + dC2

(x3)), we have dC2
(x3) ≥

a
2 + k + 1. So

dC2
(x1)+dC2

(x2)+dC2
(x3) ≥ a−1+ a

2+k+1 = 3a
2 +k. According to (8), 3a

2 +k ≤ a2

4 . It is impossible

as k ≥ 1 and a = 6, a contradiction. Hence a ≥ 8. By a
2 −k+(a2 −1)(a2 +k−1) ≤

∑ a
2

i=1 dC2
(xi) ≤

a2

4 ,

we have k ≤ 1 and so k = 1. So dC2
(x1) =

a
2 − 1 and dC2

(xi) ≥
a
2 , for i ≥ 2. Suppose that there exists

a vertex x′ ∈ V (C1) ∩ V1 such that dC1
(x′) ≤ a − 2. By Claim 1 and d(x1) = dC1

(x1) + dC2
(x1) =

a + a
2 − 1 = 3a

2 − 1, we have d(x′) ≥ 3a
2 and so dC2

(x′) = d(x′) − dC1
(x′) ≥ a

2 + 2. Then
a2

4 + 1 = (a2 − 1) + (a2 − 2)a2 + a
2 + 2 ≤

∑a
2

i=1 dC2
(xi) ≤

a2

4 , a contradiction. Thus there exist two

vertices xi, xj ∈ V (C1) ∩ V1 such that dC1
(xi) = a − 1 and dC1

(xj) = a − 1. Then by Claim 1,

dC2
(xi) ≥ (3a− 1)− d(x1)− dC1

(xi) = (3a− 1)− (3a2 − 1)− (a− 1) = a
2 +1 and dC2

(xj) ≥
a
2 +1.

Then a2

4 +1 = (a2 − 1)+ (a2 − 3)a2 +2(a2 +1) ≤

a
2∑

i=1

dC2
(xi) ≤

a2

4 , a contradiction. We have considered

all cases and completed the proof of the theorem. ✷

From Theorem 3.1, we can obtain the following.

Theorem 3.2 Let D be a strong balanced bipartite digraph of order 2a, where a ≥ 3. If D satisfies the

condition M−1, then D is traceable.

Proof: By Theorem 3.1, D is either hamiltonian or isomorphic to a digraph in H1 or the digraph H2. If

D is hamiltonian, there is nothing to prove. If D is isomorphic to the digraph H2 (see Figure 1), then

x1y1x3y3x2y2 is a hamiltonian path. Suppose that D is isomorphic to a digraph inH1 (see Example 1.4).

Note that both D[S ∩ U ] and D[R ∩W ] are complete bipartite digraphs and |S| = |W | = a+1
2 ≥ 2.

Clearly, for any x1, x2 ∈ S, there is a hamiltonian path Q1 from x1 to x2 in D[S ∩ U ] and for any

w1, w2 ∈ W , there is a hamiltonian path Q2 from w1 to w2 in D[R ∩W ]. Then w1Q2w2x1Q1x2 is a

hamiltonian path in D. ✷

The bound in Theorem 3.2 is sharp, as can be seen in the following example.
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Example 3.3 Let a ≥ 4 be an even integer and let H3 be a balanced bipartite digraph with partite sets

V1 and V2 such that V1 (resp. V2) is a disjoint union of S,R (resp. U,W ) with |S| = |W | = a+2
2 ,

|U | = |R| = a−2
2 , and A(H3) consists of the following arcs:

(a) ry and yr, for all r ∈ R and y ∈ V2,

(b) ux and xu, for all u ∈ U and x ∈ V1, and

(c) ws, for all w ∈ W and s ∈ S.

Then d(r) = d(u) = 2a for all r ∈ R and u ∈ U , and d(s) = d(w) = 3a−2
2 for all s ∈ S and w ∈ W

and so H3 satisfies the condition M−2. Notice that H3 is strong, but contains no hamiltonian path, as the

size of a maximum matching from V1 to V2 is a− 2.

4 Related problems

Let Da,k denote all strong balanced bipartite digraphs on 2a vertices such that d(u) + d(v) ≥ 3a − k
for all non-adjacent vertices u, v. If D ∈ Da,0, then by Theorem 1.3, D is hamiltonian. A hamiltonian

digraph must possess a cycle factor. In this present paper, we have shown that if D ∈ Da,1 and D contains

a cycle factor, then D is hamiltonian unless D is the digraph H2. A natural question would be if there

are at most a finite number (depending on k) of digraphs in D ∈ Da,k containing a cycle factor but not a

hamiltonian cycle.

Theorem 2.4 implies that a strong bipartite tournament containing a cycle factor, is hamiltonian. Let D
be a balanced bipartite oriented graph of order 2a. An another natural question would be if there exists

an integer k ≥ 1 such that D satisfying the condition d(x) + d(y) ≥ 2a− k for any pair of non-adjacent

vertices x, y in D and containing a cycle factor, is hamiltonian.

To conclude the paper, we mention two related problems. In [6], Bang-Jensen et al. conjectured the

following strengthening of a classical Meyniel theorem.

Conjecture 4.1 [6] If D is a strong digraph on n vertices in which d(u) + d(v) ≥ 2n − 1 for every

pair of non-adjacent vertices u, v with a common out-neighbour or a common in-neighbour, then D is

hamiltonian.

In [1], Adamus proved a bipartite analogue of the conjecture.

Theorem 4.2 [1] Let D be a strong balanced bipartite digraph of order 2a with a ≥ 3. If d(x) + d(y) ≥
3a for every pair of vertices x, y with a common out-neighbour or a common in-neighbour, then D is

hamiltonian.

A natural problem is to characterize the extremal digraph on the condition in Theorem 4.2.

A balanced bipartite digraph containing cycles of all even length is called bipancyclic. In [2], Adamus

proved that the hypothesis of Theorem 4.2 implies bipancyclicity of D, except for a directed cycle of

length 2a (Theorem 4.3 below).

Theorem 4.3 [2] Let D be a strong balanced bipartite digraph of order 2a with a ≥ 3. If d(x) + d(y) ≥
3a for every pair of vertices x, y with a common out-neighbour or a common in-neighbour in D, then D
either is bipancyclic or is a directed cycle of length 2a.
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In the same paper, the author presented the following problem: if for every 1 ≤ l < a there is an

interger k ≥ 1 such that every strong balanced bipartite digraph on 2a vertices contains cycles of all

even lengths up to 2l, provided d(x) + d(y) ≥ 3a − k for every pair of vertices x, y with a common

out-neighbour or a common in-neighbour.
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