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The majorization relation orders the degree sequences of simple graphs into posets called dominance orders. As
shown by Ruch and Gutman (1979) and Merris (2002), the degree sequences of threshold and split graphs form
upward-closed sets within the dominance orders they belong to, i.e., any degree sequence majorizing a split or thresh-
old sequence must itself be split or threshold, respectively. Motivated by the fact that threshold graphs and split
graphs have characterizations in terms of forbidden induced subgraphs, we define a class F of graphs to be domi-
nance monotone if whenever no realization of e contains an element F as an induced subgraph, and d majorizes e,
then no realization of d induces an element ofF . We present conditions necessary for a set of graphs to be dominance
monotone, and we identify the dominance monotone sets of order at most 3.
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1 Introduction
In this paper, we study the interactions of two aspects of graph degree sequences, namely their relation-
ships under the majorization order, and the induced subgraphs that their realizations may or must not
contain.

When partitions of integers with a common sum are ordered via majorization, interesting observations
are possible. Here we assume that d = (d1, . . . , dn) and e = (e1, . . . , ep) are lists of positive integers
with their terms in nonincreasing order, and we say that d majorizes e, denoted d � e, if

n∑
i=1

di =

p∑
i=1

ei and
k∑

i=1

ei ≤
k∑

i=1

di for 1 ≤ k ≤ min{p, n}.

Applying the relation � to all partitions of a fixed positive integer yields a lattice. Brylawski [6]
established fundamental properties of this lattice. This lattice serves as a setting for various sandpile
models and related chip firing games (see, for example [8]).

Majorization has a strong connection to graph degree sequences as well. As observed by Ruch and
Gutman [14] and others, all graphic partitions (i.e., degree sequences of simple graphs) among these
partitions form an ideal, or downward-closed set, meaning that if d is a degree sequence and d � e, then
e is a degree sequence as well.
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If we restrict our attention to the portion of the majorization poset containing just the graphic partitions,
we obtain the dominance order on degree sequences having a common sum. Aigner and Triesch [1] used
the dominance order in problems related to the existence of degree sequence realizations having desired
properties. Berger [5] showed that the number of realizations of certain degree sequences is strongly
related to majorization relations among the degree sequences. Arikati and Peled studied the majorization
gap of a degree sequence [2] and showed that degree sequences that lie immediately below the top of the
dominance order have Hamiltonian realization graphs [3].

The degree sequences near the top of the dominance order belong to interesting graph classes. The max-
imal degree sequences in the dominance order are known as the threshold sequences, and their realizations,
the threshold graphs, have been shown to have several remarkable properties (see the monograph [10] for
a survey). Merris [12] showed that the more general class of split graphs, those whose vertex sets can be
partitioned into a clique and an independent set, have degree sequences that are upward-closed in the dom-
inance order, meaning that if e is the degree sequence of some split graph and d is any degree sequence
majorizing e, then every realization of d is a split graph as well.

In addition to their degree sequence characterizations, the classes of threshold graphs and of split graphs
both have characterizations in terms of induced subgraphs. Chvátal and Hammer [7] showed that threshold
graphs are precisely those graphs that are {2K2, C4, P4}-free, meaning that these graphs have no induced
subgraph isomorphic to any of 2K2, C4, or P4. Földes and Hammer [9] likewise showed that the split
graphs are the {2K2, C4, C5}-free graphs.

Recently [4], the weakly threshold graphs were introduced by the first author as those graphs for which
the degree sequences satisfied a relaxation of a degree sequence characterization of threshold graphs.
Weakly threshold graphs form a subclass of the split graphs, and like the split and threshold graphs, they
have a forbidden subgraph characterization and the property that any degree sequence majorizing the
degree sequence of a weakly threshold graph is itself the degree sequence of a weakly threshold graph.

In light of these examples, it appears that we may better understand one facet of the dominance order by
considering hereditary graph classes like the threshold, split, and weakly threshold graphs whose degree
sequences form upward-closed sets in the dominance order. To do this, we will focus on the corresponding
sets of forbidden induced subgraphs. We define a set F of graphs to be dominance monotone if the
following property is true:

If d and e are degree sequences such that d � e and every realization of e is F-free, then
every realization of d is F-free as well.

In other words,F is dominance monotone if the forciblyF-free-graphic sequences form an upward-closed
set in each dominance order (precise definitions will be given in the following section).

In this paper we initiate the study of dominance monotone sets, establishing necessary conditions and
determining all dominance monotone sets of size at most 3. In Section 2, we recall preliminary nota-
tion, definitions, and results on degree sequences, majorization, and forbidden subgraphs. In Section 3
we determine necessary conditions for graphs in dominance monotone sets and use these conditions to
determine the dominance monotone sets of order 1. In Sections 4 and 5 we characterize the dominance
monotone sets F for which |F| = 2 and |F| = 3, respectively, including the first known dominance
monotone examples F for which the F-free graphs are not a subclass of the split graphs. In Section 6 we
present a few concluding remarks and questions.



Upward-closed hereditary families in the dominance order 3

F (d) F (d′)

Fig. 1: Ferrers diagrams of d = 3221 and d′ = 2222.

2 Preliminaries
In this section, we recall basic terminology and notions for degree sequences and related concepts.

All graphs considered here are finite and simple. We use Kn, Cn, and Pn, respectively, to denote the
complete graph, the cycle graph, and the path graph having n vertices. We denote the disjoint union of
graphs G and H by G+H and the disjoint union of a copies of G by aG. We use G ∨H to indicate the
join of graphs G and H .

We denote the vertex set and edge set of a graph G, respectively, by V (G) and E(G), and we define
n(G) = |V (G)|. We use G to denote the complement of G. For any v ∈ V (G), we use dG(v) to denote
the degree of v in G, and we write the degree sequence of G as a list dG = (d1, d2, . . . , dn) having
terms in nonincreasing order. At times, particularly when degree sequences appear in pairs, we will write
specific degree sequences with small terms without parentheses or commas, as in d = d1d2 · · · dn. For
multiple identical terms within a degree sequence we may use exponents to indicate multiplicities. We set
∆(G) = d1 and δ(G) = dn. Any vertex of G having degree n(G)− 1 will be called a dominating vertex,
and any vertex having degree 0 will be called an isolated vertex.

Any graph having such a list d as its degree sequence is called a realization of d. (Graphs in this paper
are unlabeled, meaning that we are not careful to distinguish between isomorphic realizations of a degree
sequence).

Turning now to majorization, we use D2m to denote the dominance order on graphic partitions of 2m,
where m is an integer; it is an elementary result that the sum of the terms in any degree sequence is an
even number. We will assume that all terms in elements of D2m are positive; though of course some
graphs do contain isolated vertices, we emphasize that realizations of elements in D2m are assumed not
to.

We may illustrate degree sequences inD2m and their relationships under majorization using a geometric
description known as a Ferrers diagram. For d = (d1, . . . , dn) ∈ D2m, define the Ferrers diagram F (d)
as a left-justified array made up of 2m boxes arranged into rows, with the ith row of F (d) consisting of
di boxes for i ∈ {1, . . . , n}. As an illustration, Figure 1 displays the Ferrers diagrams of d = 3221 and
d′ = 2222.

We recall a fundamental result on partitions, stating it in terms of Ferrers diagrams.

Lemma 2.1 (Muirhead’s Lemma, [13]). Two degree sequences d, d′ ∈ D2m satisfy d � d′ if and only if
F (d′) can be obtained from F (d) by moving one or more boxes down to lower rows (even if this process
gives rise to new rows) while ensuring that the numbers of boxes in the rows remain in nonincreasing
order.
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In Figure 1, moving a box from the first row to the fourth row of F (d) yields F (d′); hence, 3221 �
2222.

We say that a class of elements in a dominance order D2m is upward-closed if whenever d and e are
elements of D2m such that e belongs to the class and d � e, it follows that d belongs to the class as well.
For an upward-closed class of degree sequences, Muirhead’s Lemma implies that moving any box in the
Ferrers diagram of one of these degree sequences to an earlier row produces the Ferrers diagram either of
another degree sequence in the class or of a non-graphic partition.

When we consider realizations of degree sequences, it is important to note that a single degree sequence
may have multiple nonisomorphic realizations. For this reason, for any graph-theoretic property P invari-
ant under isomorphism, we say that a degree sequence d is potentially P-graphic, or potentially P , if at
least one of the realizations of d has property P . If every realization of d has property P , we say that d is
forcibly P-graphic, or forcibly P . Thus if F is a collection of graphs, we say that a degree sequence d is
forcibly F-free if no realization of d contains any element of F as an induced subgraph.

3 Necessary conditions and dominance monotone singletons
We work now towards characterizing dominance monotone sets. Recall that a collection F of graphs is
dominance monotone if the class of forcibly F-free sequences is upward-closed in each dominance order
D2m.

Since our objective is to identify the dominance monotone sets, we say that a pair (d, e) of degree
sequences is a counterexample pair for F if d � e and e is forcibly F-free, but d is not, i.e., d has a
realization containing an element of F as an induced subgraph. There is a counterexample pair for F if
and only if F is not dominance monotone.

For example, the setF = {2K2, C4} is not dominance monotone, since the dominance orderD10 yields
the counterexample pair (32221, 25), in which 25 has the chordless 5-cycle (which contains neither 2K2

nor C4 as induced subgraphs) as its only realization, and 32221 has as one of its realizations a chordless 4-
cycle with an attached pendant vertex. Since the set {2K2, C4} is the set of induced subgraphs forbidden
for the pseudo-split graphs, which further have a degree sequence characterization (see [11]), we see that
not every hereditary family with a degree sequence characterization forbids a dominance monotone set;
more importantly, we also see that dominance monotone sets like {2K2, C4, C5} and {2K2, C4, P4} may
contain non-dominance monotone subsets.

Our first result deals with complements. We use G to denote the complement of a graph G, and, given
a collection F of graphs, we define F = {F : F ∈ F}.

Theorem 3.1. If F is dominance monotone and no graph in F has a dominating vertex, then F = {F :
F ∈ F} is dominance monotone as well.

Proof: Assume that F is dominance monotone and contains no graph with a dominating vertex. Suppose
that e = (e1, . . . , ep) is forcibly F-free and d � e, where d = (d1, . . . , dn).

Suppose first that e1 < p − 1. Form e = (p − 1 − ep, . . . , p − 1 − e1), the degree sequence of the
complement of any realization of e, noting that every term of e is positive. Muirhead’s Lemma implies
that n ≤ p. Now form d = ((p− 1)p−n, p− 1− dn, . . . , p− 1− d1); this is the degree sequence of the
graph formed by adding p − n isolated vertices to a realization of d and then taking the complement of
the resulting graph.
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Note that e is forcibly F-free. Since every term in e or d is positive, and e and d are both partitions of
p(p− 1)−

∑
ei, they belong to the same dominance order; furthermore, for each k ∈ {1, . . . , p},

k∑
i=1

ei = k(p− 1)−
p∑

i=p+1−k

ei = k(p− 1)−

(
p(p− 1)−

p−k∑
i=1

ei

)
=

p−k∑
i=1

ei − (p− k)(p− 1)

≤
p−k∑
i=1

di − (p− k)(p− 1) =

k∑
i=1

di.

Hence d majorizes e. Since F is dominance monotone, d is forcibly F-free, and the complement of any
of its realizations is forcibly F-free. It follows that d is forcibly F-free, as claimed.

Suppose now that e1 = p−1. Form e′ = (p, p−ep, . . . , p−e1) and d
′

= (pp−n+1, p−dn, . . . , p−d1);
these are precisely the sequences e and d from the previous paragraph, but with each term increased by
one and an extra term of p inserted at the beginning. Each term of e′ and of d

′
is positive, and similar

arguments to those above show that d
′ � e′. If e′ is forcibly F-free, then d

′
will be forcibly F-free and

hence d will be forcibly F-free, as desired, since any realization of d is an induced subgraph of some
realization of the complement of d

′
. It suffices, then, to note that any realization of e′ is obtained by

adding a dominating vertex to the complement of a realization of e. Since no graph in F has a dominating
vertex, if e′ induces an element of F , the vertices of this induced subgraph must include only vertices not
of degree p in e′. However, the subgraph induced on such vertices is the complement of an F-free graph,
a contradiction.

Theorem 3.2. In every dominance monotone set, the graph with the lowest number of edges has maximum
degree less than or equal to 1.

Proof: Let F be a dominance monotone set. If all graphs in F with the lowest number of edges have
maximum degree greater than 1, then for such a graph F , the pair (d(F ), 12|E(F )|) is a counterexample
pair, since no element of F is induced in a realization of 12|E(F )|, which is a contradiction.

Corollary 3.3. If F is a dominance monotone set, then F contains either a graph with a dominating
vertex or a (|V (F )| − 2)-regular graph F ; in the latter case F has an even number of vertices.

Proof: Let F be a dominance monotone set in which no graph has a dominating vertex. By Theorem 3.1,
F is also a dominance monotone set. By Theorem 3.2, there exists a graph in F with maximum degree
at most 1. The complement of this graph is in F ; call it F . Thus, any vertex degree d of F satisfies
d ≥ |V (F )| − 1− 1. Since F has no dominating vertex, we also have d ≤ ∆(F ) ≤ |V (F )| − 2; thus F
is (|V (F )| − 2)-regular. Since the sum of degrees in a graph is always even, |V (F )| must be even.

Recall from Section 1 that the threshold sequences are the maximal elements of a dominance order, and
that their realizations are precisely the {2K2, C4, P4}-free graphs.

Proposition 3.4. If, for every F ∈ {2K2, C4, P4}, F contains an induced subgraph of F , then F is
dominance monotone.
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Proof: Assume that each of 2K2, C4, P4 has an induced subgraph belonging to F . Every forcibly F-
free sequence is then a threshold sequence and is not majorized by any other degree sequence. Thus no
counterexample pair exists for F , and F is dominance monotone.

We can now characterize the dominance monotone sets with size 1.

Theorem 3.5. The dominance monotone sets of cardinality 1 are {K1}, {2K1}, and {K2}.

Proof: By Proposition 3.4, {K1}, {K2}, {2K1} are all dominance monotone sets. Let F = {F} be a
dominance monotone set. By Theorem 3.2, ∆(F ) ≤ 1. If F has a dominating vertex then F equals K1 or
K2; otherwise, by Corollary 3.3, F is (|V (F )| − 2)-regular. This implies that |V (F )| − 2 ≤ 1, and since
F has an even number of vertices, F must be 2K1.

4 Dominance monotone pairs
Because graphs with maximum degree at most 1 are necessary elements in dominance monotone sets, by
Theorem 3.2, we begin this section by establishing a result related to them.

Lemma 4.1. Let a, b ≥ 0 with b ≥ 3 if a = 0 and b ≥ 1 if a = 1. If F is a dominance monotone set
containing aK2 + bK1, then F contains an induced subgraph of a disjoint union of cycles having at most
3a+ 2b− 1 vertices.

Proof: Assume that a, b ≥ 0 with b ≥ 3 if a = 0 and b ≥ 1 if a = 1. Assume also that F is a
dominance monotone set containing aK2 + bK1. Consider the degree sequences d = 3123a+2b−311 and
e = 23a+2b−1 and note that d majorizes e. We claim that the degree sequence d is not forcibly F-free. If
a = 0, one realization is the graph obtained by adding the edge v1v2b−2 in a path v1v2 · · · v2b−1; deleting
v2i for all 1 ≤ i ≤ b − 1 leaves bK1 as an induced subgraph. If a ≥ 1, one realization is the graph
obtained by adding the edge v1v3 to the path v1v2 · · · v3a+2b−1; deleting v3i for all 1 ≤ i ≤ a and v3a+2j

for 1 ≤ j ≤ b− 1 (when these vertices exist) leaves aK2 + bK1 as an induced subgraph.
Every realization of the degree sequence e is a disjoint union of cycles. Note that if aK2 + bK1 were

induced in a disjoint union of cycles on 3a+2b−1 vertices, we could arrive at such a subgraph by deleting
a+ b−1 vertices; howevever, deleting a+ b−1 vertices from a disjoint union of cycles leaves an induced
subgraph with at most a+ b− 1 components.

Hence e is forcibly aK2 +bK1-free. Since d � e and F is a dominance monotone set, some element of
F must be an induced subgraph of some disjoint union of cycles having at most 3a+ 2b− 1 vertices.

We now characterize the dominance monotone sets of cardinality 2, as follows.

Theorem 4.2. A set F of two graphs is dominance monotone if and only if one of the following is true:

(i) F contains one of K1, 2K1, or K2;

(ii) F is one of {K2 +K1, P3}, {K2 +K1, C4}, or {2K2, P3}.

Proof: Sufficiency of the conditions (i) and (ii) follows from Proposition 3.4. We now prove their neces-
sity.

To begin, we show that the only dominance monotone pairs containing P3 or K2 + K1 are the ones
indicated, as follows: If F = {P3, B} is dominance monotone, then since (211, 1111) should not be
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a counterexample pair, B must be induced in 2K2; every such graph B yields one of the pairs from
Theorem 4.2. If instead the dominance monotone set is {K2 + K1, B}, then for (3221, 2222) to not be
a counterexample pair, B must be induced in C4; every possibility for B yields a set from the theorem
statement.

Suppose now that F = {A,B} is a dominance monotone set in which A and B each have at least
3 vertices. Further assume that neither A nor B is an induced subgraph of the other; otherwise, if A
is induced in B, the F-free graphs are precisely the A-free graphs, and Theorem 3.5 implies that F is
dominance monotone if and only if the condition (i) holds.

By Theorem 3.2, we may assume without loss of generality that ∆(A) ≤ 1. Hence A has the form
aK2 + bK1 for some nonnegative a and b. Since A has at least three vertices, if a = 0 then b ≥ 3, and if
a = 1 then b ≥ 1.

Recall from Corollary 3.3 that some element of F either has a dominating vertex or is regular with
degree its order minus 2. This element cannot be A; otherwise, as in the proof of Theorem 3.5, A would
have two or fewer vertices, contrary to our assumption. Hence B is the element of F with this property.
Lemma 4.1 implies that B must also be induced in a disjoint union of cycles; thus ∆(B) ≤ 2. These
several requirements onB imply that it is one of P3,K3, orC4. The caseB = P3 was handled previously.
If B is K3 or C4, then (222, 2211) or (32221, 25), respectively, is a counterexample pair.

5 Dominance monotone triples
In this section we characterize the dominance monotone sets of cardinality 3. In the following, the dia-
mond is the graph K4 − e for an edge e.

Theorem 5.1. A set F of three graphs is dominance monotone if and only if one of the following is true:

(i) F contains a dominance monotone singleton or pair;

(ii) F is one of {2K2, P4,diamond}, {K2 + 2K1, P4, C4}, {2K2, P4, C4}, {2K2, C4, C5}.

The proof will occupy the remainder of this section. We first show the sufficiency of the conditions (i)
and (ii). Condition (i) and F = {2K2, P4, C4} both imply that F is dominance monotone by Proposi-
tion 3.4. That {2K2, C4, C5} is dominance monotone was shown by Merris [12].

Proposition 5.2. The triples {2K2, P4,diamond} and {K2 + 2K1, P4, C4} are dominance monotone.

Proof: Since each of the two sets contains complements of the other set’s graphs, by Theorem 3.1 it
suffices to show that F = {K2 + 2K1, P4, C4} is a dominance monotone set.

Assume that d � e and e is forciblyF-free. If e is also forcibly 2K2-free, then e is a threshold sequence,
and it is vacuously true that d is forcibly F-free. Suppose instead that e is not forcibly 2K2-free.

We claim that any graph that is F-free and contains 2K2 as an induced subgraph may have its vertices
partitioned into two cliques and a set containing only dominating vertices. Indeed, consider such a graph
G, and suppose that the edges of some induced subgraph isomorphic to 2K2 are pq and rs.

Partition V (G) as {p, q}∪N({p, q})∪R, whereN({p, q}) denotes the set of vertices in V (G)\{p, q}
that are adjacent to at least one of p, q, and R consists of vertices adjacent to neither of {p, q}. Then
R must be a clique. To see that, suppose there exist non-adjacent vertices x, y ∈ R. Then {p, q, x, y}
induces K2 + 2K1. Now, if N({p, q}) is empty, then the result holds. Therefore, we may assume that
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N({p, q}) is not empty. We claim that each vertex of N({p, q}) is adjacent to all vertices in R. Suppose
that this is not the case. That is, there exists w ∈ N({p, q}) that is not adjacent to all vertices in R. If w
has two distinct non-neighbors z, v in R, then either {z, v, w, p} or {z, v, w, q} induces K2 + 2K1. Thus,
any vertex w in N({p, q}) is adjacent to all vertices but possibly one vertex in R. If w is not adjacent to
all vertices in R, then denote the non-neighbor of w in R by t. Since w has at most one non-neighbor, w
must be adjacent to either r or s; without loss of generality, suppose it is r. Hence t 6= r, and then either
{t, r, w, p} or {t, r, w, q} induces a P4. This contradiction shows that each vertex inN({p, q}) is adjacent
to all vertices in R.

To finish our proof that G may have its vertices partitioned into two cliques and a set containing dom-
inating vertices, it suffices to show that N({p, q}) is a clique and that each vertex in N({p, q}) to both
p, q. Suppose that u,w in N({p, q}) are not adjacent. If u,w have a common neighbor in {p, q}, then
that neighbor and a common neighbor from R, form an induced C4 with u,w. Otherwise, u and w have
distinct neighbors in {p, q}, and the subgraph induced by {p, q, u, w} is P4, a contradiction.

Lastly, we show that each vertex in N({p, q}) is adjacent to both p and q. If not, then without loss of
generality, there is a vertex w in N({p, q}) that is adjacent to p but not to q. The subgraph induced by the
set {r, w, p, q} is then P4, which is a contradiction.

Now suppose that G is a realization of the forcibly {K2 + 2K1, P4, C4}-free sequence e. We show
that R = {r, s}. If R contains an additional vertex x, then deleting the edges pq and rs and adding
the edges pr and qs yields another realization of e in which the vertices q, r, s, x induce a copy of P4, a
contradiction, since e was assumed to be forcibly {K2 + 2K1, P4, C4}-free.

Hence e has the general form e = (k + 3)k(k + 1)4 where k is a nonnegative integer. Note that the
first k terms of e correspond to dominating vertices in G and hence are maximal for the length of this
degree sequence. Thus, if d � e, then d can only differ from e in the last four terms. It follows from
Muirhead’s Lemma and inspection that d is the threshold sequence (k + 3)k(k + 2)1(k + 1)2k1, which
has a unique realization obtained when k dominating vertices are added to P3 +K1. This graph is F-free,
so {K2 + 2K1, P4, C4} is dominance monotone.

We now prove the necessity of Conditions (i) and (ii) in Theorem 5.1. Suppose that F = {A,B,C} is
a dominance monotone set.

If C contains A or B as an induced subgraph, then the F-free graphs are precisely the {A,B}-free
graphs, and {A,B} is a dominance monotone pair (possibly containing a dominance monotone singleton),
as in (i). Assume henceforth that none of A,B,C is an induced subgraph of another; the order of each of
A,B,C is then at least 3.

By Theorem 3.2, we assume without loss of generality that A = aK2 + bK1 for some integers a, b. By
Corollary 3.3, F contains either a graph with a dominating vertex or a graph that is regular of degree 2 less
than its order. As in the previous section we conclude that this graph is not A; without loss of generality
we assume it is B.

By Lemma 4.1, F contains an induced subgraph of a disjoint union of cycles on at most 3a + 2b − 1
vertices; we saw there that such a graph cannot contain aK2 + bK1 as an induced subgraph. Hence either
B or C is an induced subgraph of a disjoint union of cycles.

If B is induced in a disjoint union of cycles, then ∆(B) ≤ 2. Because |V (B)| ≥ 3 and B has a
dominating vertex or is (|V (B)|−2)-regular,B must be P3 orK3 orC4. We will handle these possibilities
now, along with a few other cases that will be useful in the future.
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Lemma 5.3. Every dominance monotone triple containing P3 or K3 or K2 +K1 contains a dominance
monotone singleton or pair. Every dominance monotone triple containingC4 either contains a dominance
monotone singleton or pair or is one of {K2 + 2K1, P4, C4}, {2K2, P4, C4}, {2K2, C4, C5}. Every
dominance monotone triple containing 2K2 and P4 either contains a dominance monotone singleton or
pair or is {2K2, P4, C4} or {2K2, P4,diamond}.

Proof: Let F = {A,B,C} be an arbitrary dominance monotone set. By Theorem 3.2 we may assume
that A = aK2 + bK1 for nonnegative integers.

If B = P3, then since (211, 1111) is not a counterexample pair, either A or C must be induced in 2K2.
By Theorem 4.2 this graph and B then form a dominance monotone pair.

If A = K2 +K1, then since (3221, 2222) is not a counterexample pair, either B or C must be induced
in C4. By Theorem 4.2 this graph and A then form a dominance monotone pair.

If B = K3, then since (3221, 2222) is not a counterexample pair, either A or C is an induced subgraph
of C4. By Theorem 4.2 the set F will contain a dominance monotone singleton or pair unless C = C4.
With C = C4, since (32221, 25) is not a counterexample pair, F contains an induced subgraph of C5,
which must be A. Since A has at least three vertices, we conclude that A = K2 + K1; then F contains
the dominance monotone pair {K2 +K1, C4}.

If B = C4, then since (32221, 25) is not a counterexample pair, F contains an induced subgraph of C5.
If A is this subgraph, then either A has fewer than three vertices (in which case F contains a dominance
monotone singleton, satisfying our claim), or A = K2 + K1, which was discussed previously. Assume
that C is induced in C5. The cases where C is P3 or K2 + K1 or a graph with fewer than three vertices
lead toF containing a dominance monotone singleton or pair, so we may assume thatC = P4 orC = C5.

IfB = C4 and C = C5, then since (2222, 22211) is not a counterexample pair for F , the graphAmust
be induced inK2+K3 or P5 and hence is induced in 2K2. IfA isK2+K1 or has fewer than three vertices,
then F contains a dominance monotone singleton or pair. Otherwise,A = 2K2, and F = {2K2, C4, C5}.

IfB = C4 andC = P4, then since (2211, 21111) is not a counterexample pair,A is induced in P3+K2.
If A has three or fewer vertices or is K2 +K1, then F contains a dominance monotone singleton or pair;
otherwise, A is one of 3K1, 2K2,K2 + 2K1. If A = 3K1, we have (43221, 42222) as a counterexample
pair, a contradiction. When A = 2K2 we have F = {2K2, P4, C4}, and when A = K2 + 2K1, we have
F = {K2 + 2K1, P4, C4}.

If A = 2K2 and C = P4, then consider the pair (d, e), where d = 43322 (the degree sequence of
K1 ∨ P4) and e = 33332, which has a unique realization that is obtained by subdividing an edge of
K4. Observe that the realization of e contains no induced 2K2 or P4. Since F is dominance monotone,
B must be induced in the unique realization of 33332. Since B either is (|V (B)| − 2)-regular or has a
dominating vertex, we see that either B is C4 or B is P3 (which was discussed above) or K1∨ (K2 +K1)
or the diamond graph. The possibility B = K1 ∨ (K2 + K1) is eliminated by the counterexample pair
(3221, 2222), so we conclude that F is either {2K2, C4, P4} or {2K2, P4,diamond}.

Assume henceforth that the dominance monotone triple F contains none of P3, K2 + K1, K3, or C4,
and that it does not contain the pair {2K2, P4} as a subset. Having determined the dominance monotone
triples where ∆(B) ≤ 2, we will assume in the remainder of the proof that ∆(B) ≥ 3 and that C is
induced in a disjoint union of cycles on at most 3a+ 2b− 1 vertices.

To help further restrict our search for dominance monotone triples, we present some further require-
ments for the set F .



10 Michael D. Barrus, Jean A. Guillaume

a b− 2 a− 1 b− 1

Fig. 2: The two realizations of (b+ 2a− 1)122a+11b−1.

R1 R3
R2

Fig. 3: All possible realizations of ε = (2a − 1)13122a−1. In realizations R1 and R2, a − 2 triangles are attached
to a vertex of degree 3 in a realization of 33222. In realization R3, a − 3 triangles and a single C4 are attached to a
dominating vertex in the diamond.

Lemma 5.4. If F is a dominance monotone set containing aK2 + bK1 or K1 ∨ (aK2 + bK1) for b ≥ 1
(and b ≥ 3 if a = 0), then F contains an induced subgraph of a graph obtained by subdividing one edge
of K1 ∨ (aK2 + (b− 1)K1); any such induced subgraph is {aK2 + bK1}-free.

Proof: Consider the degree sequences d = (b + 2a)122a1b and e = (b + 2a − 1)122a+11b−1. Clearly d
majorizes e. Observe that the unique realization of d is a graph isomorphic to K1 ∨ (aK2 + bK1).

We show that e has at most two realizations. In any realization G of e, a vertex of maximum degree
has one non-neighbor. If this non-neighbor has degree 1 (which can only happen if b ≥ 2), then deleting a
vertex of maximum degree yields a graph with degree sequence 12a+20b−2, which has a unique realization
in (a+ 1)K2 + (b− 2)K1. Thus, G is the graph obtained from K1 ∨ (aK2 + (b− 1)K1) by subdividing
a pendant edge, as in the graph on the left in Figure 2.

If G is a realization of e in which a vertex v of maximum degree has a non-neighbor with degree 2
(which can only happen if a ≥ 1, since the degree-2 vertex cannot have neighbors among the vertices of
degree 1), then deleting v yields a graph with degree sequence 2112a0b−1, which has a unique realization
in P3+(a−1)K2+(b−1)K1. ThusG is the graph obtained fromK1∨(aK2+(b−1)K1) by subdividing
an edge of a triangle, as in the graph on the right in Figure 2.

Inspection shows that neither realization of e contains aK2 + bK1 as an induced subgraph, so e is
forcibly {aK2 + bK1}-free. Since d � e and F is dominance monotone, B must be induced in one of the
graphs in Figure 2.

Lemma 5.5. IfF is a dominance monotone set containing aK2 orK1∨aK2, thenF contains an induced
subgraph of at least one of the realizations of ε = (2a − 1)13122a−1 (see Figure 3); any such induced
subgraph is {aK2}-free.

If H is a graph that is induced in one of the realizations of ε and H has a dominating vertex, then H is
one of the following:
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• K1 ∨ (pK2 + qK1), where p ≤ a− 1 (and p = a− 1 only if q ≤ 1), and p+ q ≤ a+ 1;

• K1 ∨ (P3 + pK2 + qK1), where p ≤ a− 3 and p+ q ≤ a− 1 (this possibility only arises if a ≥ 3).

If H is an induced subgraph of a realization of ε with ∆(H) ≤ 2, then it satisfies the following:

• if ∆(H) ≤ 1, thenH = sK2+tK1, where s ≤ a−1 (and s = a−1 only if t ≤ 1) and s+t ≤ a+1.

• if ∆(H) = 2, then H is one of the following:

– K3 or C4;

– P4 + cK2 + dK1, where c+ d ≤ a− 2;

– P3 + cK2 + dK1 where c+ d ≤ a− 1 (where c+ d = a− 1 only if a ≥ 3);

– 2P3 + cK2 + dK1 where c+ d ≤ a− 3 (this possibility only arises if a ≥ 3).

Proof: Given that F contains aK2 or K1 ∨ aK2, consider the pair ((2a)122a, ε). Clearly, d1 � ε, and
d1 is not forcibly F-free, since its unique realization is the graph K1 ∨ aK2. Since F is dominance
monotone, this pair of degree sequences is not a counterexample pair, so F contains an induced subgraph
of a realization of ε.

To see that the induced subgraph is not aK2 or K1 ∨ aK2 when a ≥ 2, it suffices to realize that the
maximum degree vertex in a realization of ε cannot belong to an induced copy of aK2, for it is adjacent to
all but one vertex. Thus an induced copy of aK2 must contain all the other vertices, which is impossible
since the degree-3 vertex is adjacent to at least two vertices of degree 2.

In any realization G of ε the vertex u of maximum degree is adjacent to all but one vertex v of G. If v
has degree 2 in G, then the graph G − u has degree sequence 2212a−2 and hence is isomorphic to either
P4 + (a − 2)K2 or 2P3 + (a − 3)K2, and the graph G is of the type shown in realizations R1 or R3 in
Figure 3. If instead v has degree 3 in G, then the degree sequence of G− u is 3112a−1 and hence G− u
is K1,3 + (a− 2)K2, leading G to be of the form shown in R2 in Figure 3.

Inspection of the realizations of ε yields the possibilities for H if H is induced in a realization of ε and
has a dominating vertex or has maximum degree at most 2.

With these conditions on F established, we organize the rest of the proof of the necessity of (i) and (ii)
in Theorem 5.1 by recalling that B has a dominating vertex or is (|V (B)| − 2)-regular. We will handle
the two possibilities for the structure of B in separate subsections.

5.1 Case: B has a dominating vertex
We begin with two helpful lemmas on dominance monotone sets containing graphs of certain types.

Lemma 5.6. If F is a dominance monotone set containing P4, then F contains an induced subgraph of
the graph obtained by subdividing an edge of K6.

Proof: Since F is dominance monotone, the degree sequences (61544121, 5621) do not form a coun-
terexample pair; note that a realization of 61544121 is obtained by adding a dominating vertex to 443111,
which has a realization inducing P4 as shown in Figure 4, and the unique realization of 5621 is obtained
by subdividing an edge of K6.
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Fig. 4: The unique realizations of 443111 and 5621.

Lemma 5.7. LetF be a dominance monotone set containing P3+pK2+qK1 orK1∨(P3+pK2+qK1).
If F containsK1∨P3 (i.e., if q = p = 0), then F contain an induced subgraph of C5. If q = 0 and p ≥ 1,
then F must contain an induced subgraph H of at least one of the realizations of e2 = (2p+ 2)14122p+2

in Figure 5. If q ≥ 1 then F must contain an induced subgraph of K1 ∨ ((p+ 2)K2 + (q − 1)K1).
If p + q ≥ 1, then the induced subgraphs described are {P3 + pK2 + qK1}-free. Moreover, if q = 0

and p ≥ 1, then H satisfies the following:

• if ∆(H) ≤ 1, then H = sK2 + tK1, where s ≤ p and s+ t ≤ p+ 3.

• if ∆(H) = 2, then H is one of the following.

– K3, C4, or P4;

– P3 + sK2 + tK1 for some s, t such that s ≤ p− 1 and s+ t ≤ p+ 1;

– 2P3 + sK2 + tK1 for some s, t such that s+ t ≤ p− 2.

Proof: When q = p = 0, the set F contains K1 ∨ P3, since F does not contain P3. Since (3322, 22222)
is not a counterexample pair, F must contain an induced subgraph of C5.

When q 6= 0, it suffices to realize that (d, e1) is not a counterexample pair, where d = (2p + q +
3)13122p+21q (the degree sequence of K1 ∨ P3 + pK2 + qK1) and e1 = (2p + q + 3)122p+41q−1 (the
degree sequence of K1 ∨ ((p+ 2)K2 + (q − 1)K1).

When q = 0 and p ≥ 1, consider the pair (d, e2) where d is as above and e2 = (2p+ 2)14122p+2; since
this is not a counterexample pair, F contains an induced subgraph of a realization of e2. We determine the
realizations of e2 as follows. Let H be a realization of e2. Let u and v be the vertices of maximum degree
and degree 4, respectively. Observe that u is adjacent to all but one of the other vertices in H . If u is not
adjacent to v, then H −u has degree sequence 4112p+2, which is uniquely realized by K1,4 + (p− 1)K2,
and H therefore has the form shown in the first graph in Figure 5. If u is adjacent to v, then H − u
has degree sequence 312112p+1, which has realizations T + (p − 1)K2, where T is the tree obtained by
attaching two pendant vertices to an endpoint of P3, and K1,3 + P3 + (p− 2)K2 (which is possible only
if p ≥ 2). In these cases the graph H has a form shown in the second and third graphs, respectively, in
Figure 5.

That the realizations of e1 and of e2 are all {P3 + pK2 + qK1}-free when p + q ≥ 1 can be easily
verified by inspection. Inspection also confirms the stated conditions on H when ∆(H) ≤ 2.
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v
v

uu
u

v

b− 1 b− 1
b− 2

R1 R2 R3

Fig. 5: All possible realizations of e2 = (2p+ 2)14122p+2.

With our preliminary lemmas established, recall that A = aK2 + bK1, that B has a dominating vertex,
and that C is induced in a disjoint union of cycles on at most 3a+2b−1 vertices. We proceed by subcases
on the number of isolated vertices in A.

5.1.1 Subcase 1: b = 0.
Here A = aK2, where a ≥ 2 by our assumption that A has at least three vertices, and C is induced in a
disjoint union of cycles on at most 3a− 1 vertices. By Lemma 5.5, F contains an induced subgraph in at
least one of the realizations of ε = (2a − 1)13122a−1, and this graph is not A. Therefore, either B or C
is induced in at least one realization of ε.

Suppose first that B is induced in at least one realization of ε. By Lemma 5.5 B is equal to either
K1 ∨ (pK2 + qK1) or K1 ∨ (P3 + pK2 + qK1), where p+ q is bounded according to the values of p and
q. We will consider each of these possibilities for B in turn.

Case: B = K1 ∨ pK2, where p ≤ a − 1. We may assume that p ≥ 2, since B is assumed not to be
K3. Moreover, by Lemma 5.5, F must contain an induced subgraph in at least one of the realizations
of ε′ = (2p − 1)13122p−1; each such realization is {pK2}-free and hence {A,B}-free, so C is induced
in some realization of ε′. If ∆(C) ≤ 1, then C = sK2 + tK1 for some integers s, t bounded as in
Lemma 5.5. If t = 0, then C is induced in A, contrary to our assumption, so C = sK2 + tK1 where
t ≥ 1 and s ≤ p − 1. Thus, by Lemma 5.4, F must contain an induced subgraph of a graph obtained by
subdividing one edge of K1 ∨ (sK2 + (t− 1)K1), but none of A, B, or C is such an induced subgraph, a
contradiction.

If ∆(C) = 2, Lemma 5.5 lists all graphs that C can be. Our assumptions exclude the possibilities of
C being one K3 or C4. If C = P4 + s′K2 + t′K1, where s′ + t′ ≤ p− 2, consider the pairs (d, e1) and
(d, e2), where

d = (2s′ + t′ + 4)13222s
′+21t

′
,

e1 = (2s′ + 3)1413122s
′+2,

e2 = (2s′ + t′ + 3)13222s
′+31t

′−1.

Note that d is the degree sequence of K1 ∨ C. If t′ = 0, then e1 is forcibly {A}-free because otherwise
2a ≤ 2s′ + 5, yielding a − 2 ≤ s′ ≤ p − 2 ≤ a − 3, a contradiction. The sequence e1 is also forcibly
{B}-free since otherwise 2p + 1 ≤ 2s′ + 5 ≤ 2(p − 2) + 5, implying that B is the realization of e1,
a contradiction since B has a dominating vertex. Finally, any realization of e1 has exactly one vertex
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more than C; if s′ ≥ 1, then deleting any vertex from such a realization leaves a subgraph with maximum
degree at least 3, so e1 is forcibly {C}-free. Thus (d, e1) is a counterexample pair if t′ = 0 unless s′ = 0
and hence C = P4. In this case, the result of Lemma 5.6 requires that F contain an induced subgraph of
the graph obtained from subdividing an edge of K6. None of aK2, K1 ∨ pK2, or P4 fits this description,
which is a contradiction.

If t′ ≥ 1, then e2 is forcibly {A}-free, since otherwise

2a ≤ 2s′ + t′ + 5 < 2(s′ + t′) + 5 ≤ 2(p− 2) + 5 ≤ 2a− 1,

a contradiction. The sequence e2 is forcibly {B}-free, since otherwise

2p+ 1 ≤ 2s′ + t′ + 5 < 2(s′ + t′) + 5 ≤ 2(p− 2) + 5 = 2p+ 1,

a contradiction. The sequence e2 is forcibly {C}-free because any realization of e2 has exactly one more
vertex than C, but deleting a single vertex from such a realization cannot leave t′ isolated vertices. Thus
(d, e2) is a counterexample pair, and this contradiction concludes the possibility that C = P4 + s′K2 +
t′K1.

Suppose instead that, as in Lemma 5.5, C = P3+s′K2+t′K1, where s′+t′ ≤ p−1 and s′+t′ = p−1
only if p ≥ 3. Consider the pairs (d, e1) and (d, e2), where

d = (2s′ + t′ + 3)13122s
′+21t

′
,

e1 = (2s′ + 2)14122s
′+2,

e2 = (2s′ + t′ + 2)13122s
′+31t

′−1.

(5.1)

The arguments here proceed in much the same way as in the last paragraph, except in the following few
ways. To conclude that e1 is forcibly {A}-free we also note that if 2a ≤ 2s′+ 4, then s′ = p− 1 = a− 2,
from which it follows that A is a realization of e1, a contradiction. To conclude that e1 is forcibly {B}-
free we note that if 2p + 1 ≤ 2s′ + 4, then B can be obtained by deleting one vertex from a realization
of e1, and no such vertex deletion yields B. To conclude that e1 is forcibly {C}-free we may assume
that s + t ≥ 1, since by assumption C 6= P3. To conclude that e2 is forcibly {B}-free, we note that if
2p+ 1 ≤ 2s′ + t′ + 4, then B is a realization of e2, a contradiction.

The above contradictions imply, by Lemma 5.5, that C = 2P3 + s′K2 + t′K1, where s′ + t′ ≤ p− 3
and s′ + t′ = p− 3 only if p ≥ 3. Consider the pairs (d, e1) and (d, e2), where

d = (2s′ + t′ + 6)13222s
′+41t

′
,

e1 = (2s′ + 5)1413122s
′+4,

e2 = (2s′ + t′ + 5)13222s
′+51t

′−1.

The arguments showing that (d, e1) and (d, e2) are counterexample pairs in the cases t′ = 0 and t′ ≥ 1,
respectively, are again analogous to those in the case C = P4 + s′K2 + t′K1 above. We omit the details
and conclude that this possibility for C also ends in contradiction.

Case: B = K1 ∨ (pK2 + qK1), where p ≤ a − 1 (and p = a − 1 only if q ≤ 1) and p + q ≤ a + 1.
By the previous case, we may assume that q ≥ 1, and since B is not P3, we assume that q ≥ 3 if p = 0.
Then by Lemma 5.4, either A or C must also be an induced subgraph of a graph obtained by subdividing
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an edge of K1 ∨ (pK2 + (q − 1)K1). Since A is not an induced subgraph, C is, besides being induced
in the disjoint union of cycles having at most 3a − 1 vertices. If ∆(C) ≤ 1, then C = sK2 + tK1 for
some s, t such that s ≤ p + 1 ≤ a and s + t ≤ p + q ≤ a + 1. If t = 0 then C is induced in A, and if
s = 0 then C is induced in B, contrary to our assumption, so we see that s, t 6= 0 and t ≥ 2 when s = 1
since C has at least 3 vertices and is not K2 + K1. Thus, by Lemma 5.4, F must contain an induced
subgraph of a graph obtained by subdividing an edge of K1 ∨ (sK2 + (t − 1)K1), but such a graph is
{A,B,C}-free, a contradiction. If ∆(C) = 2, then since C is not P3 or K3 or C4, we see that C is either
K3 +K1 or P4 or P3 + s′K2 + t′K1 where s′ + t′ ≥ 1. For C = K3 +K1, we find that (3231, 25) is a
counterexample pair, a contradiction. When C = P4, we find that (61544121, 5621) is a counterexample
pair, a contradiction. For C = P3 + s′K2 + t′K1, the degree sequences in (5.1) form counterexample
pairs for analogous reasons.

Case: B = K1 ∨ (P3 + pK2 + qK1), where p ≤ a− 3 and p+ q ≤ a− 1. As in Lemma 5.5, this case
requires that a ≥ 3.

Assume now that p or q is nonzero. By Lemma 5.7, F contains an induced subgraph of K1 ∨ ((p +
2)K2 + (q − 1)K1) if q 6= 0, or an induced subgraph of a realization of (2p + 2)14122p+2 if q = 0.
Neither A nor B can satisfy these requirements, so C is the desired induced subgraph, and Lemma 5.7
implies that C is P4 or sK2 + tK1 or P3 + sK2 + tK1 or 2P3 + sK2 + tK1 for suitable s, t.

If C = P4, then the pair (2211, 21111) is a counterexample pair, a contradiction.
IfC = sK2+tK1 (where Lemma 5.7 tells us s ≤ p+2), then Lemmas 5.4 and 5.5 imply thatF contains

an {C}-free graph H whose largest induced matching has size at most s + 1. Since s ≤ p + 2 ≤ a − 1,
the graph H does not contain A as an induced subgraph. Since B contains the diamond as an induced
subgraph, H is {B}-free as well unless H is contained in a graph of the form R3 in Figure 3 having at
most s− 3 triangles, forcing p ≤ s− 3 ≤ p− 1, a contradiction.

If C = P3 +sK2 +tK1 (where Lemma 5.7 tells us s ≤ p−1), then Lemma 5.7 implies that F contains
a {C}-free graphH that is induced inK1∨((s+2)K2+(t−1)K1) or in a realization of (2s+2)14122s+2.
Since all such graphs have largest induced matchings of order at most s+ 2, and s+ 2 ≤ p+ 1 ≤ a− 2,
the graph H is {A}-free. Since F is dominance monotone, H must contain B an induced subgraph. Now
K1 ∨ ((s + 2)K2 + (t − 1)K1) contains no induced K1 ∨ P3, as B does, so B must be induced in a
realization of (2s + 2)14122s+2. Note that only the realizations R2 and R3 in Figure 5 contain K1 ∨ P3

as an induced subgraph. Assume that p + q ≥ 1. The unique vertex of B with degree at least 4 must
be the vertex u of maximum degree in R2 or R3, and the unique vertex of degree 3 in B is the vertex of
second-highest degree in R2 or R3. In either realization, the remaining vertices adjacent to u do not yield
pK2 + qK1 as an induced subgraph, a contradiction, since B is induced in H .

If C = 2P3 + sK2 + tK1, (where Lemma 5.7 tells us s + t ≤ p − 2), then for t 6= 0 we claim
that F must contain a {C}-free graph H that is induced in K1 ∨ (P3 + (s + 2)K2 + (t − 1)K1); for
otherwise (d, e) would be a counterexample pair, where d = (2s+ t+6)13222s+41t (the degree sequence
of K1 ∨ (2P3 + 2K2 + tK1)) and e = (2s + t + 6)13122s+61t−1, since the unique realization of e is
K1 ∨ (P3 + (s+ 2)K2 + (t− 1)K1), which contains only one induced P3. It is not hard to see that in this
graph the largest induced matching has order at most s + 3 ≤ p ≤ a − 3, so this graph is also {A}-free
and hence must contain B as an induced subgraph, since F is dominance monotone. However, since the
realization contains exactly one diamond, this leaves only s+ t+ 1 ≤ p− 1 vertices to obtain an induced
pK2 + qK1, which is not possible, a contradiction. If t = 0, then F must contain a {C}-free graph H ′

that is induced in P3 + (s+ 2)K2, the unique realization of e′ = 212s+6, for otherwise (d′, e′) would be
a counterexample pair, where d′ = 2212s+4, since the realization of e′ contains only one P3. The largest



16 Michael D. Barrus, Jean A. Guillaume

induced matching in P3 + (s + 2)K2 is at most s + 3 ≤ p + 1 ≤ a − 2. Thus A is not induced in any
realization of e′ and since B has maximum degree at least 3, B is not induced either, a contradiction.

The contradictions above show that B is not induced in any realization of ε, so C must be instead.
Recall that ∆(C) ≤ 2.

If ∆(C) ≤ 1, then C = sK2 + tK1 and by Lemma 5.5, s + t ≤ a + 1, and s ≤ a − 2 if t > 1;
otherwise s ≤ a − 1. If t = 0, then C is induced in A contrary to our assumption, so C = sK2 + tK1

where t ≥ 1 and t ≥ 3 when s = 0. If both s and t are equal 1, then Lemma 5.3 applies, and F contains
a dominance monotone singleton or pair. In any other case, by Lemma 5.4 F must contain a {C}-free
induced subgraphH of a graph obtained by subdividing one edge ofK1∨(sK2+(t−1)K1). A maximum
induced matching in H has at most s edges if t = 1 and s+ 1 edges if t > 1. Since s ≤ a− 1, the graph
A is not induced in H . Then B is induced in H , and since B is assumed not to be P3 or K3, we have
B = K1 ∨ (s′K2 + t′K1) for s′, t′ such that s′ ≤ s and s′ + t′ ≤ s + t. If t′ = 0, then Lemma 5.5
shows that F contains a {B}-free graph J that is induced in a realization of ε′ = (2s′ − 1)13122s

′−1. A
maximum induced matching in J has size at most s′− 1 < s < a, so J is {A,C}-free, a contradiction. If
t′ 6= 0, by Lemma 5.4 F contains a {B}-free graph J ′ that is induced in a graph obtained by subdividing
an edge of a realization of K1 ∨ (s′K2 + (t′ − 1)K1). Again J ′ is {A,C}-free, another contradiction.

If ∆(C) = 2, then by Lemma 5.5 the graphC is P3+sK2+tK1 or 2P3+sK2+tK1 or P4+sK2+tK1

for suitably bounded values of s, t.
If C = P3 + sK2 + tK1 then s ≤ a − 2 and s + t ≤ a − 1. Consider the pair (d, e), where

d = 3123s+2t+111 and e = 23s+2t+3. Since (d, e) is not a counterexample pair, F must contain an
induced subgraph of one of the realizations of e, since d has a realization inducing C, namely the graph
obtained by adding edge v1v4 to the path v1v2 · · · , v3s+2t+3. Every realization of e is {A}-free, since
otherwise 3(s+ t+ 1) ≤ 3a ≤ 3s+ 2t+ 3, which is a contradiction. Realizations of e are also {B}-free
since ∆(B) ≥ 3. Finally, deleting s+t vertices from a realization of e leaves at most s+t−1 components,
so the realization is also {C}-free, a contradiction.

If C = 2P3 + sK2 + tK1, then s ≤ a− 3 and s+ t ≤ a− 3. In arguments similar to those of the last
paragraph, the set F must contain an induced subgraph of one of the realizations of e = 23s+2t+7, but all
such realizations are F-free, a contradiction.

Hence C = P4 +sK2 + tK1 where s ≤ a−2 and s+ t ≤ a−2. If both s and t are 0, then C = P4 and
F must have an induced subgraph of P3 +K2 (otherwise (2211, 21111) is a counterexample pair). Since
∆(B) ≥ 3, the induced subgraph is A. By our previous assumptions on A we conclude that A = 2K2,
and by Lemma 5.3 we find F = {2K2, P4,diamond}. Otherwise, s + t ≥ 1. Thus F must contain an
induced subgraph of one of the realizations of e = 23s+2t+4 and we arrive at a contradiction as before in
the argument for the case C = P3 + sK2 + tK1.

5.1.2 Subcase 2: b ≥ 1.
Since A has at least three vertices, and A is not K2 +K1, assume that a ≥ 2 if b = 1 and a ≥ 1 if b = 2.

By Lemma 5.4, F must contain an induced subgraph of a graph obtained by subdividing an edge of
K1 ∨ (aK2 + (b− 1)K1).

If B is induced in an edge-subdivided K1 ∨ (aK2 + (b − 1)K1), then B = K1 ∨ (pK2 + qK1) for
integers p, q such that p ≤ a and p+ q ≤ a+ b− 1. By Lemma 5.4, F contains an induced subgraph H
of a graph obtained by subdividing an edge of K1 ∨ (pK2 + (q− 1)K1). This subgraph of H must be C.
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Hence C is induced in both the disjoint union of cycles having at most 3a + 2b − 1 vertices and a graph
obtained by subdividing an edge of K1 ∨ (pK2 + (q − 1)K1) where p ≤ a and p+ q ≤ a+ b− 1.

If ∆(C) ≤ 1, then C = sK2 + tK1 for some s, t such that s ≤ p and s + t ≤ p + q. If t = 0
then C is induced in A, contrary to our assumption. A similar contradiction occurs if s = 0. We assume
that s, t 6= 0 (and as before, that C is not K2 + K1). By Lemma 5.4, F contains an induced subgraph
H ′ of a graph obtained by subdividing an edge of K1 ∨ (sK2 + (t − 1)K1), where s ≤ p ≤ a and
s + t ≤ p + q − 1 ≤ a + b − 2. However, A is not induced in any realization of S′ and neither is B, a
contradiction.

If ∆(C) = 2, the graphC contains vertex u of maximum degree inH . SinceC is not P3,K3, orC4, we
have C = P4. Since (2211, 21111) is not a counterexample pair, A = 3K1 or A = K2 + 2K1. However,
whenA is 3K1 orK2+2K1 we have respectively (43221, 42222) and (43322, 33332) as counterexample
pairs, another contradiction.

If B is not induced in an edge-subdivided K1 ∨ (aK2 + (b − 1)K1), then C must be, in addition
to being induced in a disjoint union of cycles having at most 3a + 2b − 1 vertices. We again arrive at
a contradiction using exactly the same argument as above when C was induced in an edge-subdivided
K1 ∨ (pK2 + (q − 1)K1).

5.2 Case: No graph in F has a dominating vertex
Recall that A = aK2 + bK1, where a, b ≥ 0, and that ∆(C) ≤ 2. By Corollary 3.3, since B has no
dominating vertex, it is (|V (B)| − 2)-regular and |B| is even. If |V (B)| = 4 then B is C4, contrary to a
previous assumption, so assume that |V (B)| ≥ 6 and hence δ(B) ≥ 4.

Since no graph in F has a dominating vertex, Theorem 3.1 implies that F = {A,B,C} is dominance
monotone. If b ≥ 1, then A has a dominating vertex, so the set F was found in the previous subsection.
Assuming that F contains no dominance monotone singleton or pair, we conclude that F is equal to
{2K2, P4,diamond} and hence F = {K2 + 2K1, C4, P4}. Suppose henceforth that b = 0, i.e., that
A = aK2 for some a ≥ 2.

By Lemma 5.5, F contains an induced subgraph of at least one of the realizations of ε = (2a −
1)13122a−1, and this induced subgraph is not A. Since δ(B) ≥ 4, neither is B induced in a realization of
ε, and hence C must be. We proceed by considering the cases ∆(C) ≤ 1 and ∆(C) = 2.

The statement ∆(C) ≤ 1 implies that C = sK2 + tK1, where s ≤ a− 1 (with equality only if t = 0)
and s + t ≤ a + 1 by Lemma 5.5. Since we assumed that C is not induced in A, we have t 6= 0. Then
Theorem 3.1 implies that F is dominance monotone, and F contains a graph with a dominating vertex.
Thus the set F was found in the previous subsection, where it was shown to be {2K2, P4,diamond};
however, this is a contradiction, since F was assumed to have two graphs with maximum degree at most
1.

If ∆(C) = 2, then by Lemma 5.5 we haveC is P3+sK2+tK1 or 2P3+sK2+tK1 or P4+sK2+tK1

for suitably bounded s and t. We may handle these cases using arguments very similar to those at the end
of Subsection 5.1.1, noting that though B does not have a dominating vertex, its degrees are high enough
for the arguments to work the same way.

6 Comments and questions
All of the dominance monotone sets mentioned in Section 1 are forbidden subgraph sets for subclasses
of the split graphs. The triples {2K2, P4,diamond} and {P4, C4,K2 + 2K1} from Theorem 5.1, which
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respectively do allow C4 or 2K2, show that families obtained from forbiddding a dominance monotone
set can contain non-split graphs.

We have characterized the dominance monotone sets of size at most 3. Larger dominance monotone
sets are also possible; in fact, there are infinitely many and arbitrarily large such sets.

Theorem 6.1. Let t ≥ 1. If Ft is the set of all graphs of order t, and F ′t is the set of all graphs with
exactly t edges, then Ft and F ′t are dominance monotone.

Proof: Take t ≥ 1. Assume that Ft is the set of all graphs of order t. Let d = (d1, · · · , dn), e =
(e1, · · · , ep) be two degree sequences such that d � e (terms of d and e are assumed to be positive
integers). Assume further that e is forciblyFt-free; that is no realization of e contains an induced subgraph
of order t. This implies that p < t. From Muirhead’s Lemma, we have n ≤ p < t; thus d must also be
forcibly Ft-free. Since d and e were arbitrary, we have our desired result for Ft.

Likewise, if d and e are as above and e is forcibly F ′t-free, then realizations of e have fewer than t
edges, so the sum of the terms of e is less than 2t by the Handshaking Lemma. Since d � e, the sum of
terms in d equals the same number, and so every realization of d is F ′t-free as well, establishing our result
for F ′t .

Unfortunately, though larger dominance monotone sets clearly exist, it may be difficult to extend the
approach used in this paper to families of larger cardinality without further conditions similar to Theo-
rems 3.1 and 3.2 and Corollary 3.3.

Observe that all known dominance monotone sets F have the property that F is dominance monotone,
even when F contains a dominating vertex, so we conjecture that the condition in Theorem 3.1 is not
necessary: the complements of graphs in any dominance monotone set form a dominance monotone set.
The difficulty in proving this lies in the dominance order’s degree sequences not containing any 0 terms;
it seems difficult to modify the poset to allow 0 terms without undesirable consequences.
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