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The determining number of a graph G = (V,E) is the minimum cardinality of a set S ⊆ V such that pointwise

stabilizer of S under the action of Aut(G) is trivial. In this paper, we provide some improved upper and lower bounds

on the determining number of Kneser graphs. Moreover, we provide the exact value of the determining number for

some subfamilies of Kneser graphs.
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1 Introduction

The determining number, denoted by Det(G), of a graph G = (V,E) is the minimum cardinality of a

set S ⊆ V such that the automorphism group of the graph obtained from G by fixing every vertex in S
is trivial and such a set S is called a determining set. It was introduced independently by Boutin (2006)

and (defined as fixing number) Erwin and Harary (2006) in 2006 as a measure of destroying the symmetry

of a graph. Determining sets are quite useful in investigating graph automorphisms and are even more

useful in proving that all automorphisms of a given graph have been found. The authors in (Boutin, 2006,

Proposition 2) linked the size of a determining set to the size of the automorphism group and proved that the

determining number of a graph is greater than equal to the logarithm of the cardinality of the automorphism

group. Apart from that, determining sets have also been used to find distinguishing number. For reference,

one can see (Albertson and Boutin (2007)). In that paper the authors used determining sets to show that

the Kneser graphs K(n, k) with n ≥ 6 and k ≥ 2 are 2-distinguishable graphs. Apart from proving

general bounds and other results on determining number, researchers have attempted to find exact values

of determining number of various families of graphs like Kneser Graphs (Cáceres et al. (2013)), Coprime

graphs (Pan and Guo (2019)), Generalized Petersen graphs (Das (2020)), Das and Saha (2020) etc.

1.1 Preliminaries

The agenda of finding the determining sets of Kneser graphs was initiated in the introductory paper by

Boutin (2006). The next attempt towards it was done in Cáceres et al. (2013).

The Kneser graph K(n, k) has vertices associated with the k-subsets of the n-set [n] = {1, . . . , n} and

edges connecting disjoint sets. This family of graphs is usually considered for n ≥ 2k but here we shall

assume that n > 2k since the case n = 2k gives a set of disconnected edges and its determining number is

half the number of vertices. It is known that the automorphism group of K(n, k) is isomorphic to Sn. The

following results regarding determining sets of Kneser graphs were proved in Boutin (2006) and Cáceres

et al. (2013).

Lemma 1.1. Boutin (2006) The set S = {V1, . . . , Vr} is a determining set for K(n, k) if and only if there

exists no pair of distinct elements a, b ∈ [n] so that for each i either {a, b} ⊆ Vi or {a, b} ⊆ V c
i .
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Remark 1.1. Thus S is a determining set if for all a, b ∈ [n], there exists i such that a ∈ Vi and b 6∈ Vi. In

that case, we say that Vi separates a and b. In other words, it tells that V1, V2, . . . , Vr separates any pair

a, b ∈ [n] and ∪r
i=1Vi can miss at most one element of [n].

Proposition 1.2. Boutin (2006),Cáceres et al. (2013) ⌈log2(n+ 1)⌉ ≤ Det(K(n, k)) ≤ n− k.

Boutin (2006) also showed that Det(K(2r − 1, 2r−1 − 1)) = r. In Cáceres et al. (2013), the authors

associate a k-regular hypergraph with every subset of vertices of K(n, k). The determining set is achieved

by imposing conditions on the edges of the corresponding hypergraph. Using this idea of hypergraphs, they

proved the following theorems.

Theorem 1.1. Let k and d be two positive integers such that k ≤ d and d > 2. Then

Det

(

K

(⌊

d(k + 1)

2

⌋

+ 1, k

))

= d.

Theorem 1.2. Let k and d be two positive integers where 3 ≤ k + 1 ≤ d. For every n ∈ N such that
⌊

(d− 1)(k + 1)

2

⌋

< n <

⌊

d(k + 1)

2

⌋

, it holds that Det(K(n+ 1, k)) = d.

Caceres et.al. also answered the following question, posed in (Boutin, 2006, Question 2).

Theorem 1.3. Det(K(n, k)) = n− k if and only if either k = 1 or k = 2 and n = 4, 5.

1.2 Our Contribution

In this paper, we provide some improved bounds on the determining number of Kneser graphs. Moreover,

we provide the exact value of the determining number for some subfamilies of Kneser graphs. In Section

2, we prove some recursions involving Det(K(n, k)) with respect to both n and k. In particular, Theorem

2.1 and Theorem 2.2 are crucial for the proofs of the main results in the forthcoming sections. In Section

3, we find the exact value of determining number of K(n, k) when n = 2k + 1. It is to be noted that

exact value of determining number of K(n, k) for n = 2k + 1 was known earlier only when n + 1 is a

power of 2 (shown by blue squares in Figure 1, whereas we found the exact value for all the points on

the blue straight line in Figure 1 (See Theorem 3.2)). We also find Det(K(n, k)) when n = 2k + 2 is a

power of 2 (shown by black squares in Figure 1). In fact, we prove that the value of Det(K(n, k)) when

n = 2k+ 2, i.e., (n, k) lie on the bold black straight line shown in Figure 1 (even if it is not a power of 2),

is one of the two consecutive integers. In Section 4, we prove some improved lower and upper bounds on

Det(K(n, k)) compared to those in (Boutin (2006)) and (Cáceres et al. (2013)). In particular, Theorem 4.1

improves upon the lower bound given in Boutin (2006) and Theorem 4.3 is an improvement of Theorem

4.2 (Theorem 3.1, Cáceres et al. (2013)). Figure 1 illustrates the value of n and k for which the exact value

of Det(K(n, k)) is known or an upper bound is known. The yellow region is where the exact value of

determining number was previously known from Theorem 1.1. Caceres et.al. also showed that above the

yellow region, Det(K(n, k)) ≤ k. We prove a stronger upper bound as shown in different shades of grey

in Figure 1, i.e., as we move from darker shades of grey to lighter shades of grey, our upper bounds are

progressively tighter than that proved in Cáceres et al. (2013). For definitions and terms used in the paper,

readers are referred to the classic book Godsil and Royle (2001).

2 Recursions

In this section, we first prove some recursions which we will use throughout the paper. We start with the

following result which shows that if we keep k fixed and increase n by 1, then the determining number

either remains same or can at most increase by 1.

Theorem 2.1. For all positive integers n, k with 2k < n,

Det(K(n, k)) ≤ Det(K(n+ 1, k)) ≤ Det(K(n, k)) + 1.

Proof: We first prove the first inequality. Let Det(K(n+1, k)) be r and let {A1, A2, . . . , Ar} be a deter-

mining set for K(n+1, k). If ∪r
i=1Ai misses any element in {1, 2, . . . , n+1}, then by suitable relabelling,
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Fig. 1: Diagramatical representation of exact value and upper bounds of Det(K(n, k))

{A1, A2, . . . , Ar} is a determining set for the graph (K(n, k)). Thus, we assume that ∪r
i=1Ai = [n+ 1].

Let Ni = |{Aj : i ∈ Aj}| for i = 1, 2 . . . , n + 1. We observe that if Ni 6= Nj , then the elements

i and j are of course separated. By suitable relabelling, without loss of generality, we can assume that

N1 ≥ N2 ≥ · · · ≥ Nn+1 > 0. The idea is to replace n + 1 in Ai’s by some other elements such that

{A1, A2, . . . , Ar} remains a determining set for K(n+ 1, k). We start with A1.

If n + 1 6∈ A1, we do not change A1. So, let n + 1 ∈ A1. If 1 6∈ A1, then replace n + 1 by 1 in A1,

i.e., A′

1 = A1 ∪ {1} \ {n+ 1}. Note that this manipulation, increases N1 by 1, decreases Nn+1 by 1 and

keeping all other Ni’s unchanged, i.e., N ′

1 > N2 ≥ N3 ≥ · · · ≥ Nn > N ′

n+1. Thus for any 2 ≤ i ≤ n, 1
and i are of course separated as N ′

1 > Ni and i and n+ 1 is also separated as Ni > Nn+1. Moreover, this

manipulation does not effect any other pairs i and j with both 2 ≤ i 6= j ≤ n and therefore they are also

separated by {A′

1, A2, . . . , Ar}. Therefore, {A′

1, A2, . . . , Ar} is a determining set for K(n+1, k). Hence

we can assume 1 ∈ A1.

Claim 1: t /∈ A1 =⇒ either n+ 1 can be replaced by t in A1 and {A1 \ {n+ 1} ∪ {t}, A2, . . . , Ar}
still form a determining set of K(n+ 1, k), or there exists j < t such that j ∈ A1 and the couple (j, t) is

separated only by A1.

Proof of Claim 1: Let t /∈ A1. If n+ 1 can be replaced by t and {A1 \ {n+ 1} ∪ {t}, A2, . . . , Ar} is

still a determining set of K(n+1, k), then the claim is true. If t can not replace n+1, then there must exist

some j ∈ A1 such that (j, t) is separated only by A1. Now, if t < j, then Nt ≥ Nj . Thus, if t replaces

n+ 1 in A1, then N ′

t = Nt + 1 > Nj . That means there is more sets in {A′

1, A2, . . . , Ar} which contains

t than which contains j. Thus t and j can be separated by {A′

1, A2, . . . , Ar}, a contradiction. Hence j < t
and the claim follows.

Hence, for every t /∈ A1 such that replacing n+1 by t would create a problem, there exists a j ∈ A1 with

j < t. By problem, we mean a situation where there exist two elements j and t which are not separated.
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Claim 2: If t1, t2 6∈ A1 with t1 6= t2 be such that replacing n + 1 by t1 or t2 is a problem, then there

exists j1, j2 ∈ A1 with j1 < t1, j2 < t2 and j1 6= j2.

Proof of Claim 2: The existence of such j1 and j2 are guaranteed by Claim 1. Only thing left to be shown

is that j1 6= j2. If possible, let j1 = j2 = j ∈ A1 (say). Thus the pairs (j, t1) and (j, t2) are separated only

by A1. Thus (j, t1) (and similarly (j, t2)) are either both present or both absent in A2, A3, . . . , Ar. Thus

j, t1, t2 are either all present or all absent in the sets A2, A3, . . . , Ar. In particular, t1, t2

• are both present or both absent in A2, A3, . . . , Ar, and

• are both absent in A1.

This contradicts the fact that A1, A2, . . . , Ar separates t1 and t2. Hence j1 6= j2 and the claim follows.

Now as |A1| = k, there exists n − k + 1 elements in [n + 1] which are not in A1. From Claim 1 and

2, either n + 1 can be replaced by some element in [n + 1] \ A1 or we get n − k + 1 distinct elements

j1, j2, . . . , jn−k+1 in A1. However as n− k + 1 > k, this is a contradiction. Thus n + 1 can be replaced

by some element t ∈ [n + 1] \ A1 and {A′

1 = A1 \ {n+ 1} ∪ {t}, A2, . . . , Ar} is still a determining set

of K(n+ 1, k).
Thus it is possible to replace n+1 in A1. It is to be noted that once n+1 is replaced by some t in A1, Nt

is increased by 1, i.e., N ′

t = Nt + 1 and Nn+1 is decreased by 1, i.e., N ′

n+1 = Nn+1 − 1. Thus, after A1

is modified, in the new sequence of {Ni}, N ′

n+1 remains the least element. (Note that the ordering of the

sequence may change for the term N ′

t .) We rearrange the terms in the new sequence {N ′

i} in descending

order where N ′

n+1 = Nn+1 − 1 remains the smallest term. Also note that, as we relabel the elements in

[n+ 1] to get N ′

1 ≥ N ′

2 ≥ · · · ≥ N ′

n > N ′

n+1 = Nn+1 − 1, the element n+ 1 is not relabelled as already

N ′

n+1 = Nn+1 − 1 is the least among the N ′

i ’s. Thus, the element n+ 1 can not re-enter the modified A1

by relabelling. Now, we apply the same process on A2 to get rid of n + 1 and so on. Continuing in this

manner, we replace n + 1 from each of A1, A2, . . . , Ar. Thus {A1, A2, . . . , Ar} is a determining set of

K(n, k) and hence the theorem.

We now prove the second inequality. Let V = {V1, V2, . . . , Vr} be a minimal determining set for

K(n, k). Then, ∪r
i=1Vi can miss at most one element of [n]. If ∪r

i=1Vi = [n], then V is also a determining

set for K(n + 1, k). If ∪r
i=1Vi misses one element of [n], without loss of generality, we assume that

element to be n, i.e., ∪r
i=1Vi = [n − 1]. We take Vr+1 = {1, 2 . . . , k − 1, n + 1}. To check that

V ′ = {V1, V2, . . . , Vr, Vr+1} is a determining set for K(n+ 1, k), we consider the following cases.

1. Let 1 ≤ i, j ≤ n. Then i and j are separated by some Vt for 1 ≤ t ≤ r.

2. Let 1 ≤ i < n and j = n+ 1. Then i and j are separated by some Vt.

3. n and n+ 1 is separated by Vr+1.

Thus V ′ is a determining set for K(n+ 1, k) and this proves the second inequality.

We next prove the following which, when put together with Theorem 2.1, will show that when we fix n
and increase k, the determining number, as expected, either remains same or decrease.

Theorem 2.2. For positive integers n, k with n+ 1 ≥ 2k + 3,

Det(K(n+ 1, k + 1)) ≤ Det(K(n, k)).

Proof: Let Det(K(n, k)) = r and {A1, A2, . . . , Ar} be a determining set for K(n, k). Then ∪r
i=1Ai =

[n] or [n− 1]. However, by using techniques used in previous Theorem, without loss of generality, we can

assume that ∪r
i=1Ai = [n− 1]. We set Vi = Ai ∪ {n} for i = 1, 2, . . . , r. Then |Vi| = k + 1.

For a, b ∈ {1, 2, . . . , n−1}, there exists Ai and hence Vi which separates them. For a ∈ {1, 2, . . . , n−1}
and b = n, if ∩r

i=1Ai = ∅, then there exists Ai (and hence Vi) which separates a and b. For a ∈
{1, 2, . . . , n− 1, n} and b = n+ 1, as ∪r

i=1Vi = [n], there exists Vi which separates a and b.
So, let us assume that ∩r

i=1Ai 6= ∅. However, as {A1, A2, . . . , Ar} be a determining set, ∩r
i=1Ai must

be singleton, say {a}.

Thus, we have ∩r
i=1Vi = {a, n}, ∪r

i=1Vi = [n] and Vi’s separate all pairs except (a, n). We will modify

V1 to V ′

1 such that {V ′

1 , V2, . . . , Vr} is a determining set for K(n+1, k+1). We search for t ∈ [n−1]\V1

which can replace a in V1, as in that case, V ′

1 will separate a and n.
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Suppose there does not exist any such t such that {V ′

1 = V1∪{t}\{a}, V2, V3, . . . , Vr} is a determining

set for K(n+1, k+1). This implies that for every t ∈ [n−1]\V1, there exists jt ∈ V1 \{n}, i.e., jt ∈ A1

such that (t, jt) can not be separated by {V ′

1 , V2, . . . , Vr}, i.e., t, jt are either both present or both absent

in each of V2, V3, . . . , Vr and t, jt ∈ V ′

1 .

Claim: If t1, t2 ∈ [n− 1] \ V1 with t1 6= t2 such that they can not replace a in V1, then jt1 6= jt2 .

Proof of Claim: The proof goes in same line with that of proof of Claim 2 in previous theorem. However,

for the sake of completeness, we write it down. Let there exist t1, t2 ∈ [n− 1] \ V1 with t1 6= t2 such that

they can not replace a in V1, but jt1 = jt2 = j (say). Then (t1, j) and (t2, j) are either simultaneously

present or absent in V2, V3, . . . , Vr and t1, t2, j ∈ V ′

1 . This implies that t1, t2 can not be separated by

V1, V2, . . . , Vr, a contradiction. Hence jt1 6= jt2 and the claim holds.

Now, there are (n − 1) − k elements in [n − 1] \ V1. If none of them can replace a in V1, then by the

above Claim, there exists n− k− 1 distinct elements in V1 \ {n}, i.e., n− k− 1 ≤ k, i.e., 2k ≥ n− 1. On

the other hand, as K(n+ 1, k + 1) is a Kneser graph, we have 2k + 3 ≤ n+ 1, that is, 2k ≤ n− 2. This

is a contradiction.

Thus we can always find some t ∈ [n− 1] \ V1 which can replace a in V1 such that {V ′

1 , V2, . . . , Vr} is

a determining set for K(n+ 1, k + 1). Thus, the theorem follows.

From Theorem 2.1 and 2.2, we immediately have the following corollary.

Corollary 2.1. For positive integers n, k with n ≥ 2k + 3,

Det(K(n, k + 1)) ≤ Det(K(n, k)).

3 Determining Number of K(2k + 1, k)
(Boutin, 2006, Proposition 9) used a linear algebraic construction to show the following result:

Theorem 3.1. For any positive integer r ≥ 2, we have Det(K(2r − 1, 2r−1 − 1)) = r.

These are precisely the points (shown in solid blue squares in Figure 1) and they lie on the straight line

n = 2k+1 and attain the lower bound ⌈log2(n+1)⌉ described in Proposition 1.2. In this section, we show

that the lower bound is attained by all integer points on the line n = 2k + 1.

Let P [n, k] denote all the k-subsets of [n], that is the vertices of K(n, k).

Definition 3.1. For n ≥ 2k, {V1, V2, . . . , Vr} ⊂ P [n, k] is called an auxiliary set if ∪r
i=1Vi = [n] and

there exist no pair of distinct elements a, b ∈ [n] such that for each i, either {a, b} ⊆ Vi or {a, b} ⊆ V c
i .

Define the auxiliary number of K(n, k), denoted by Aux(n, k), to be r if r is the cardinality of a minimum

auxiliary set.

Note that the definition of auxiliary set allowsn = 2k. From definition, it is clear that if {V1, V2, . . . , Vr} ⊂
P [n, k] is an auxiliary set for K(n, k), then {V1, V2, . . . , Vr} ⊂ P [n, k] is a detemining set for K(n, k) as

well as K(n + 1, k). Moreover, note that auxiliary sets require ∪r
i=1Vi = [n] which determining sets do

not require. We start with the following Lemma which connects Aux(2k, k) and Aux(4k, 2k).

Lemma 3.1. If Aux(2k, k) = r, then Aux(4k, 2k) ≤ r + 1.

Proof: Let {A1, A2, . . . , Ar} be an auxiliary set for K(2k, k). Let A′

i = {a + 2k : a ∈ Ai}. It is easy

to see that A′

1, A
′

2, . . . , A
′

r separates any two elements in [2k + 1, 4k] because if Ai separates (i, j) where

1 ≤ i, j ≤ 2k, then A′

i separates (i+ 2k, j + 2k) .

For i ∈ {1, 2, . . . , r}, defineVi = Ai∪A′

i and Vr+1 = {1, 2, . . . , 2k}. We show that {V1, V2, . . . , Vr, Vr+1}
is an auxiliary set for K(4k, 2k).

Clearly, ∪r+1
i=1Vi = [4k]. Consider the following cases.

Case 1: 1 ≤ i, j ≤ 2k. In this case, (i, j) is separated by some At as A1, A2, . . . , Ar is an auxiliary set

for K(2k, k). Hence, Vt separates the pair (i, j).

Case 2: 2k + 1 ≤ i, j ≤ 4k. The pair (i + 2k, j + 2k) is separated by some A′

t as mentioned earlier.

Thus Vt separates the pair (i, j).

Case 3: 1 ≤ i ≤ 2k and 2k + 1 ≤ j ≤ 4k and j − i 6= 2k. Then (i, j − 2k) is separated by some At.

Thus (i, j) is separated by Vt.
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Case 4: 1 ≤ i ≤ 2k. In this case, (i, i+ 2k) is separated by Vr+1.

Hence, all the pairs (i, j) in [4k] are separated by {V1, V2, . . . , Vr, Vr+1}, proving the lemma.

Remark 3.1. Note that, in the above proof, if ∩r
i=1Ai = ∅, then ∩r+1

i=1 Vi = ∅.

In the next lemma, we construct a determining set for K(4k + 3, 2k + 1), using a determining set for

K(2k + 1, k) with some particular properties.

Before that, note if {V1, V2, . . . , Vr} is a set of vertices of K(2k + 1, k) such that ∪r
i=1Vi misses one

point of [2k + 1], then without loss of generality, we can assume the missing point to be 2k + 1, i.e.,

∪r
i=1Vi = [2k].

Lemma 3.2. Let {V1, V2, . . . , Vr} be a determining set for K(2k + 1, k) such that ∩r
i=1Vi = ∅ and

∪r
i=1Vi = [2k]. Then, we can construct a determining set {W1,W2, . . . ,Wr+1} for K(4k + 3, 2k + 1)

such that ∩r+1
i=1Wi = ∅ and ∪r+1

i=1Wi = [4k + 2].

Proof: For 1 ≤ i ≤ r, define V ′

i = {a + 2k + 1 : a ∈ Vi} and Wi = Vi ∪ V ′

i ∪ {4k + 2}. Also

define Wr+1 = {1, 2, . . . , 2k, 2k + 1}.

We claim that {W1,W2, . . . ,Wr+1} is a determining set for K(4k+3, 2k+1)with the above properties.

Clearly, ∪r
i=1V

′

i = [2k + 2, 4k + 1] and hence ∪r+1
i=1Wi = [4k + 2]. Also ∩r+1

i=1Wi = ∅. Now, consider

the following cases.

1. Let 1 ≤ i, j ≤ 2k + 1. Then i and j are separated by some Vt and hence by the corresponding Wt.

2. Let 2k+ 2 ≤ i, j ≤ 4k+ 1. Then i and j are separated by some V ′

t and hence by the corresponding

Wt.

3. Let 1 ≤ i ≤ 2k + 1 and 2k + 2 ≤ j ≤ 4k + 3. Then i and j are separated Wr+1.

4. Let 2k + 2 ≤ i ≤ 4k + 1 and j = 4k + 2. Since ∩r
i=1Vi = ∅, we have ∩r

i=1V
′

i = ∅. Thus there

exists t ∈ {1, 2, . . . , r} such that i 6∈ V ′

t , i.e., i 6∈ Wt, but 4k + 2 ∈ Wt. Hence i and 4k + 2 are

separated Wt.

5. Let 1 ≤ i ≤ 4k + 2 and j = 4k + 3. Then i and j are separated by some Wi, for i ∈ {1, 2, . . . , r}.

Combining all the cases, {W1,W2, . . . ,Wr+1} is a determining set for K(4k+3, 2k+1)with the aforesaid

properties.

Proposition 3.3. For any positive integers r and k with 2r−1 − 1 < 2k < 2r − 1, Aux(2k, k) = r and

there exists an auxiliary set {V1, V2, . . . , Vr} such that ∩r
i=1Vi = ∅.

Proof: We will prove this by induction on r. Our base case is r = 3. For r = 3, the permissible val-

ues of k are 2 and 3, and we construct auxiliary sets of cardinality 3 for each of K(4, 2) and K(6, 3).

1. S = {V1 = {1, 2}, V2 = {1, 3}, V3 = {2, 4}} is an auxiliary set for K(4, 2).

2. T = {V1 = {1, 2, 3}, V2 = {1, 4, 5}, V3 = {2, 4, 6}} is an auxiliary set for K(6, 3).

It can also be easily checked that S and T are auxiliary sets of minimum size for K(4, 2) and K(6, 3)
respectively and ∩3

i=1Vi = ∅ in both the cases. Thus the result holds for r = 3.

Now, we assume that for r = t with all k satisfying 2t−1 − 1 < 2k < 2t − 1, Aux(2k, k) = t and there

exists an auxiliary set {V1, V2, . . . , Vt} such that ∩t
i=1Vi = ∅.

Let r = t+ 1 and k satisfy 2t − 1 < 2k < 2t+1 − 1. Consider the two following cases:

Case 1: k = 2ℓ is even. Then we have 2t − 1 < 4ℓ < 2t+1 − 1. So, 2ℓ < 2t − 1
2 =⇒ 1/2 <

2t − 2ℓ =⇒ 1 < 2t − 2ℓ. The last implication follows as 2 divides the right hand side. So, finally we

have 2t−1 − 1 < 2ℓ < 2t − 1. By induction hypothesis, Aux(2ℓ, ℓ) = t and there exists an auxiliary set

{V1, V2, . . . , Vt} such that ∩t
i=1Vi = ∅. Then by Lemma 3.1 and the remark thereafter, Aux(4ℓ, 2ℓ) ≤ t+1

and there exists an auxiliary set {W1,W2, . . . ,Wt+1} such that ∩t+1
i=1Wi = ∅. On the other hand, by

Proposition 1.2,

Aux(4ℓ, 2ℓ) ≥ log2(4ℓ+ 1) > log2(2
t) = t.
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Thus Aux(4ℓ, 2ℓ) = Aux(2k, k) = t+ 1 and there exists an auxiliary set {W1,W2, . . . ,Wt+1} such that

∩t+1
i=1Wi = ∅.

Case 2: k = 2ℓ+ 1 is odd. Then we have 2t − 1 < 4ℓ+ 2 < 2t+1 − 1, By similar arguments as in the

previous case, we get 2t−1 − 1 < 2ℓ < 2t − 1. By induction hypothesis, Aux(2ℓ, ℓ) = t and there exists

an auxiliary set {V1, V2, . . . , Vt} such that ∩t
i=1Vi = ∅. Note that {V1, V2, . . . , Vt} is a determining set of

K(2ℓ + 1, ℓ) with ∩t
i=1Vi = ∅ and ∪t

i=1Vi = [2ℓ]. Then by Lemma 3.2, there exists a determining set

{W1,W2, . . . ,Wt+1} of K(4ℓ+ 3, 2ℓ+ 1) such that ∩t+1
i=1Wi = ∅ and ∪t+1

i=1Wi = [4ℓ + 2]. This implies

that {W1,W2, . . . ,Wt+1} is an auxiliary set for K(4ℓ+ 2, 2ℓ+ 1), i.e., K(2k, k) such that ∩t+1
i=1Wi = ∅.

This means that Aux(2k, k) ≤ t+ 1. Now by similar arguments as that in previous case, it can be shown

that Aux(2k, k) = t+ 1.

Hence, by induction the proposition follows.

We are now in a position to prove the main result of this section.

Theorem 3.2. Det(K(2k + 1, k)) = r where 2r−1 − 1 < 2k + 1 ≤ 2r − 1, i.e., if n = 2k + 1, then

Det(K(n, k)) = ⌈log2(n+ 1)⌉.

Proof: By Proposition 3.3, Aux(2k, k) = r, where 2r−1 − 1 < 2k < 2r − 1 and there exists an auxiliary

set {V1, V2, . . . , Vr} such that ∩r
i=1Vi = ∅. Thus {V1, V2, . . . , Vr} is a determining set for K(2k + 1, k)

where 2r−1 − 1 < 2k + 1 ≤ 2r − 1, i.e., Det(K(2k + 1, k)) ≤ r.

Again, by Proposition 1.2, Det(K(2k + 1, k)) ≥ log2(2k + 2) > log2(2
r−1) = r − 1. Hence the

theorem.

Remark 3.2. One can see that Theorem 3.2 is an improvement of Theorem 3.1, i.e., Theorem 3.1 shows

that lower bound in Proposition 1.2 is attained by some points on the line n = 2k + 1, whereas Theorem

3.2 establishes that the lower bound holds for all points on the line n = 2k + 1.

Theorem 3.3. If n = 2k + 2 and n is a power of 2, then Det(K(n, k)) = ⌈log2(n+ 1)⌉.

Proof: By Theorem 2.1 and Det(K(n, k)) ≥ ⌈log2(n+ 1)⌉, we have

⌈log2(2k + 3)⌉ ≤ Det(K(2k + 2, k)) ≤ Det(K(2k + 1, k)) + 1 = ⌈log2(2k + 2)⌉+ 1.

Now, as n = 2k + 2 = 2s, we have k + 1 = 2s−1 and

⌈log2(2k + 3)⌉ = s+ 1 = ⌈log2(2k + 2)⌉+ 1,

and hence the theorem follows.

Remark 3.3. The above theorem shows that we can find the exact value of determining number of Kneser

graphs K(n, k) for some integer points (shown in solid black squares in Figure 1) on the line n = 2k + 2.

Note that these are precisely the corresponding points on the line n = 2k+1 (shown in solid blue squares

in Figure 1), for which exact values were determined by Boutin (2006).

Corollary 3.4. If n = 2k + 2, then Det(K(n, k)) = ⌈log2(n+ 1)⌉ or ⌈log2(n+ 1)⌉+ 1.

Proof: If n = 2k+2 is a power of 2, by Theorem 3.3, we have the result. When n = 2k+2 is not a power

of 2, using Theorem 2.1 we get

Det(K(2k + 2, k)) ≤ Det(K(2k + 1, k)) + 1 = ⌈log2(2k + 2)⌉+ 1 ≤ ⌈log2(n+ 1)⌉+ 1.

Again from Proposition 1.2, we have Det(K(2k + 2, k)) ≥ ⌈log2(n+ 1)⌉. Thus when n = 2k + 2 is not

a power of 2, we proved that Det(K(2k + 2, k)) lies between two consecutive integers and hence has to

be one of them, thereby completing the proof.
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4 Bounds for Det(K(n, k))

4.1 Lower Bound

Boutin (2006) proved a lower bound for the determining number of any Kneser graph K(n, k) which was

mentioned in Proposition 1.2. Next, we provide a lower bound which is stronger than that in Boutin (2006)

if k = Ω(n/ logn).

Theorem 4.1. For any positive integers n, k with k < n
2 , Det(K(n, k)) ≥ 2n−2

k+1 .

Proof: LetDet(K(n, k)) = r and let {V1, V2, . . . , Vr} be a determining set forK(n, k). Hence,
∑r

i=1 |Vi| =
rk. Now, we count

∑r

i=1 |Vi| in another way. First, we note the following:

1. ∪r
i=1Vi can miss at most one element of [n].

2. There can be at most r elements which occur in exactly one of the sets. If not, suppose there are t
(t > r) elements which occur in exactly one set. In this case at least two of these t elements (say a
and b) would occur in the same set and they occur only in that set. Hence, a and b are not separated

which is a contradiction.

Thus, all other elements of [n] are there in at least two sets. Hence, counting according to the number of

appearances of any element in [n], yields the following equation

r + 2(n− 1− r) ≤ rk =⇒ 2n− 2− r ≤ rk =⇒ r ≥
2n− 2

k + 1
,

completing the proof.

4.2 Upper Bound

We are now interested in constructing an improved upper bound for D(K(n, k)). Cáceres et al. (2013)

proved the following theorem.

Theorem 4.2. ((Cáceres et al., 2013, Theorem 3.1)) For positive integers n, k with 2k ≤ n ≤ k(k+1)
2 ,

Det(K(n, k)) ≤ k.

Here, we provide a stronger upper bound by using an explicit construction of a determining set.

Theorem 4.3. Let n, k, r be positive integers with n ≤ k(k + 1)/2 and k ≥ r ≥ 3. Then, for all integers

n with n ≤ r(r + 1)/2 + 1 =⇒ Det(K(n, k)) ≤ r.

Proof: At first we prove that Det(K(n, r)) ≤ r when n = r(r + 1)/2 + 1. Consider the following r-sets

V1 := {1, 2, 3, . . . , r − 1, r},

V2 := {1, r + 1, r + 2, . . . , 2r − 2, 2r − 1},

V3 := {2, r + 1, 2r, . . . , 3r − 4, 3r − 3},

V4 := {3, r + 2, 2r, . . . , 4r − 7, 4r − 6},

. . . . . .

Vr := {r − 1, 2r − 2, 3r − 4, . . . , (r − 1)(r + 2)/2, r(r + 1)/2}.

Our main idea behind the construction is as follows: After V1, V2, . . . , Vi−1 being already constructed,

we construct Vi as follows:

Vi := {V i−1
1 , . . . , V i−1

i−1 , r(i − 1)−
(i− 1)(i − 2)

2
+ 1, r(i − 1)−

(i − 1)(i− 2)

2
+ 2, . . . ,

r(i − 1)−
(i− 1)(i− 2)

2
+ r − i+ 1}.

Here, V j
i denotes the j-th element of Vi when we write all the elements of Vi in ascending order. We

claim the following:

Claim: V = {V1, V2, . . . , Vr} is a determining set for K(n, k).

Proof of Claim: Let S = {r, 2r − 1, 3r − 3, . . . , r(r+1)
2 } and V ′

i = Vi \ S. We observe the following.
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1. Each element of S is exactly in one of the Vi and each element of [n] \ S is in exactly two of the

Vi’s. Hence any a ∈ S is separated from any b ∈ [n] \ S. Also any two elements in S are separated

by some Vi.

2. Already having constructed V1, V2, . . . , Vi−1, we construct Vi in a way such that |Vi∩Vj | = 1 for all

j < i. Hence, by our construction itself, |Vi ∩ Vj | = 1 for all i, j. Besides, each element a ∈ [n] \ S
is in exactly two sets. Hence any two elements a, b ∈ [n] \ S are separated.

Thus, V = {V1, V2, . . . , Vr} is a determining set for K(n, k) and the claim holds. Hence, Det(K(n, r)) ≤
r when n = r(r + 1)/2 + 1.

Now, Theorem 2.2 states that the sequence Det(K(n, r)) is weakly decreasing when we keep n fixed

and increase r. Thus, for n = r(r + 1)/2 + 1, we have Det(K(n, k)) ≤ Det(K(n, r)) ≤ r. Now for n
with n ≤ r(r + 1)/2 + 1, we use Theorem 2.1 directly to get Det(K(n, k)) ≤ r.

Remark 4.1. When r ≪ k, Theorem 4.3 clearly gives a much better bound than Theorem 4.2. When

r = k, this is Theorem 4.2. In Figure 1, the yellow region is where the exact value of determining number

is known from Theorem 1.1. Caceres et.al. in Theorem 4.2 also showed that above the yellow region,

Det(K(n, k)) ≤ k. Using Theorem 4.3, we prove a stronger upper bound as shown in different shades of

gray in Figure 1.
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