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We introduce the notion of positional marked pattern, which is a permutation τ with one element underlined. Given a permutation

σ, we say that σ has a τ -match at position i if τ occurs in σ in such a way that σi plays the role of the underlined element in the

occurrence. We let pmpτ (σ) denote the number of positions i which σ has a τ -match. This defines a new class of statistics on

permutations, where we study such statistics and prove a number of results. In particular, we prove that two positional marked

patterns 123 and 132 give rise to two statistics that have the same distribution. The equidistibution phenomenon also occurs in

other several collections of patterns like {123, 132}, and {1234, 1243, 2134, 2143}, as well as two positional marked patterns of

any length n: {12τ, 21τ}.
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1 Introduction

The notion of mesh patterns was first introduced by Brändén and Claesson Brändén and Claesson (2011). Many

authors have further studied this notion. In particular, the notion of marked mesh pattern was introduced by Úlfarsson

Úlfarsson (2010), and the study of the distributions of quadrant marked mesh patterns in permutations was initiated by

Kitaev and Remmel in Kitaev and Remmel (2012a).

Here, we recall the definition of a quadrant marked mesh pattern. Let N = {0, 1, 2, . . .} denote the set of natural

numbers and Sn denote the symmetric group of permutations of 1, . . . , n. We consider the graph of σ,G(σ), to be

the set of points (i, σi). We are interested in the points that lie in the four quadrants I, II, III, IV of that coordinate

system. For any a, b, c, d ∈ N and any σ = σ1 . . . σn ∈ Sn, we say that σi matches the simple marked mesh pattern

MMP (a, b, c, d) if in G(σ) relative to the coordinate system which has the point (i, σi) as its origin, there are at least

a points in quadrant I, at least b points in quadrant II, at least c points in quadrant III, and at least d points in quadrant

IV. We let mmp(a,b,c,d)(σ) denote the number of i such that σi matches the marked mesh pattern MMP (a, b, c, d) in

σ.

For example, let σ = 647913258 and consider simple marked mesh pattern MMP (2, 0, 2, 0). We look for points

(i, σi) in the graph of σ such that there are at least 2 points to the top right of (i, σi) and at least 2 points to the

bottom left of (i, σi). The graph of σ and an illustration of MMP (2, 0, 2, 0) are shown in Figure 1. As we see

in Figure 2, at point (3, 7), there are two points to the top right and 2 points to the bottom left of point (3, 7), so

7 matches MMP (2, 0, 2, 0) in σ. At point (6, 3), on the other hand, there are 2 points to the top right but only 1

point to the bottom left of point (6, 3). Therefore, 3 does not match MMP (2, 0, 2, 0) in σ. In this case, only 7

matches MMP (2, 0, 2, 0) in σ, so mmp(2,0,2,0)(σ) = 1. Quadrant marked mesh pattern was studied further in Davis

(2015), Kitaev and Remmel (2012b), Kitaev and Remmel (2013), Kitaev et al. (2012), Kitaev et al. (2015) and Qiu

and Remmel (2018).

We studied a generalization of quadrant marked mesh patterns. Here, we make a connection between quadrant

marked mesh pattern and classical permutation patterns. Let σ = σ1σ2 . . . σn ∈ Sn and τ = τ1τ2 . . . τk ∈ Sk. We

say that σ contains pattern τ if there is a subsequence σ′ = σi1σi2 . . . σik of σ such that σ′ and τ have the same

relative order. That is, σij < σik if and only if τj < τk. For example, permutation 15324 contains pattern 123 as the

subsequence 134 (and 124) has the same relative order as pattern 123. We now consider the pattern MMP (1, 0, 1, 0).
An element in a permutation matches MMP (1, 0, 1, 0) when there is at least one point to the top right and at least one

point to the bottom left of the interested point. An equivalent way to think about MMP (1, 0, 1, 0) for any permutation

σ is to count the number of elements in σ that can be the midpoint of the pattern 123 in σ. One can ask similar questions
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Fig. 1: Example for marked mesh pattern.

Fig. 2: 7 matches MMP (2, 0, 2, 0) in σ but 3 does not.

but for different patterns and positions. For example, one may consider the number of elements in σ that can be the

starting point of the pattern 2314.

Here, we briefly define the notion of positional marked patterns (PMP) which enumerates the described statistics. A

positional marked pattern of length k is a permutation of [k] with one of the elements underlined. Given any positional

marked pattern τ , let π(τ) denote the element in Sk obtained from τ by removing the underline, and let u(τ) be the

position of the underlined element in τ . Given σ = σ1σ2 . . . σn ∈ Sn and a positional marked pattern τ , we say that

σ has a τ -match at position ℓ if σ contains the pattern π(τ) in such a way that the ℓ-th element in σ plays the role of

the underlined elements in τ . Let pmpτ (σ) denote the number of positions ℓ such that σ has a τ -match at position ℓ.

We will carefully define positional marked patterns in Section 2.

Recall that, in classical patterns, two patterns τ1 and τ2 are Wilf-equivalent if the number of σ in Sn avoiding τ1
is the same as that of τ2 for all n ∈ N. Here, we adopt the vocabulary from the classical definition to our definition.

Given two positional marked patterns τ1 and τ2, we say that τ1 and τ2 are PMP -Wilf-equivalent if pmpτ1 and pmpτ2
have the same distribution over Sn for all n. Our main goal is to classify PMP -Wilf-equivalent classes for positional

marked patterns.

The paper outlines as follows: In Section 2, we give a precise definition and some preliminary results on positional

marked patterns. In Section 3, we study positional marked patterns of length 3. We prove that there are only two

PMP -Wilf-equivalent classes for positional marked patterns of length 3. The result follows from the following

theorems.

Theorem 1. Two positional marked patterns 123 and 132 are PMP -Wilf-equivalent.

Theorem 2. Two positional marked patterns 123 and 132 are PMP -Wilf-equivalent.
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In Section 4, we prove some non-trivial equivalences of pairs of positional marked patterns of length 4 as well as

providing numerical results for every patterns of length 4. In Section 5, we prove the following theorem, which gives

an equivalence of pairs of positional marked patterns of arbitrary length.

Theorem 3. Let n ≥ 4 and p1, p2, . . . , pn−2 be a rearrangement of 3, 4, . . . n. Three positional marked patterns

P1 = 12p1 . . . pℓ−2, P2 = 21p1 . . . pℓ−2 and P3 = 21p1 . . . pℓ−2 are PMP -Wilf-equivalent.

In Section 6, we discuss further research possibilities, as well as precise connection between positional marked

patterns and quadrant marked mesh patterns.

2 Definition

Definition 4. Let S∗
k denote a set of permutations of [k] with one of the elements underlined. Given any τ ∈ S∗

k , let

π(τ) denote an element in Sk obtained from τ by removing the underline, and let u(τ) be the position of the underlined

element in τ . We shall call an element in S∗
k a positional marked pattern (PMP).

For example, τ = 1432 is an element in S∗
4 . In this case, π(τ) = 1432 and u(τ) = 2.

Definition 5. Given a word w where letters are taken from Z≥0, a reduction of w, denoted by red(w), is the word

obtained from w by replacing the i-th smallest letter by i. In particular, if w is a word of length k with distinct letters,

then red(w) ∈ Sk.

For example, if w = 25725, then red(w) = 12312. Here, we are ready to define a statistic on Sn that we mainly

focus on in this paper.

Definition 6. Given σ = σ1σ2 . . . σn ∈ Sn and τ ∈ S∗
k , we say that σ has a τ -match at position ℓ if there is a

subsequence σi1σi2 . . . σik in σ such that

1. ℓ = iu(τ)

2. red(σi1σi2 . . . σik) = π(τ).

In other words, σ contains the pattern π(τ) in such a way that ℓ-th element in σ plays the role of the underlined

elements in τ . Let pmpτ (σ) denote the number of positions ℓ such that σ has a τ -match at position ℓ.

For example, if σ = 26481573 and τ = 1432. Then σ has a τ -match at positions 2 and 4, as we find subse-

quences 2653 and 2853 respectively. Thus, pmpτ (σ) = 2. We are interested in the generating function Pn,τ (x) =
∑

σ∈Sn

xpmpτ (σ). We say that two positional marked patterns τ1 and τ2 are PMP -Wilf-equivalent if Pn,τ1(x) =

Pn,τ2(x) for all n. Note that, by looking at the constant terms of generating functions, if τ1 and τ2 are PMP -Wilf-

equivalent, then π(τ1) and π(τ2) are Wilf-equivalent. Thus, one might think of pmp-Wilf-equivalent as a stronger

version of Wilf-equivalent. In this paper, we classify equivalence classes of S∗
3 and S∗

4 .

We associate a positional marked pattern with a permutation matrix-like diagram. Given any τ ∈ S∗
k , the diagram

associated to τ is a k by k array with the following filling: For the cell at i-th row and j-th column (i) the cell is filled

with ◦ if τi = j and u(τ) = i, (ii) the cell is filled with × if τi = j and u(τ) 6= i, or (iii) the cell is empty otherwise.

By convention, we count rows and columns of an array from left to right and from bottom to top. For example, if

τ = 1432, then the corresponding diagram is

◦
×
×

× .

Similarly, we associate σ ∈ Sn with an n by n diagram with the cell at i-th row and j-column is (i) filled with × if

σi = j and (ii) empty otherwise. For example, the diagram corresponding to π = 26481573 is
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×
×

×
×

×
×

×
× .

We can visualize matching of PMP using diagrams. Given a permutation σ and a PMP τ , σ has a τ -match at

position i if when replacing × in the i-th column of the diagram of σ by ◦, then it contains a subdiagram τ . For

example, σ = 26481573 has a τ -match at position 2 and 4 by looking at subdiagrams marked in red below

×
×

◦
×

×
×

×
×

◦
×

×
×

×
×

×
× .

With diagrams, we prove equivalences of PMP by symmetry. Given two PMP s τ1, τ2 such that the diagram of τ2
can be obtained from τ1 by applying a series of rotations and reflections to the diagram of τ1, then we can construct a

map θ : Sn → Sn by applying the same series of rotations and reflections to elements in Sn. The map will obviously

have the property that pmpτ1(σ) = pmpτ2(θ(σ)) for all σ ∈ Sn, and so τ1 and τ2 are PMP -Wilf-equivalent. We

proved the following lemma.

Lemma 7. Given τ1, τ2 ∈ S∗
k , such that τ2 can be obtained by applying a series of rotations and reflections to τ1.

Then τ1 and τ2 are PMP -Wilf-equivalent.

Lemma 7 reduces the problem tremendously. There are 3! · 3 = 18 PMP s of length 3. However, with Lemma

7, there are at most 4 equivalence classes, which are represented by 123, 123, 132, 132. Their diagrams are shown in

Figure 3.

×
×
◦

×
◦

×

×
×

◦

◦
×

×

Fig. 3: Diagram shows 4 representatives of positional marked patterns of length 3 modulo geometrical equivalence.

3 Equivalence classes of S∗3
3.1 Equivalence of 123 and 132

In this subsection, we restate and prove one of the theorems mentioned in Section 1.

Theorem 1. Two positional marked patterns 123 and 132 are PMP -Wilf-equivalent.

For our convenience, we let τ1 = 123 and τ2 = 132. We will first prove by showing that generating functions

corresponding to those patterns satisfy the same recursive formula. We later will construct a bijection from Sn to itself

that maps pmpτ1 to pmpτ2 , that is, a map θ such that pmpτ1(σ) = pmpτ2(θ(σ)).
Given any permutation σ = σ1σ2 . . . σn ∈ Sn. We say that σ has an ascent at position i if σi < σi+1. We will look

at the position where the last ascent occurs. In particular, either σ has no ascent or there is k such that σk < σk+1 >

σk+2 > . . . > σn. In that case, we say that the last ascent of σ is at position k. Let Pn,τ1,k(x) =
∑

xpmpτ1 (σ) where

the sum is over all permutations in Sn with the last ascent at position k. Then, we have Pn,τ1(x) = 1+
n−1
∑

k=1

Pn,τ1,k(x).
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Given any permutation σ = σ1σ2 . . . σn ∈ Sn. We say that σ has an descent at position i if σi > σi+1. Similar to τ1,

we will look at the position where the last descent occurs for τ2. Either σ has no descent, or there is k such that σk >

σk+1 < σk+2 < . . . < σn. We say that the last descent of σ is at position k. Let Pn,τ2,k(x) =
∑

xpmpτ2 (σ) where the

sum is over all permutations in Sn with the last descent at position k. Then, we have Pn,τ2(x) = 1 +

n−1
∑

k=1

Pn,τ2,k(x).

First, we derive a recursive formula for Pn,τ1,k(x).

Lemma 8. Pn,τ1,k(x) satisfies the following recursive formula:

Pn,τ1,k(x) = (k − 1)xPn−1,τ1,k−1(x) + 1 +

k
∑

ℓ=1

Pn−1,τ1,ℓ(x)

where Pn,τ1,0(x) = Pn,τ1,n(x) = 0 by convention.

Proof: We derive a recursive formula of Pn,τ1,k(x) by looking at position of 1 in σ where the last ascent is at position

k. So, σ has the following form:

σ = σ1 σ2 . . . σk−1 σk < σk+1 > σk+2 > . . . > σn.

Let t be the position of 1. We have three cases:

1. 1 ≤ t ≤ k − 1. In this case, 1, σk, σk+1 form the pattern τ1. Thus, σ has a τ1-match at position t. Moreover, 1

does not influence τ1-match at other positions. Thus, we can remove 1 from σ and decrease other elements by

1. The last ascent will be at position k − 1. Therefore, this case contributes x(k − 1)Pn−1,τ1,k−1(x).

2. t = k. In this case, σ does not have a τ1-match at position k. We can remove 1 from σ and decrease other

elements by 1. Either the remaining permutation will has no ascent, or the last ascent appears at some position

between 1 and k − 1. Thus, this case contributes 1 +

k−1
∑

ℓ=1

Pn−1,τ1,ℓ(x).

3. t = n. In this case, σ does not have a τ1-match at position n. We can remove 1 from σ and decrease other

elements by 1. The remaining permutation will have the last ascent at position k. Thus, this case contributes

Pn−1,τ1,k(x).

In total, we have

Pn,τ1,k(x) = (k − 1)xPn−1,τ1,k−1(x) + 1 +

(

k−1
∑

ℓ=1

Pn−1,τ1,ℓ(x)

)

+ Pn−1,τ1,k(x)

= (k − 1)xPn−1,τ1,k−1(x) + 1 +

k
∑

ℓ=1

Pn−1,τ1,ℓ(x).

Note that, the first case does not exist when k = 1, but the formula is correct since Pn−1,τ1,0(x) = 0. Also, the

third case does not exist when k = n− 1. However, the formula is also correct since Pn,τ1,n(x) = 0.

Here, we prove a similar result for τ2.

Lemma 9. Let τ2 = 132 and let Pn,τ2,k(x) =
∑

xpmpτ2 (σ) where the sum is over all σ ∈ Sn with the last descent

of σ at position k. Then, Pn,τ2,k(x) satisfies the following recursive formula:

Pn,τ2,k(x) = (k − 1)xPn−1,τ2,k−1(x) + 1 +

k
∑

ℓ=1

Pn−1,τ2,ℓ(x)

where Pn,τ2,0(x) = Pn,τ2,n(x) = 0 by convention.
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Proof:

We use the same strategy as in the case for τ1. We derive a recursive formula for Pn,τ2,k(x) by looking at the

position of 1 in σ where the last descent is at position k. So, σ has the following form:

σ = σ1 σ2 . . . σk−1 σk > σk+1 < σk+2 < . . . < σn.

Let t be the position of 1. We have 2 cases:

1. 1 ≤ t ≤ k − 1. In this case, 1, σk, σk+1 form the pattern τ2. Thus, σ has a τ2-match at postion t. Moreover, 1

does not influence τ2-match at other positions. Thus, we can remove 1 from σ and decrease other elements by

1. The last descent will be at position k − 1. Therefore, this case contributes x(k − 1)Pn−1,τ2,k−1(x).

2. t = k + 1. In this case, σ does not have a τ -match at position k + 1. We can remove 1 from σ and decrease

other elements by 1. The remaining permutation will either has no descent, or the last ascent appears at some

position between 1 and k. Thus, this case contributes 1 +
k
∑

ℓ=1

Pn−1,τ1,ℓ(x).

In total, we have

Pn,τ2,k(x) = (k − 1)xPn−1,τ2,k−1(x) + 1 +
k
∑

ℓ=1

Pn−1,τ2,ℓ(x).

Note that, the first case does not exist when k = 1, but the formula is correct since Pn−1,τ2,0(x) = 0. Also, for the

second case, if k = n− 1, the last descent cannot be at position k = n− 1. However, the formula is still correct since

Pn−1,τ2,n(x) = 0.

One can check that P2,τ1,1(x) = 1 = P2,τ2,1(x). Since Pn,τ1,k(x) andPn,τ2,k(x) satisfy the same recursive formula

and have the same initial values, we prove that Pn,τ1,k(x) = Pn,τ2,k(x) for all n, k such that 1 ≤ k ≤ n − 1, and

hence Pn,τ1(x) = Pn,τ2(x) for all n ≥ 1. Therefore, we prove Theorem 1.

To conclude this section, we give a bijection θ : Sn → Sn such that pmpτ1(σ) = pmpτ2(θ(σ)). The bijection is

constructed based on the recursive formula. We start with θ(1) = 1, θ(12) = 21 and θ(21) = 12. In general, θ will

have following properties:

1. σ has no ascent if and only if θ(σ) has no descent.

2. The last ascent of σ is at the same position as the last descent of θ(σ).

3. pmpτ1(σ) = pmpτ2(θ(σ)).

By observation, θ satisfies the properties for S1 and S2. For Sn+1 where n ≥ 2, we define the map recursively.

Given σ ∈ Sn, we have σ′ = θ(σ) ∈ Sn, where the last ascent of σ is at the same position as the last descent of σ′.

Let k be the position. We decompose σ and σ′ at k.

σ = σ1σ2 . . . σk σk+1 . . . σn

σ′ = σ′
1σ

′
2 . . . σ

′
k σ′

k+1 . . . σ
′
n

If σ has no ascent, then σ′ has no descent, we decompose σ and σ′ by having the “first part” empty, or, equivalently,

set k = 0.

Here, we obtain an element σ̂ ∈ Sn+1 by increasing every element in σ by 1 and inserting 1 at some position, then

θ(σ̂) will be obtained from increasing elements in σ′ by 1 and inserting 1 at some position based on the position of 1

in σ̂. Suppose we insert 1 at position r from the left in σ, then the position r′ of 1 inserted in σ′ is

r′ =







r r ≤ k

r + 1 k + 1 ≤ r ≤ n

k + 1 r = n+ 1
.

The corresponding positions of 1 can be viewed in Figure 4.



Positional Marked Patterns in Permutations 7

σ1 σ2 σ3 σk σk+1 σk+2 σk+3 σn

σ′
1 σ′

2 σ′
3 σ′

k σ′
k+1 σ′

k+2 σ′
k+3 σ′

n

Fig. 4: Inserting positions of 1 of the bijection θ that sends pmp123 to pmp132

By observation, the position of the last ascent of σ̂ is the same as the position of the last descent of σ̂. Also, pmpτ1
will increase by 1 if and only if 1 is inserted at the first k positions, which is the same condition for pmpτ2 to increase

by 1. Thus, θ satisfies the conditions.

As an example, we start with θ(12) = 21. Here, the diagram for inserting 1 looks like

1 2

2 1 .

Suppose we insert 1 to 12 at the last position, so we get 231. According to the diagram, we should insert 1 to 21 at

the second position, so we get 312. Thus, θ(231) = 312. Now the diagram looks like

2 3 1

3 1 2 .

Here, we insert 1 to 231 at the first position, so we get 1342. We should also insert 1 to 312 at the first position, so

we get 1423. Thus, θ(1342) = 1423.

Below are enumerations of Pn,123(x) for the first few n:

P1,123(x) = 1

P2,123(x) = 2

P3,123(x) = 5 + x

P4,123(x) = 14 + 8x+ 2x2

P5,123(x) = 42 + 47x+ 25x2 + 6x3

P6,123(x) = 132 + 244x+ 216x2 + 104x3 + 24x4

P7,123(x) = 429 + 1186x+ 1568x2 + 1199x3 + 538x4 + 120x5

P8,123(x) = 1430 + 5536x+ 10232x2 + 11264x3 + 7814x4 + 3324x5 + 720x6

3.2 Special values for Pn,123(x)|xk

Even though we do not know a formula for Pn,123(x) in general, we can still explain some of the coefficients. For

example, Pn,123(x)|x0 = Cn, the n-th Catalan number. This is obvious since a permutation is 123-avoiding if and

only if it does not have a 123-match at any position. There are other coefficients that have a nice formula.

Theorem 10. For n ≥ 3, the degree of Pn,123(x) is n− 2, and Pn,123(x)|xn−2 = (n− 2)!.
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Proof: For any σ ∈ Sn, it is clear that σ does not have a 123-match at position n or n− 1. Thus, pmp123(σ) ≤ n− 2.

For any σ ∈ Sn, we claim that pmp123(σ) = n− 2 if and only if σn−1 = n− 1 and σn = n. The converse obviously

true since σ would have a 123-match at position i for 1 ≤ i ≤ n− 2. Suppose that pmp123(σ) = n− 2. Let pi be the

position of i in σ. That is σpi
= i. Note that n − 1 and n cannot be a starting point of the pattern 123, so σ does not

have a 123-match at positions pn−1 and pn. However, σ has a 123-match at every position except n− 1 and n. Thus,

{pn−1, pn} = {n− 1, n}. Consider position pn−2. σ must be 123-match at position pn−2. That is n− 2 is a starting

point of a pattern 123 in σ. However, the only way for n− 2 to be a starting point of 123 is that n− 2, n− 1, n form

the pattern 123. That is n − 1 is to the left of n. So, pn−1 = n − 1 and pn = n, which means σn−1 = n − 1 and

σn = n.

Thus, we know that all σ such that pmp123(σ) = n− 2 are precisely all σ of the form:

σ = σ1 σ2 . . . σn−3 σn−2 n− 1 n.

There are (n− 2)! such σ’s, so Pn,123(x)|xn−2 = (n− 2)!.

This theorem can generalized to any PMP .

Theorem 11. Given any positive integer n, k such that n ≥ k, and any τ ∈ S∗
k , the degree of Pn,τ (x) is n − k + 1,

and Pn,τ (x)|xn−k+1 = (n− k + 1)!.

Proof: Given k ≤ n and τ ∈ S∗
k . Suppose τ has the form

τ = τ1 τ2 . . . τ ℓ . . . τk−1 τk.

That is u(τ) = ℓ and π(τ) = τ1τ2 . . . τk. Note that there are ℓ − 1 numbers to the left of the underlined number in τ

and there are k − ℓ numbers to the right of the underlined number in τ . Given σ ∈ Sn, suppose σ has a τ -match at

position i. Then, there must be at least ℓ − 1 numbers to the left of position i in σ and there must be at least k − ℓ to

the right of position i in σ. Thus, ℓ ≤ i ≤ n− k + ℓ. Therefore, pmpτ (σ) ≤ n− k + 1. Thus, the degree of Pn,τ (x)
is at most n− k + 1.

Here, we count the number of σ ∈ Sn such that pmpτ (x) = n− k + 1. We shall prove the following claim:

Claim 12. Given σ = σ1 . . . σn ∈ Sn, pmpτ (σ) = n− k + 1 if and only if all of the followings hold:

(1) {σ1, σ2, . . . , σℓ−1, σn−k+ℓ+1, . . . , σn} = {1, 2, . . . , τℓ − 1, n− k + τℓ + 1, . . . , n};

(2) red(σ1σ2 . . . σℓ−1σn−k+ℓ+1 . . . σn) = red(τ1τ2 . . . τℓ−1τℓ+1 . . . τk).

That is, the first ℓ−1 numbers and last k−ℓ numbers in σ is a rearrangement of {1, 2, . . . , τℓ − 1, n− k + τℓ + 1, . . . , n}
in the way that they have the same relative order as τ1τ2 . . . τℓ−1τℓ+1 . . . τk.

Proof: (of the claim)

We first prove the converse. Suppose σ satisfies (1) and (2). We want to show that σ has a τ -match at any position i

when ℓ ≤ i ≤ n− k + ℓ. Given any such position i. Consider the following subsequence

σ1σ2 . . . σℓ−1 σi σn−k+ℓ+1 . . . σn.

Note that σi is the τℓ-th smallest number in the subsequence, and τℓ is the τℓ-th smallest number in subsequence

τ1τ2 . . . τk. Thus, we can insert σi to σ1 . . . σℓ−1σℓ+1 . . . σn and τℓ to τ1 . . . τℓ−1τℓ+1τk. So, σ1σ2 . . . σℓ−1 σi σn−k+ℓ+1 . . . σn

have the same relative order as τ1 . . . τk. However, τ1 . . . τk = π(τ) is a permutation, so red(σ1σ2 . . . σℓ−1 σi σn−k+ℓ+1 . . . σn) =
π(τ). So, σ has a τ -match at position i.

Here, we prove the forward direction. Suppose pmpτ (σ) = n − k + 1, then σ has a τ -match at all positions i

when ℓ ≤ i ≤ n− k + ℓ, and σ does not have a τ -match at all positions j ∈ {1, 2, . . . , ℓ− 1, n− k + ℓ+ 1, . . . , n}.
Note that, in order for σ to match at postion i, there must be at least τℓ − 1 numbers less than σi and there must

be at least k − τℓ numbers greater than σi. Therefore τℓ ≤ σi ≤ n − k + τℓ. In other words, σ does not have a

τ -match at positions of 1, 2, . . . , τℓ − 1 nor positions of n − k + τℓ, n − k + τℓ + 1, . . . , n. There are k − 1 such

positions, therefore {p1, p2, . . . , pτℓ−1, pn−k+τℓ+1, . . . , pn} = {1, 2, . . . , ℓ− 1, n− k + ℓ+ 1, . . . , n}, or in other

words, {σ1, σ2, . . . , σℓ−1, σn−k+ℓ+1, . . . , σn} = {1, 2, . . . , τℓ − 1, n− k + τℓ + 1, . . . , n}. Thus, we prove (1).

To prove (2), we only need to show that there is at most one rearrangement of {1, 2, . . . , τℓ−1, n−k+τℓ+1, . . . , n}
such that pmpτ (σ) = n−k+1. Then, by converse direction, we know that the rearrangement in (2) make pmpτ (σ) =
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n− k + 1. In that case, we conclude that the unique rearrangement that make pmpτ (σ) = n− k + 1 exists and must

be (2).

Let’s call numbers appearing at positions 1, 2, . . . , ℓ − 1 the left part of σ, while call the numbers appearing at

positions n− k + ℓ+ 1, n− k + ℓ+ 2, . . . , n the right part of σ. Then, σ has a following structure:

1, 2, . . . , τℓ − 1, n− k + τℓ + 1, . . . n

σ =

left part right part
.

We shall prove that ways to rearrange 1, 2, . . . , τℓ − 1, n − k + τℓ + 1, . . . n in left and right part of σ so that

pmpτ (σ) = n− k + 1 is unique if exist.

Consider the number τℓ in σ. We know that σ has a τ -match at position pτℓ . Then, numbers 1, 2, . . . , τℓ − 1 in σ

must involve in τ -match at position pτℓ since we need τℓ − 1 numbers smaller than τℓ. Therefore, for each number i

less than τℓ, we can determine whether i is in the left part or the right part of σ based on the relative postion of i and

τℓ in τ . Also, consider the number n− k + τℓ. σ must be a τ -match at position pn−k+τℓ . By the same reasoning, for

each number n − k + τℓ + i, we determine whether n − k + τℓ + i is in the left part or right part of σ based on the

relative position of τℓ + i and τℓ in τ . Thus, we determine both left and right part as sets.

Now, consider position ℓ in σ. σ must have a τ -match at position ℓ. Thus, numbers in first ℓ− 1 positions in σ must

involve in a τ -match at position ℓ, and so, the first ℓ− 1 numbers in σ must have the same relative order as first ℓ− 1
elements in τ . By the same reasoning, by considering position n − k + ℓ, the last k − ℓ numbers in σ have the same

relative order as the last k − ℓ numbers in τ . Therefore, we completely determine both left and right part of σ. Thus,

there is at most one way to rearrange {1, 2, . . . , τℓ − 1, n− k + τℓ + 1, . . . , n}.
Since the rearrangement in (2) makes pmpτ (σ) = n− k + 1, σ, then σ must satisfies (2).

As an example, if τ = 164352, any σ ∈ S9 with pmpτ (σ) = 9− 6 + 1 = 4 must have the following form:

σ = 1 9 7 σ4 σ5 σ6 σ7 8 2.

There are (n− k + 1)! ways to rearrange the “middle” part of σ. Thus, Pn,τ (x)|x
n−k+1 = (n− k + 1)!.

Another coefficient we can describe is Pn,132(x)|x. The sequences is A029760 and A139262 on OEIS. The se-

quence A139262 counts the sum of all inversion of all elements in Sn(132), the set of 132-avoiders in Sn.

Theorem 13. Pn+1,132(x)|x =
∑

σ∈Sn(132)

inv(σ)

To prove the theorem, we construct sets whose cardinality are
∑

σ∈Sn(132)

inv(σ).

Definition 14. Let IMSn(132) be the set of 132-avoiding σ that a pair of elements causing an inversion are marked

with ∗.
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As an example, IMS3(132) contains 8 elements, which are
∗

2
∗

13,
∗

23
∗

1, 2
∗

3
∗

1,
∗

3
∗

12,
∗

31
∗

2,
∗

3
∗

21,
∗

32
∗

1, and 3
∗

2
∗

1. It is easy

to see that |IMSn(132)| =
∑

σ∈Sn(132)

inv(σ).

Definition 15. Given σ ∈ Sn, i, j ∈ Z, 1 ≤ i ≤ n, 1 ≤ j ≤ n+1. Let θ(σ, i, j) be an element in Sn+1 obtained from

σ by

1. increasing every number greater than or equal to i by 1;

2. inserting i at the j-th position from the left. (The first position is in front of the first element, and the n + 1-th

position is behind the last element).

For example, to find θ(2143, 3, 2), first, we increase 3,4 by 1 so we have 2154. Then, we insert 3 at the second

position, so we have 23154. Thus, θ(2143, 3, 2) = 23154.

Here, we are ready to define a map Φ : IMSn(132)→
{

σ ∈ Sn+1 | pmp132(σ) = 1
}

.

Definition 16. Given σ ∈ IMSn(132). Let σ be the underlying permutation of σ. Let j be the position of the first *

in σ, and let i be the number underneath the second * in σ. Define Φ(σ) = θ(σ, i, j).

Lemma 17. Given σ ∈ IMSn(132) and σ̂ = Φ(σ), then pmp132(σ̂) = 1. Thus, Φ is a map from IMSn(132) to
{

σ ∈ Sn+1|pmp132(σ) = 1
}

.

Proof: Let σ ∈ IMSn(132) has a form

σ = σ1 . . . σk−1
∗
σkσk+1 . . . σℓ−1

∗
σℓσℓ+1 . . . σn

and σ is the underlying permutation. Then, Φ(σ) = θ(σ, σl, k) looks like

Φ(σ) = σ′
1 . . . σ

′
k−1σlσ

′
kσ

′
k+1 . . . σ

′
ℓ−1σ

′
ℓσ

′
ℓ+1 . . . σ

′
n

where

σ′
i =

{

σi + 1 for σi ≥ σl

σi for σi < σl
.

Note that σ′
ℓ = σℓ + 1. Also, since σk and σℓ cause an inversion, so σk > σℓ, and thus σ′

k = σk + 1. Therefore,

σℓ < σ′
ℓ < σ′

k. Equvialently, σℓ, σ
′
k, σ

′
ℓ form the pattern 132 in σ̂. Thus, pmp132(σ̂) ≥ 1. To prove that pmp132(σ̂) =

1, we need to show that σ̂ does not contain a pattern 132 that starts at any element other than σℓ.

Suppose otherwise. That is, σ̂ contains the pattern 132 where the starting element is σ′
t for some t. We have two

cases:

1. If the pattern does not involve σℓ, then there must be u, v such that σ′
t, σ

′
u, σ

′
v form a pattern 132. It is easy to

see that σt, σu, σv also form a pattern 132 in σ, which is a contradiction since σ is a 132-avoider.

2. If the pattern involves σℓ, then t < k and σ′
t < σℓ. In this case, it is easy to see that σ′

t, σ
′
k, σ

′
ℓ also form the

pattern 132. Thus, σt, σk, σℓ form the pattern 132 in σ, which is again a contradiction.

Thus, σ̂ does not contain the pattern 132 that starts at any element except σℓ. So, pmp132(σ̂) = 1.

The map Φ is clearly an injection. Let σ = σ1 . . . σn be in the image of Φ, and let σi be the starting point of the

pattern 132. Then, i determines the first starred element, and σi determines the second starred element. To prove that

the map Φ is a surjective, we need another lemma:

Lemma 18. Given σ = σ1 . . . σn ∈ Sn such that pmp132(σ) = 1. Suppose the pattern 132 in σ starts at σt, then the

following must be true:

(1) σt+1 ≥ σt.

(2) σt + 1 is on the right of σt.

(3) σt+1 6= σt + 1.
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That is, the graph of σ should look like

σt

σt+1

σt + 1

.

Proof: Suppose (1) is not true. There must be u, v such that σt, σu, σv form a pattern 132. Then, σt+1, σu, σv also

form a pattern 132. So, pmp132(σ) ≥ 2.

Suppose (2) is not true. There must be u, v such that σt, σu, σv form a pattern 132. Then, σt + 1, σu, σv also form

a pattern 132. So, pmp132(σ) ≥ 2.

Suppose (3) is not true. There must be u, v such that σt, σu, σv form a pattern 132. Then, σt+1, σu, σv also form a

pattern 132. So, pmp132(σ) ≥ 2.

In all cases, we have a contradiction. Therefore, (1), (2) and (3) are true.

Lemma 19. The map Φ : IMSn(132)→ {σ ∈ Sn+1|132(σ) = 1} is surjective.

Proof: Given any σ ∈ {σ ∈ Sn+1|132(σ) = 1}. Let σt be the starting point of the pattern 132 in σ. By lemma 18, we

know that σt, σt+1, σt + 1 form a pattern 132. Let σ̃ be a permutation obtained from σ by removing σt and reducing.

Let σ̃∗ be σ̃ with * marked on elements corresponding to σt+1 and σt+1 before reducing (σt+1−1, σt after reducing).

σ̃∗ is an element is IMSn(132) since σt+1, σt + 1 form an inversion. Clearly, Φ(σ̃∗) = σ.

For example, consider σ = 785269314 ∈ S9 with pmp132(σ) = 1, where only possible starting point of the pattern

132 is 2. So, in this example, σt, σt+1, σt + 1 are 2,6,3. Then, removing 2 and reducing give σ̃ = 67458213. Then,

put * at elements corresponding to 6,3 before reducing, which are 5,2 after reducing. So, σ̃∗ = 674
∗

58
∗

213.

Therefore Φ is a bijection, and so we prove Theorem 13.

3.3 Equivalence of 123 and 132

By observing diagrams of 132 and 132, we see that those two patterns are equivalent by Lemma 7. Thus, we will

instead prove that 123 and 132 are equivalent.

◦
×

×

×
◦

×

Diagrams of 132 and 132

Here, we restate and prove one of the theorems mentioned in Section 1.

Theorem 2. Two positional marked patterns 123 and 132 are PMP -Wilf-equivalent.

For our convenience, we let τ1 = 123 and τ2 = 132. We will first prove by showing that two generating functions

satisfy the same recursive formula. We later will construct a bijection from Sn to itself that maps an pmpτ1 to pmpτ2 ,

that is, a map θ such that pmpτ1(σ) = pmpτ2(θ(σ)).

Given any permutation σ ∈ Sn. We will look at the position of 1 in σ. Let Pn,τ1,k(x) =
∑

xpmpτ1 (σ), where the

sum is over all permutations in Sn with 1 at position k. Then, we have Pn,τ1(x) =

n
∑

k=1

Pn,τ1,k(x).

Here, we derive a recursive formula for Pn,τ1,k(x).
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Lemma 20. Let τ1 = 123 and let Pn,τ1,k = xpmpτ1 (σ) where the sum is over all σ ∈ Sn with 1 at position k. Then,

Pn,τ1,k(x) satisfies the following recursive formula:

Pn,τ1,k(x) =

(

k−1
∑

ℓ=1

Pn−1,τ1,ℓ(x)

)

+ (x(n− k − 1) + 1)Pn−1,τ1,k(x)

where Pn,τ1,N(x) = 0 for N > n by convention.

Proof: We derive a recursive formula for Pn,τ1,k(x) by looking at the position of 2 in σ where the position of 1 is k.

σ has a following form

σ = σ1 σ2 . . . σk−1 1 σk+1 . . . σn.

Let ℓ be the position of 2. We have 3 cases:

1. 1 ≤ ℓ ≤ k − 1. In this case, we can remove 1 from σ and decrease other elements by 1 without effecting

τ1-match at other position. To see this, first note that if σ does not have a τ1-match at a particular position,

removing 1 and reducing will not change it. Also, if σ does not have a τ1-match at some position before 1, then

removing 1 will not change τ1-match at the position, since 1 can only serve as 1 in 123. However, 1 appears

after the position that τ1-match occurs. Thus, σ has a τ1-match at the position without considering 1. Lastly, if

σ has a τ1-match at some position t after 1. Note that 2 appears before 1 in σ. Thus, 2 can serve as 1 in 123.

Therefore, σ still has a τ1-match at position t when not considering 1. So, we can remove 1 and decrease other

elements by 1 without effecting τ1-match.

After removing 1 and reducing, the position of 1 will be ℓ. Thus, this case contributes

k−1
∑

ℓ=1

Pn−1,τ1,ℓ(x).

2. k + 1 ≤ ℓ ≤ n− 1. In this case, σ has a τ1-match at position ℓ since 1 2 σn form the pattern τ1. Moreover, by

the same reason as in the first case, removing 2 and reducing will not effect τ1-match at other position.

After removing 2 and reducing, the position of 1 is still ℓ. Thus, this case contributes x(n−k− 1)Pn−1,τ1,k(x).

3. ℓ = n. In this case, σ does not have a τ1-match at position ℓ, and removing 2 will not effect τ1-match at other

positions. Thus, this case contributes Pn−1,τ1,k(x).

In total, we have

Pn,τ1,k(x) =

(

k−1
∑

ℓ=1

Pn−1,τ1,ℓ(x)

)

+ x(n− k − 1)Pn−1,τ1,k(x) + Pn−1,τ1,k(x)

=

(

k−1
∑

ℓ=1

Pn−1,τ1,ℓ(x)

)

+ (x(n− k − 1) + 1)Pn−1,τ1,k(x).

Note that, the first case vanishes when k = 1, but the formula is correct since it would contribute an empty sum-

mation. The second case vanishes when n − 1 ≤ k ≤ n, but the formula is still correct since n − k − 1 = 0 for

k = n − 1 and Pn−1,τ1,n(x) = 0 for k = n. The last case also vanishes when k = n, but the formula is still correct

as Pn−1,τ1,n(x) = 0.

Here, we prove a similar result of τ2 = 132.

Lemma 21. Let τ2 = 132 and let Pn,τ2,k(x) = xpmpτ2 (σ) where the sum is over all σ ∈ Sn with 1 at position k.

Then, Pn,τ2,k(x) satisfies the following recursive formula:

Pn,τ2,k(x) =

(

k−1
∑

ℓ=1

Pn−1,τ2,ℓ(x)

)

+ (x(n− k − 1) + 1)Pn−1,τ2,k(x).
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Proof: We derive a recursive formula for Pn,τ2,k(x) by looking at the position of 2 in σ where the position of 1 is k.

σ has a following form

σ = σ1 σ2 . . . σk−1 1 σk+1 . . . σn.

Let ℓ be the position of 2. We have 3 cases:

1. 1 ≤ ℓ ≤ k − 1. In this case, by the same reason as the first case in the proof of Lemma 20, we can remove 1
from σ and decrease other elements by 1 without effecting τ1-match at other positions.

After removing 1 and reducing, the position of 1 will be ℓ. Thus, this case contributes

k−1
∑

ℓ=1

Pn−1,τ2,ℓ(x).

2. ℓ = k + 1. In this case, σ does not have a τ2-match at position ℓ, and removing 2 will not effect τ2-match at

other positions by the same reason as above. Thus, this case contributes Pn−1,τ2,k(x).

3. k+2 ≤ ℓ ≤ n. In this case, σ has a τ2-match at position ℓ since 1 σk+1 2 form the pattern τ2. Moreover, by the

same reason as above, removing 2 and reducing will not effect τ2-match at other position.

After removing 2 and reducing, the position of 1 is still at ℓ. Thus, this case contribute x(n−k−1)Pn−1,τ2,k(x).

In total, we have

Pn,τ2,k(x) =

(

k−1
∑

ℓ=1

Pn−1,τ2,ℓ(x)

)

+ x(n− k − 1)Pn−1,τ2,k(x) + Pn−1,τ2,k(x)

=

(

k−1
∑

ℓ=1

Pn−1,τ2,ℓ(x)

)

+ (x(n− k − 1) + 1)Pn−1,τ2,k(x).

Note that the first case vanishes when k = 1, but the formula is still correct as it contributes an empty summation.

The second case vanishes when k = n. The formula is still correct as Pn−1,τ2,n(x) = 0. The last case vanishes when

k = n − 1, n. When k = n − 1, the formula is correct as n − k − 1 = 0. When k = n, the formula is correct as

Pn−1,τ2,n(x) = 0.

It is easy to see that P1,τ1,1(x) = 1 = P1,τ2,1(x). Since, Pn,τ1,k(x) and Pn,τ2,k(x) satisfy the same recursive

formula and have the same initial values, we prove that Pn,τ1,k(x) = Pn,τ2,k(x) for all n, k such that 1 ≤ k ≤ n, and

thus Pn,τ1(x) = Pn,τ2(x) for all n ≥ 1. Hence, we prove Theorem 2.

We also construct a bijection θ : Sn → Sn such that pmpτ1(σ) = pmpτ2(θ(σ)) based on the recursive formula. We

define θ(1) = 1, θ(12) = 12 and θ(21) = 21. In general, θ will satisfies the following properties:

1. The position of 1 in σ is the same as the position of 1 in θ(σ).

2. pmpτ1(σ) = pmpτ2(θ(σ)).

θ satisfies the properties for S1 and S2. For Sn+1 where n ≥ 2, we define the map recursively. Given σ ∈ Sn, we

have σ′ = θ(σ). We know that the position of 1 in σ is the same as the position of 1 in σ′. Let k be the position.

Here, we obtain an element σ̂ ∈ Sn+1 by applying one of the following:

1. Increase every element by 1, and insert 1 at or after position k + 1.

2. Increase every element except 1 by 1, and insert 2 at or after position k + 1.

Then, we obtain θ(σ̂) by applying similar action to σ′ based on an action applied to σ:

1. If 1 was inserted to σ, then increase every element in σ′ by 1 and insert 1 at the same position as inserted in σ.
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2. If 2 was inserted to σ at position r, then increase every element in σ′ except 1 by 1 and insert 2 at position r′

where

r′ =

{

r + 1 k + 1 ≤ r ≤ n

k + 1 r = n+ 1
.

Corresponding positions when inserting 1 or 2 can be viewed from Figure 5 and Firgure 6.

σ1 σ2 σk−1 1 σk+1 σk+2 σn−1 σn

σ′
1 σ′

2 σ′
k−1 1 σ′

k+1 σ′
k+2 σ′

n−1 σ′
n

Fig. 5: Corresponding positions when inserting 1

σ1 σ2 σk−1 1 σk+1 σk+2 σn−1 σn

σ′
1 σ′

2 σ′
k−1 1 σ′

k+1 σ′
k+2 σ′

n−1 σ′
n

Fig. 6: Corresponding positions when inserting 2

The position of 1 in σ̂ and θ(σ̂) will be the same. Also, pmpτ1(σ) would increase by 1 if and only if 2 was inserted

at a non-last position, while pmpτ2(σ
′) will increase by 1 if and only if 2 was inserted at any position but k+1. Thus,

pmpτ1(σ̂) = pmpτ2(θ(σ̂)). Also, it is not hard to see that every σ ∈ Sn can be obtained by inserting 1 or 2 repeatedly

in a unique way. Therefore, θ is a bijection.

As an example, we start with θ(12) = 12. Say, we would like to insert 2, then the diagram looks like

1 2

1 2 .

Suppose we insert 2 to the preimage 12 at the last position, so then get 132. According to the diagram, we should

insert 2 to the image 12 at the first position, so we get 123. Thus, θ(132) = 123. Here, suppose we would like to insert

1, then the diagram looks like:

1 3 2

1 2 3 .
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Suppose we insert 1 to 132 at the first position, then we get 2143. According to the diagram, we insert 1 to 123 at

the same position, so we get 2134. Thus, θ(2143) = 2134.

Now, suppose we want to insert 2. The diagram looks like:

2 1 3 4

2 1 4 3 .

Suppose we insert 2 to 2134 at the second position, so we get 31245. According to the diagram, we insert 2 to 2143
at the last position, so we get 31542. Thus, θ(31245) = 31542.

Below are enumerations of Pn,123(x) for the first few n.

P1,123(x) = 1

P2,123(x) = 2

P3,123(x) = 5 + x

P4,123(x) = 14 + 8x+ 2x2

P5,123(x) = 42 + 46x+ 26x2 + 6x3

P6,123(x) = 132 + 232x+ 220x2 + 112x3 + 24x4

P7,123(x) = 429 + 1093x+ 1527x2 + 1275x3 + 596x4 + 120x5

P8,123(x) = 1430 + 4944x+ 9436x2 + 11384x3 + 8638x4 + 3768x5 + 720x6

Remark In fact, the equivalence of 123 and 213 follows a general result from Theorem 3.

4 Equivalence classes of S∗4
There are 4! · 4 = 96 PMP s in S∗

4 . However, there are at most 16 equivalent classes by Lemma 7. All the represen-

tatives are listed in Figure 4.

×
×

×
◦
1234

×
×
◦

×
1234

×
×

×
◦
1243

×
×

◦
×

1243
◦
×

×
×

1243

×
×
×

◦
1432

◦
×
×

×
1432

×
◦
×

×
1432

×
×

◦
×
2143

×
×

×
◦
1342

×
◦

×
×

1342

◦
×

×
×

1342
×

×
◦

×
1342

×
×

◦
×

2413

×
×
×

◦
1324

×
◦
×

×
1324

Fig. 7: Diagrams of representatives of PMP s of length 4 modulo geometrical equivalence
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In this section, we present numerical results suggesting that there are 10 equivalent classes in S∗
4 . We then will show

that the following patterns are equivalent: 1234, 1243, 2134, 2143.

4.1 Numerical data

Here, for each pattern τ shown in Figure 4, we enumerate polynomials Pn,τ (x) for small n. We also group patterns

together if they seem to provide the same polynomials.

4.1.1 τ = 1234, 1243, 1432

P1,τ (x) = 1

P2,τ (x) = 2

P3,τ (x) = 6

P4,τ (x) = 23 + x

P5,τ (x) = 103 + 15x + 2x
2

P6,τ (x) = 513 + 158x + 43x2 + 6x3

P7,τ (x) = 2761 + 1466x + 619x2 + 170x3 + 24x4

P8,τ (x) = 15767 + 12864x + 7598x2 + 3121x3 + 850x4 + 120x5

4.1.2 τ = 1234, 1243, 1243, 2143

P1,τ (x) = 1

P2,τ (x) = 2

P3,τ (x) = 6

P4,τ (x) = 23 + x

P5,τ (x) = 103 + 15x + 2x2

P6,τ (x) = 513 + 157x + 44x2 + 6x3

P7,τ (x) = 2761 + 1439x + 638x2 + 178x3 + 24x4

P8,τ (x) = 15767 + 12420x + 7764x2 + 3341x3 + 908x4 + 120x5

4.1.3 τ = 1432

P1,τ (x) = 1

P2,τ (x) = 2

P3,τ (x) = 6

P4,τ (x) = 23 + x

P5,τ (x) = 103 + 15x + 2x2

P6,τ (x) = 513 + 157x + 44x2 + 6x3

P7,τ (x) = 2761 + 1438x + 640x
2
+ 177x

3
+ 24x

4

P8,τ (x) = 15767 + 12393x + 7809x2 + 3332x3 + 899x4 + 120x5

4.1.4 τ = 1432

P1,τ (x) = 1

P2,τ (x) = 2

P3,τ (x) = 6

P4,τ (x) = 23 + x

P5,τ (x) = 103 + 15x + 2x2

P6,τ (x) = 513 + 156x + 45x2 + 6x3

P7,τ (x) = 2761 + 1415x + 655x2 + 185x3 + 24x4

P8,τ (x) = 15767 + 12058x + 7895x2 + 3524x3 + 956x4 + 120x5
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4.1.5 τ = 1342

P1,τ (x) = 1

P2,τ (x) = 2

P3,τ (x) = 6

P4,τ (x) = 23 + x

P5,τ (x) = 103 + 15x + 2x
2

P6,τ (x) = 512 + 160x + 42x2 + 6x3

P7,τ (x) = 2740 + 1500x + 614x
2
+ 162x

3
+ 24x

4

P8,τ (x) = 15485 + 13207x + 7700x2 + 3016x3 + 792x4 + 120x5

4.1.6 τ = 1342

P1,τ (x) = 1

P2,τ (x) = 2

P3,τ (x) = 6

P4,τ (x) = 23 + x

P5,τ (x) = 103 + 15x + 2x2

P6,τ (x) = 512 + 158x + 44x2 + 6x3

P7,τ (x) = 2740 + 1451x + 646x
2
+ 179x

3
+ 24x

4

P8,τ (x) = 15485 + 12455x + 7912x2 + 3427x3 + 921x4 + 120x5

4.1.7 τ = 1342, 2413

P1,τ (x) = 1

P2,τ (x) = 2

P3,τ (x) = 6

P4,τ (x) = 23 + x

P5,τ (x) = 103 + 15x + 2x2

P6,τ (x) = 512 + 158x + 44x2 + 6x3

P7,τ (x) = 2740 + 1454x + 644x
2
+ 178x

3
+ 24x

4

P8,τ (x) = 15485 + 12533x + 7897x2 + 3377x3 + 908x4 + 120x5

4.1.8 τ = 1342

P1,τ (x) = 1

P2,τ (x) = 2

P3,τ (x) = 6

P4,τ (x) = 23 + x

P5,τ (x) = 103 + 15x + 2x2

P6,τ (x) = 512 + 159x + 43x2 + 6x3

P7,τ (x) = 2740 + 1475x + 629x2 + 172x3 + 24x4

P8,τ (x) = 15485 + 12817x + 7781x2 + 3244x3 + 873x4 + 120x5

4.1.9 τ = 1324

P1,τ (x) = 1

P2,τ (x) = 2

P3,τ (x) = 6

P4,τ (x) = 23 + x

P5,τ (x) = 103 + 15x + 2x2

P6,τ (x) = 513 + 158x + 43x2 + 6x3

P7,τ (x) = 2762 + 1464x + 620x2 + 170x3 + 24x4

P8,τ (x) = 15793 + 12820x + 7608x2 + 3129x3 + 850x4 + 120x5
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4.1.10 τ = 1324

P1,τ (x) = 1

P2,τ (x) = 2

P3,τ (x) = 6

P4,τ (x) = 23 + x

P5,τ (x) = 103 + 15x + 2x2

P6,τ (x) = 513 + 156x + 45x2 + 6x3

P7,τ (x) = 2762 + 1414x + 654x2 + 186x3 + 24x4

P8,τ (x) = 15793 + 12041x + 7861x2 + 3539x3 + 966x4 + 120x5

4.2 Equivalence of 1234, 1243, 2134 and 2143

Here, we prove an equivalence of four patterns: 1234, 1243, 2134 and 2143. Note that, they are equivalent to four

patterns appearing in Section 4.1.2, since 2134 and 1243 are equivalent.

×
×

◦
×

◦
×

×
×

Diagrams of 2134 and 1243

The equivalence of 1234 and 2134 as well as the equivalence of 1243 and 2143 follow a more general Theorem 3.

Thus, in this section, we only prove the equivalence of 1234 and 1243.

Theorem 22. Two PMP s 1234 and 1243 are PMP -Wilf-equivalent.

For our convenience, let τ1 = 1234. Let Pn,τ1,s(x) =
∑

σ

xpmpτ1 (σ), where the sum is over all σ ∈ Sn with the last

ascent of σ at position s. Let Pn,τ1,s,t(x) =
∑

σ

xpmpτ1 (σ), where the sum is over all σ ∈ Sn with the last ascent of σ

at position s and 1 at position t. All feasible values of s are 1, 2, . . . , n− 1. All feasible values of t are 1, 2, . . . , s, n
for s 6= n− 1, and 1, 2, . . . , n− 1 for s = n− 1. Thus,

Pn,τ1(x) = 1 +
n−1
∑

s=1

Pn,τ1,s(x)

and also,

Pn,τ1,s(x) =

(

s
∑

t=1

Pn,τ1,s,t(x)

)

+ Pn,τ1,s,n(x). (4.1)

Note that the second term vanishes as s = n− 1. Here, we derive a recursive formula for Pn,τ1,s,t(x).

Lemma 23. Pn,τ1,s,t(x) satisfies the following recursive formulas:

Pn,τ1,s,t(x) =

t−1
∑

ℓ=1

Pn−1,τ1,s−1,ℓ(x) + (s− 1− t)xPn−1,τ1,s−1,t(x) +

s
∑

j=t+1

Pn−1,τ1,j,t(x) + Pn−1,τ1,t,t(x)

for 1 ≤ t < s ≤ n− 1,

Pn,τ1,s,s(x) = 1 +
s−1
∑

i=1

Pn−1,τ1,i(x)

for 1 ≤ s ≤ n− 1, and

Pn,τ1,s,n(x) = Pn−1,τ1,s(x)

for 1 ≤ s < n− 1.

By convention, Let Pn,τ1,s,t(x) = 0 for infeasible value of s, t.
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Proof: First, consider the formula for Pn,τ1,s,t(x) when 1 ≤ t < s ≤ n − 1. Let ℓ be the position of 2 in σ, where

σ ∈ Sn with the last ascent of σ at position s and 1 at position t. We have 4 cases:

1. 1 ≤ ℓ ≤ t − 1. In this case, we can remove 1 from σ without effecting a τ1-match at other positions. That is

because σ does not have a τ1-match at the position of 2, and if σ has a τ1-match at other positions and matching

involves 1, it can still have a τ1-match by using 2 instead of 1.

After removing and reducing, the position of 1 is ℓ, and the position of the last ascent is s− 1. Thus, this case

contributes

t−1
∑

ℓ=1

Pn−1,τ1,s−1,ℓ(x).

2. t + 1 ≤ ℓ ≤ s − 1. In this case, σ has a τ1-match at position ℓ since 1 2 σs σs+1 form the pattern τ1. By the

same reasoning as the first case, we can remove 2 without effecting τ1-match at any other positions.

After removing and reducing, the position of 1 stays at t and the position of the last ascent is s− 1. Thus, this

case contributes x(s− 1− t)Pn−1,τ1,s−1,t(x).

3. ℓ = s. In this case, we can remove 2 without effecting a τ1-match at other positions.

After removing and reducing, the position of 1 stays at t and the last ascent appears at some position between t

and s− 1. Thus, this case contributes

s−1
∑

j=t

Pn−1,τ1,j,t(x).

4. ℓ = n. In this case, we can remove 2 without effecting a τ1-match at other positions. After removing and

reducing, the position of 1 stays at t and the position of the last ascent stays at s. Thus, this case contributes

Pn−1,τ1,s,t(x).

In total, we have

Pn,τ1,s,t(x) =
t−1
∑

ℓ=1

Pn−1,τ1,s−1,ℓ(x) + (s− 1− t)xPn−1,τ1,s−1,t(x) +
s−1
∑

j=t

Pn−1,τ1,j,t(x) + Pn−1,τ1,s,t(x)

=

t−1
∑

ℓ=1

Pn−1,τ1,s−1,ℓ(x) + (s− 1− t)xPn−1,τ1,s−1,t(x) +

s
∑

j=t+1

Pn−1,τ1,j,t(x) + Pn−1,τ1,t,t(x).

Note that, the first case vanishes if t = 1, but the formula is consistent as it contributes an empty summation. The

second case vanishes when t = s− 1, but the formula is still correct as Pn−1,τ1,s−1,s(x) = 0. The last case vanishes

when s = n− 1, but the formula is correct as Pn−1,τ1,n−1,t(x) = 0. Thus, we prove the first formula.

Here, we derive a recursive formula for Pn,τ1,s,s(x) when 1 ≤ s ≤ n− 1. Given any σ ∈ Sn such that the position

of 1 and the position of the last ascent is s. Removing 1 does not effect a τ1-match at other positions. After removing

and reducing, the permutation either has no ascent, or the last ascent is at some position between 1 and s − 1. Thus,

we have

Pn,τ1,s,s(x) = 1 +

s−1
∑

i=1

Pn−1,τ1,i(x).

Lastly, we derive a formula for Pn,τ1,s,n(x) when 1 ≤ s < n − 1. Given any σ such that the position of the last

ascent is s and 1 is at the last position. Removing 1 will not effect τ1-match at other positions. The position of the last

ascent is still s. Thus, we have

Pn,τ1,s,n(x) = Pn−1,τ1,s(x).

We shall prove similar result for 1243. Let τ2 = 1243. Let Pn,τ2,s(x) =
∑

σ

xpmpτ2 (σ), where the sum is over all

σ ∈ Sn with the last descent of σ at position s. Let Pn,τ2,s,t(x) =
∑

σ

xpmpτ2 (σ), where the sum is over all σ ∈ Sn
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with the last descent of σ at position s and 1 at position t. All feasible values of s are 1, 2, . . . , n − 1. All feasible

values of t are t = 1, 2, . . . , s− 1 and s+ 1. Note that, when s = 1, the only possible value for t is 2. Thus, we have

Pn,τ2(x) = 1 +

n−1
∑

s=1

Pn,τ2,s(x).

Also,

Pn,τ2,s(x) =

(

s−1
∑

t=1

Pn,τ2,s,t(x)

)

+ Pn,τ2,s,s+1(x). (4.2)

Here, we derive a recursive formula for Pn,τ2,s(x).

Lemma 24. Pn,τ2,s,t(x) satisfies the following recursive formulas:

Pn,τ2,s,t(x) =

t−1
∑

ℓ=1

Pn−1,τ2,s−1,ℓ(x) + (s− 1− t)xPn−1,τ2,s−1,t(x) +

s
∑

j=t+1

Pn−1,τ2,j,t(x) + Pn−1,τ2,t−1,t(x).

for 1 ≤ t < s ≤ n− 1,

Pn,τ2,s,s+1(x) = 1 +
s
∑

i=1

Pn−1,τ2,i(x)

for 1 ≤ s ≤ n− 1, and

By convention, let Pn,τ2,s,t(x) = 0 for infeasible value of s, t.

Proof: First, consider the formula for Pn,τ2,s,t(x) when 1 ≤ t < s ≤ n − 1. Let ℓ be the position of 2 in σ, where

σ ∈ Sn with the last descent of σ at position s and 1 at position t. we have 4 cases:

1. 1 ≤ ℓ ≤ t− 1. In this case, σ does not have a τ2-match at position ℓ. We can remove 1 from σ without effecting

τ2-match at other positions. That is because if σ has a τ2-match at other positions and the matching involves 1,

it still has a τ2-match by using 2 instead of 1.

After removing and reducing, the position of 1 is ℓ and the position of the last descent is s− 1. Thus, this case

contributes

t−1
∑

ℓ=1

Pn−1,τ2,s−1,ℓ(x).

2. t + 1 ≤ ℓ ≤ s − 1. In this case, σ has a τ2-match at position ℓ since 1 2 σs σs+1 form the pattern τ2. By the

same reasoning as the first case, we can remove 2 without effecting τ2-match at any other positions.

After removing and reducing, the position of 1 stays at t and the position of the last descent is s− 1. Thus, this

case contributes x(s− 1− t)Pn−1,τ1,s−1,t(x).

3. ℓ = s. In this case, we can remove 2 without effecting τ2-match at other positions.

After removing and reducing, the position of 1 stays at t and the last descent appears at some position be-

tween t + 1 and s, or at the position t − 1 (right before 1). Thus, this case contributes

s
∑

j=t+1

Pn−1,τ2,j,t(x) +

Pn−1,τ2,t−1,t(x).

In total, we have

Pn,τ2,s,t(x) =

t−1
∑

ℓ=1

Pn−1,τ2,s−1,ℓ(x) + (s− 1− t)xPn−1,τ2,s−1,t(x) +

s
∑

j=t+1

Pn−1,τ2,j,t(x) + Pn−1,τ2,t−1,t(x).

Note that, the first case vanishes if t = 1, but the formula is consistent as it contributes an empty summation. The

second case vanishes when t = s− 1, but the formula is still correct as Pn−1,τ2,s−1,s(x) = 0. The last case vanishes

when s = n− 1, but the formula is correct as Pn−1,τ2,n−1,t(x) = 0. Thus, we prove the first formula.
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Next, we derive the recursive formula for Pn,τ2,s,s+1(x) for 1 ≤ s ≤ n − 1. Given any σ ∈ Sn such that the

position of the last descent is s and the position of 1 is s + 1. Removing 1 will not effect τ2-matching at other

positions. After removing and reducing, the remaining permutation either has no descent, or the last descent is at some

position between 1 and s. Thus, we have

Pn,τ2,s,s+1(x) = 1 +

s
∑

i=1

Pn−1,τ2,i(x).

Thus, we prove the second formula.

Here, we prove equality of Pn,τ1(x) and Pn,τ2(x). Note that since Pn,τ1(x) = 1 +

n−1
∑

s=1

Pn,τ1,s(x) and Pn,τ2(x) =

1 +

n−1
∑

s=1

Pn,τ2,s(x), it is enough to show that Pn,τ1,s(x) = Pn,τ2,s(x) for 1 ≤ s ≤ n− 1.

Lemma 25. Pn,τ1,s(x) = Pn,τ2,s(x) for 1 ≤ s ≤ n− 1.

Proof:

First of all, Pn,τ1,t,t(x) = Pn,τ2,t−1,t(x) by Lemma 23 and 24. As a result, Pn,τ1,s,t(x) and Pn,τ2,s,t(x) have the

same recursive formula for 1 ≤ t < s. Then, we proceed to prove the lemma as follows.

Pn,τ1,s(x) =

s
∑

t=1

Pn,τ1,s,t(x) + Pn,τ1,s,n(x) By (4.1)

=

s−1
∑

t=1

Pn,τ1,s,t(x) + Pn,τ1,s,s(x) + Pn,τ1,s,n(x)

=

s−1
∑

t=1

Pn,τ1,s,t(x) +

(

1 +

s−1
∑

ℓ=1

Pn−1,τ1,ℓ(x)

)

+ Pn−1,τ1,s(x) By Lemma 23

=

s−1
∑

t=1

Pn,τ1,s,t(x) + 1 +

s
∑

i=1

Pn−1,τ1,i(x)

Here, notice that Pn,τ1,s,t(x) = Pn,τ2,s,t(x) as we discussed above, and Pn−1,τ1,i(x) = Pn−1,τ2,i(x) by inductive

hypothesis. Thus, we have

Pn,τ1,s(x) =
s−1
∑

t=1

Pn,τ2,s,t(x) + 1 +
s
∑

i=1

Pn−1,τ2,i(x)

=
s−1
∑

t=1

Pn,τ2,s,t(x) + Pn,τ2,s,s+1(x) By Lemma 24

= Pn,τ2,s(x) By (4.2)

Therefore, Pn,τ1,s(x) = Pn,τ2,s(x) for all 1 ≤ s ≤ n− 1.

As a consequence, Pn,τ1(x) = Pn,τ2(x), and so τ1 and τ2 are PMP -Wilf-equivalent. Hence, we prove Theorem

22.

We end this section here by introducing collections of patterns that are likely to be equivalent to one another, but

we do not yet have a proof. According to numerical values generated, we guess that 1234, 1432 and 1243 are all

equivalent to one another. Also, 1342 and 2413 are likely to be equivalent. Diagrams of mentioned positional marked

patterns are shown in Figure 8 and 9.
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×
×

×
◦
1234

×
×
×

◦
1432

×
×

×
◦
1243

Fig. 8: Patterns 1234, 1432 and 1243

×
×

◦
×

2413

◦
×

×
×

1342

Fig. 9: Patterns 2413 and 1342

5 Patterns of arbitrary length

In this section, we restate and prove an equivalence of a collection positional marked patterns of arbitrary length

mentioned in Section 1.

Theorem 3. Let n ≥ 4 and p1, p2, . . . , pn−2 be a rearrangement of 3, 4, . . . n. Three positional marked patterns

P1 = 12p1 . . . pℓ−2, P2 = 21p1 . . . pℓ−2 and P3 = 21p1 . . . pℓ−2 are PMP -Wilf-equivalent.

We will prove that P1 and P2 are PMP -Wilf-equivalent. The equivalence of P1 and P3 follows from the fact that

P1 and P2 are equivalent. Here, we apply the technique introduced in Babson and West (2000) to prove the equivalence

of P1 and P2. First, we need to give several definitions. Let τ = red(p1p2 . . . pℓ−2).

Definition 26. Given π ∈ Sn. Consider the diagram of π. For each cell (i, j) in the diagram of π, the cell is

dominant if there is an occurrence of τ in the diagram of π when only considering row i+1, i+2, . . . , n and columns

j + 1, j + 2, . . . , n. A cell is non-dominant if it is not dominant.

It is clear that given any dominant cell, every cell to the left and below the dominant cell is also dominant. Thus,

the collection of dominant cells form a Ferrers board.

Let ND(π) = {(i, j) ∈ [n]× [n] | cell (i, j) is non-dominant and contains×}. Note that, if a cell is dominant,

then one could find an occurrence of τ above and to the right of the cell such that all × involved are in non-dominant

cell. If not, then every occurrence of τ above and to the right of the cell (i, j) contains × in a dominant cell. Pick

a copy T1 of τ in which a dominant cell (i′, j′) containing × is the rightmost among all dominant cells containing

× in all copies of τ above and to the right of (i, j). Since cell (i′, j′) is also dominant, one can find a copy T2 of τ

above and to the right of (i′, j′), which is also above and to the right of cell (i, j). Thus, this copy will also contain a

dominant cell containing×, contradicting to the fact that the T1 contains the rightmost dominant cell.

Thus, if ND(π) is known, one can recover the set of dominant cells in the diagram of π completely. Given any

Q ⊆ [n]× [n], let SQ
n = {π ∈ Sn|ND(π) = Q}. We shall prove that

∑

π∈S
Q
n

xpmpP1 (π) =
∑

π∈S
Q
n

xpmpP2 (π).

Here, we analyse the set SQ
n . First, we only need to consider those Q such that SQ

n 6= ∅. Given any such Q, we

can obtain an element in SQ
n by filling × in the dominant part of the diagram until every row and column contains

precisely one ×. This gives all elements in SQ
n since filling × in the dominant part does not alter whether a cell is

dominant or non-dominant.

To fill × in dominant cells, we start with all dominant cells and eliminate all rows and columns that already contain

× from the set Q. The remaining cells form a Ferrers board. Let λ(Q) denote the shape of the Ferrers board obtained

from the process above.

Definition 27. Given any Ferrers board of shape λ = (λ1, λ2, . . . , λk) with λ1 ≥ λ2 ≥ . . . ≥ λk, a filling of λ is an

assignment of × in the Ferrers board of shape λ such that every row and columns contain precisely one ×.
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In order for λ to have a filling, the number of rows of λ must be the same as the number of columns in λ. More

specifically, if λ = (λ1, λ2, . . . , λk), λ has a filling if and only if (k− i+1) ≤ λi ≤ k for all k. Let Sλ denote the set

of fillings of λ.

Given any π ∈ Sλ, and p ∈ Sk, we say that π contains p if π contains a subdiagram of p. Note that, in order for π to

contain p, the entire diagram of p has to present as a subdiagram of π including cells not containing ×. For example,

the filling below contains p = 12 but does not contain q = 21.

×
×

×
×

Here, we define positional marked pattern on Sλ similar to Sn. Given any π ∈ Sλ and p ∈ S∗
k , we say that π has

a p-match at position t if when replacing × in the t-th column of π of by ◦, then it contains a subdiagram p. For

example, the diagram above has a 12-match at position 3 as shown below.

×
×

×
◦

Let pmpp(π) denote the number of positions t such that π has a p-match at position t. Here, we state a lemma

which will be our main tool to prove Theorem 3.

Lemma 28. Given any Q ⊆ [n]× [n] such that SQ
n 6= ∅. Then

∑

π∈S
Q
n

xpmpP1 (π) =
∑

π∈Sλ(Q)

xpmp12(π)

and

∑

π∈S
Q
n

xpmpP2 (π) =
∑

π∈Sλ(Q)

xpmp21(π).

Proof: Note that there is a natural bijection φ : Sλ(Q) → SQ
n which maps any filling π ∈ λ(Q) to a permutation

with non-dominant part corresponding to Q and dominant part having the same filling as π. We will show that π has

a 12-match at a position if and only if φ(π) has a P1-match at the corresponding position according to the map φ

The converse is obvious. For the forward direction, suppose π ∈ Sλ(Q) has a 12-match at a certain position. Thus,

the corresponding position in φ(π) has a 12-match with every cells involved are dominant. Thus, we can find a copy

of τ above and to the right of every cells involved in 12-match. Therefore, the 12-match together with τ makes φ(π)
P1-match at the position corresponding to the 12-match in π.

Therefore, φ is a bijection between Sλ(Q) and SQ
n such that pmp12(π) = pmpP1(φ(π)). Thus, it proves the first

equality of the lemma. The second equation can be proved with the exact same reasoning.

As an example, let n = 9, τ = 12, (so P1 = 1234 and P2 = 2134), and Q is as below

×
×

×

×

.

With Q, we recover dominant and non-dominant cells. We fill • in non-dominant cells as below
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• • • • • • • • ×
• × • • • • • • •
• • • • • • • •
• • • × • • • •

• • • • •
• • • • •
• • • × •

• •
• • .

We want to fill × into the diagram so that every row and column contains precisely one ×, thus we eliminate all

empty cells that are in same rows or columns with cell containing ×. We fill • in such cells,

• • • • • • • • ×
• × • • • • • • •
• • • • • • • •

• • • • × • • • •
• • • • • •
• • • • • •

• • • • • • • × •
• • • •
• • • • .

Thus, the remaining cells form a Ferrers board λ(Q) = (5, 5, 3, 3, 1), as shown below:

.

Then, to define the one-to-one corresponding between S
Q
9 and Sλ(Q), we fill cells in λ(Q) the same way we fill

available cells in a diagram Q. For example, below is an example of the correspondence:

π =

×
×

×
×

× ←→ φ(π) =

• • • • • • • • ×
• × • • • • • • •
× • • • • • • • •
• • • • × • • • •
• × • • • • •
• × • • • • •

• • • • • • • × •
• • × • •
• • × • • .

With this map, 12-matching at position 3 of π corresponds to 1234-matching at position 4 of φ(π),

π =

×
◦

×
×

× ←→ φ(π) =

• • • • • • • • ×
• × • • • • • • •
× • • • • • • • •
• • • • × • • • •
• ◦ • • • • •
• × • • • • •

• • • • • • • × •
• • × • •
• • × • • .
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Here, in order to prove theorem 3, we only need to prove that, given any Ferrers board λ,
∑

π∈Sλ

xpmp12(π) =

∑

π∈Sλ

xpmp21(π). In fact, we find a formula for both polynomials.

Lemma 29. Let λ = (λ1, λ2, . . . , λk) be a Ferrers board such that (k − i+ 1) ≤ λi ≤ k for all 1 ≤ i ≤ k. Then,

∑

π∈Sλ

xpmp12(π) =
∑

π∈Sλ

xpmp21(π) =

k
∏

i=1

(1 + (λi − (k − i+ 1))x).

Proof: Given any λ satisfying (k − i + 1) ≤ λi ≤ k for all 1 ≤ i ≤ k, let λ be a Ferrers board obtained from λ by

removing the top most row and left most column. That is λ = (λ1 − 1, λ2 − 1, . . . , λk−1 − 1). Then, to prove the

formula, we only need to prove that

∑

π∈Sλ

xpmp12(π) = (1 + (λk − 1)x)
∑

π∈S
λ

xpmp12(π).

To prove the equation above, we consider the topmost row in λ. The filling has a 12-match at the position of × in

the topmost row if and only if × is not in the rightmost possible cell. So, there are λk − 1 positions to fill × so that

it has a 12-match, and 1 position otherwise. Once the top row is filled, we consider filling the rest of λ by remove the

top row and the column containing ×. The remaining cells form a shape λ. Thus, the equation above is proved.

For the pattern 21, a similar reasoning can also be applied. The filling of λ has a 21-match at the position of × in

the topmost row if and only if × is not in the leftmost possible cell. Hence, we have

∑

π∈Sλ

xpmp21(π) = (1 + (λk − 1)x)
∑

π∈S
λ

xpmp21(π).

Therefore, we proved the lemma.

Here, we prove the main theorem:

Proof: (of Theorem 3) Note that Sn is a disjoint union of SQ
n for all Q such that SQ

n 6= ∅. So, we have

Pn,P1(x) =
∑

σ∈Sn

xpmpP1 (σ)

=
∑

Q

∑

σ∈S
Q
n

xpmpP1 (σ)

=
∑

Q

∑

σ∈Sλ(Q)

xpmp12(σ) By Lemma 28

=
∑

Q

∑

σ∈Sλ(Q)

xpmp21(σ) By Lemma 29

=
∑

Q

∑

σ∈S
Q
n

xpmpP2 (σ) By Lemma 28

=
∑

σ∈Sn

xpmpP2 (σ) = Pn,P2(x)

Thus, P1 and P2 are PMP -Wilf-equivalent.

To see that P1 = 12p1 . . . pn−2 and P3 = 21p1 . . . pn−2, Let P inv
1 and P inv

3 be positional marked patterns obtained

from P1 and P3 by reflecting diagram of P1 and P3 along the diagonal y = x respectively. By Lemma 7, P1 and P inv
1

are PMP -Wilf-equivalent, and so are P3 and P inv
3 . However, P inv

1 has the form 12q1 . . . qn−2 and P inv
3 has the form

of 21q1 . . . qn−2, thus P inv
1 and P inv

3 are PMP -Wilf-equivalent by the main argument above. Therefore, P1 and P3

are PMP -Wilf-equivalent.
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Remark. Alternately, we can prove that P2 and P3 are PMP -Wilf-equivalent by considering the rightmost column

of any Ferrers board λ.

To end this section, we state possible nontrivial PMP -Wilf-equivalence classes of size 4. According to numerical

data, we conjecture that 1234, 1243 and 1432 are equivalent. Also, 1342 and 2413 are equivalent.

×
×

×
◦
1234

×
×

×
◦
1243

×
×
×

◦
1432

×
×

◦
×

1342

×
×

◦
×

2413

6 Future research

One way to generalize positional marked pattern is to consider multiple patterns. Given a collection of positional

marked patterns Γ and σ ∈ Sn, we say that σ has a Γ-match at position ℓ if σ has a τ -match at position ℓ for some

τ ∈ Γ. Given σ ∈ Sn, let pmpΓ(σ) denote the number of positions ℓ such that σ has a Γ-match at position ℓ. Let

Pn,Γ(x) =
∑

σ∈Sn

xpmpΓ(σ). Given two collections of positional marked patterns Γ1 and Γ2, they are Wilf-equivalent if

Pn,Γ1(x) = Pn,Γ2(x). This is a nice generalization to positional marked patterns since the constant term of Pn,Γ(x)
enumerates the number of σ ∈ Sn avoiding all patterns in Γ, which replicates what Pn,τ (x) provides in single pattern

cases. Here, we stated, without proof, a result on collection of positional marked patterns similar to Theorem 3. The

proof also follows the same logic as in the proof of Theorem 3.

Theorem 30. Let τ1, τ2, . . . , τℓ be rearrangements of {3, 4, . . . , k}, so that 12τi and 21τi are elements of S∗
k . Let

Γ1 = {12τi|1 ≤ i ≤ ℓ} and Γ2 = {21τi|1 ≤ i ≤ ℓ}. Then Γ1 and Γ2 are Wilf-equivalent.

Moreover, Γ-matching will let us realize positional marked pattern as a refinement of marked mesh pattern defined

by Kitaev and Remmel Kitaev and Remmel (2012a). Given a, b, c, d ∈ Z≥0, and given σ ∈ Sn, we say σ matches

MMP (a, b, c, d) at position l if in the diagram of σ relative to the coordinate system which has × in the l-th column

as its origin there are at least a×’s in quadrant I, at least b ×’s in quadrant II, at least c×’s in quadrant III, and at least

d ×’s in quadrant IV. As an example, σ = 25417683 matches MMP (3, 0, 1, 1) at position 3:

×
×
×

×
×

×
×

×

III

III IV

.

It is easy to see that, for any a, b, c, d, MMP (a, b, c, d) is equivalent to Γ-matching for some collection of po-

sitional marked patterns Γ. For example, to match MMP (2, 0, 0, 0) at some position, it is the same as to match

Γ = {123, 132} at the same position. Therefore, as we introduce multiple positional marked patterns, one can realize

positional marked patterns as a refinement of marked mesh patterns.
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