A Bijection for Directed-Convex PolyominoesArticle
Authors: Alberto Del Lungo ; Massimo Mirolli 1; Renzo Pinzani 2; Simone Rinaldi 2
NULL##NULL##NULL##NULL
Alberto Del Lungo;Massimo Mirolli;Renzo Pinzani;Simone Rinaldi
1 Department of Mathematics and Computer Science / Dipartimento di Scienze Matematiche e Informatiche "Roberto Magari"
2 Dipartimento di Sistemi e Informatica
In this paper we consider two classes of lattice paths on the plane which use \textitnorth, \textiteast, \textitsouth,and \textitwest unitary steps, beginningand ending at (0,0).We enumerate them according to the number ofsteps by means of bijective arguments; in particular, we apply the cycle lemma.Then, using these results, we provide a bijective proof for the number of directed-convex polyominoes having a fixed number of rows and columns.
Nenad Cakić;Toufik Mansour;Gökhan Yıldırım, 2022, A Decomposition of Column-Convex Polyominoes and Two Vertex Statistics, Bilkent University Institutional Repository (Bilkent University), 16, 1, 10.1007/s11786-022-00528-5, http://hdl.handle.net/11693/111609.
Roberto Mantaci;Paolo Massazza, Lecture notes in computer science, From Linear Partitions to Parallelogram Polyominoes, pp. 350-361, 2011, 10.1007/978-3-642-22321-1_30.
Christoph Richard, arXiv (Cornell University), Limit Distributions and Scaling Functions, pp. 247-299, 2009, 10.1007/978-1-4020-9927-4_11.