François Boulier ; Florent Hivert ; Daniel Krob ; Jean-Christophe Novelli
-
Pseudo-Permutations II: Geometry and Representation Theorydmtcs:2299 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2001,
DMTCS Proceedings vol. AA, Discrete Models: Combinatorics, Computation, and Geometry (DM-CCG 2001)
-
https://doi.org/10.46298/dmtcs.2299 Pseudo-Permutations II: Geometry and Representation Theory Article Authors: François Boulier
1 ; Florent Hivert
2 ; Daniel Krob
3 ; Jean-Christophe Novelli
4, 2
NULL##0000-0002-7531-5985##NULL##NULL
François Boulier;Florent Hivert;Daniel Krob;Jean-Christophe Novelli
In this paper, we provide the second part of the study of the pseudo-permutations. We first derive a complete analysis of the pseudo-permutations, based on hyperplane arrangements, generalizing the usual way of translating the permutations. We then study the module of the pseudo-permutations over the symmetric group and provide the characteristics of this action.
Volume: DMTCS Proceedings vol. AA, Discrete Models: Combinatorics, Computation, and Geometry (DM-CCG 2001)
Section: Proceedings
Published on: January 1, 2001
Imported on: November 21, 2016
Keywords: Hyperplane Arrangements,Symmetric Group,Permutations,q-analogs,[INFO] Computer Science [cs],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
Download this file See the document's page on HAL