Nick Anzalone ; John Baldwin ; Ilya Bronshtein ; Kyle Petersen - A Reciprocity Theorem for Monomer-Dimer Coverings

dmtcs:2305 - Discrete Mathematics & Theoretical Computer Science, January 1, 2003, DMTCS Proceedings vol. AB, Discrete Models for Complex Systems (DMCS'03) - https://doi.org/10.46298/dmtcs.2305
A Reciprocity Theorem for Monomer-Dimer CoveringsArticle

Authors: Nick Anzalone 1; John Baldwin 2,3; Ilya Bronshtein 4; Kyle Petersen 4

The problem of counting monomer-dimer coverings of a lattice is a longstanding problem in statistical mechanics.It has only been exactly solved for the special case of dimer coverings in two dimensions ([Ka61], [TF61]). In earlier work, Stanley [St85] proved a reciprocity principle governing the number N(m,n) of dimer coverings of an m by n rectangular grid (also known as perfect matchings), where m is fixed and n is allowed to vary. As reinterpreted by Propp [P01], Stanley's result concerns the unique way of extending N(m,n) to n<0 so that the resulting bi-infinite sequence, N(m,n) for nZ, satisfies a linear recurrence relation with constant coefficients. In particular, Stanley shows that N(m,n) is always an integer satisfying the relation N(m,2n)=εm,nN(m,n) where εm,n=1 unless m2(mod4) and n is odd, in which case εm,n=1. Furthermore, Propp's method was applicable to higher-dimensional cases.This paper discusses similar investigations of the numbers M(m,n), of monomer-dimer coverings, or equivalently (not necessarily perfect) matchings of an m by n rectangular grid. We show that for each fixed m there is a unique way of extending M(m,n) to n<0 so that the resulting bi-infinite sequence, M(m,n) for nZ, satisfies a linear recurrence relation with constant coefficients.We show that M(m,n), a priori a rational number, is always an integer, using a generalization of the combinatorial model offered by Propp. Lastly, we give a new statement of reciprocity in terms of multivariate generating functions from which Stanley's result follows.


Volume: DMTCS Proceedings vol. AB, Discrete Models for Complex Systems (DMCS'03)
Section: Proceedings
Published on: January 1, 2003
Imported on: November 21, 2016
Keywords: linear recurrences,monomer-dimer coverings,reciprocity,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[NLIN.NLIN-CG] Nonlinear Sciences [physics]/Cellular Automata and Lattice Gases [nlin.CG]

2 Documents citing this article

Consultation statistics

This page has been seen 543 times.
This article's PDF has been downloaded 302 times.