The goal of this paper is to provide a combinatorial expression for the steady state probabilities of the twospecies PASEP. In this model, there are two species of particles, one “heavy” and one “light”, on a one-dimensional finite lattice with open boundaries. Both particles can hop into adjacent holes to the right and left at rates 1 and $q$. Moreover, when the heavy and light particles are adjacent to each other, they can switch places as if the light particle were a hole. Additionally, the heavy particle can hop in and out at the boundary of the lattice. Our first result is a combinatorial interpretation for the stationary distribution at $q=0$ in terms of certain multi-Catalan tableaux. We provide an explicit determinantal formula for the steady state probabilities, as well as some general enumerative results for this case. We also describe a Markov process on these tableaux that projects to the two-species PASEP, and hence directly explains the connection between the two. Finally, we extend our formula for the stationary distribution to the $q=1$ case, using certain two-species alternative tableaux.

Source : oai:HAL:hal-01337782v1

Volume: DMTCS Proceedings, 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)

Section: Proceedings

Published on: January 1, 2015

Submitted on: November 21, 2016

Keywords: PASEP,multispecies,tableaux,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

This page has been seen 25 times.

This article's PDF has been downloaded 32 times.