Petr Kůrka ; Enrico Formenti ; Alberto Dennunzio
-
Asymptotic distribution of entry times in a cellular automaton with annihilating particles
dmtcs:2976 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2011,
DMTCS Proceedings vol. AP, Automata 2011 - 17th International Workshop on Cellular Automata and Discrete Complex Systems
-
https://doi.org/10.46298/dmtcs.2976
Asymptotic distribution of entry times in a cellular automaton with annihilating particlesConference paper
Authors: Petr Kůrka 1; Enrico Formenti 2; Alberto Dennunzio 3,2
0000-0002-1417-041X##0000-0002-1007-7912##NULL
Petr Kůrka;Enrico Formenti;Alberto Dennunzio
1 Center for Theoretical Study [Prague]
2 Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe MC3
3 Dipartimento di Informatica Sistemistica e Comunicazione
This work considers a cellular automaton (CA) with two particles: a stationary particle 1 and left-going one ¯1. When a ¯1 encounters a 1, both particles annihilate. We derive asymptotic distribution of appearence of particles at a given site when the CA is initialized with the Bernoulli measure with the probabilities of both particles equal to 1/2.
Emergence dans les modèles de calcul; Funder: French National Research Agency (ANR); Code: ANR-09-BLAN-0164
Bibliographic References
1 Document citing this article
Benjamin Hellouin de Menibus;Mathieu Sablik, 2017, Self-organisation in Cellular Automata with Coalescent Particles: Qualitative and Quantitative Approaches, 167, 5, pp. 1180-1220, 10.1007/s10955-017-1760-8, https://hal.science/hal-01274504.