Lengths and heights of random walk excursionsArticle
Authors: Endre Csáki 1; Yueyun Hu 2
NULL##NULL
Endre Csáki;Yueyun Hu
1 Alfréd Rényi Institute of Mathematics
2 Laboratoire de Probabilités et Modèles Aléatoires
Consider a simple symmetric random walk on the line. The parts of the random walk between consecutive returns to the origin are called excursions. The heights and lengths of these excursions can be arranged in decreasing order. In this paper we give the exact and limiting distributions of these ranked quantities. These results are analogues of the corresponding results of Pitman and Yor [1997, 1998, 2001] for Brownian motion.
Takahiko Fujita;Shotaro Yagishita;Naohiro Yoshida, 2024, Some martingale properties of the simple random walk and its maximum process, arXiv (Cornell University), 208, pp. 110076, 10.1016/j.spl.2024.110076, https://arxiv.org/abs/2211.05745.
Takahiko Fujita;Naohiro Yoshida, 2023, Notes on a certain local time and excursions of simple symmetric random walks, Proceedings of the Japan Academy Series A Mathematical Sciences, 99, 7, 10.3792/pjaa.99.010, https://doi.org/10.3792/pjaa.99.010.
Laurent Serlet, Lecture notes in mathematics, Invariance Principle for the Random Walk Conditioned to Have Few Zeros, pp. 461-472, 2014, 10.1007/978-3-319-11970-0_19.