David R. Wood - Acyclic, Star and Oriented Colourings of Graph Subdivisions

dmtcs:344 - Discrete Mathematics & Theoretical Computer Science, January 1, 2005, Vol. 7 - https://doi.org/10.46298/dmtcs.344
Acyclic, Star and Oriented Colourings of Graph SubdivisionsArticle

Authors: David R. Wood ORCID1

  • 1 Departament de Matemàtica Aplicada II


Let G be a graph with chromatic number χ (G). A vertex colouring of G is \emphacyclic if each bichromatic subgraph is a forest. A \emphstar colouring of G is an acyclic colouring in which each bichromatic subgraph is a star forest. Let χ _a(G) and χ _s(G) denote the acyclic and star chromatic numbers of G. This paper investigates acyclic and star colourings of subdivisions. Let G' be the graph obtained from G by subdividing each edge once. We prove that acyclic (respectively, star) colourings of G' correspond to vertex partitions of G in which each subgraph has small arboricity (chromatic index). It follows that χ _a(G'), χ _s(G') and χ (G) are tied, in the sense that each is bounded by a function of the other. Moreover the binding functions that we establish are all tight. The \emphoriented chromatic number χ ^→(G) of an (undirected) graph G is the maximum, taken over all orientations D of G, of the minimum number of colours in a vertex colouring of D such that between any two colour classes, all edges have the same direction. We prove that χ ^→(G')=χ (G) whenever χ (G)≥ 9.


Volume: Vol. 7
Published on: January 1, 2005
Imported on: March 26, 2015
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] graph, graph colouring, star colouring, star chromatic number, acyclic colouring, acyclic chromatic number, oriented colouring, oriented chromatic number, subdivision

25 Documents citing this article

Consultation statistics

This page has been seen 617 times.
This article's PDF has been downloaded 986 times.