Lonc, Zbigniew and Naroski, Paweł and Rzążewski, Paweł - Tight Euler tours in uniform hypergraphs - computational aspects

dmtcs:3934 - Discrete Mathematics & Theoretical Computer Science, September 26, 2017, Vol 19 no. 3
Tight Euler tours in uniform hypergraphs - computational aspects

Authors: Lonc, Zbigniew and Naroski, Paweł and Rzążewski, Paweł

By a tight tour in a $k$-uniform hypergraph $H$ we mean any sequence of its vertices $(w_0,w_1,\ldots,w_{s-1})$ such that for all $i=0,\ldots,s-1$ the set $e_i=\{w_i,w_{i+1}\ldots,w_{i+k-1}\}$ is an edge of $H$ (where operations on indices are computed modulo $s$) and the sets $e_i$ for $i=0,\ldots,s-1$ are pairwise different. A tight tour in $H$ is a tight Euler tour if it contains all edges of $H$. We prove that the problem of deciding if a given $3$-uniform hypergraph has a tight Euler tour is NP-complete, and that it cannot be solved in time $2^{o(m)}$ (where $m$ is the number of edges in the input hypergraph), unless the ETH fails. We also present an exact exponential algorithm for the problem, whose time complexity matches this lower bound, and the space complexity is polynomial. In fact, this algorithm solves a more general problem of computing the number of tight Euler tours in a given uniform hypergraph.


Source : oai:arXiv.org:1706.09356
Volume: Vol 19 no. 3
Section: Analysis of Algorithms
Published on: September 26, 2017
Submitted on: July 2, 2017
Keywords: Computer Science - Computational Complexity,Computer Science - Data Structures and Algorithms


Share

Browsing statistics

This page has been seen 34 times.
This article's PDF has been downloaded 19 times.