Monotone Simultaneous Paths Embeddings in $\mathbb{R}^d$ArticleAuthors: David Bremner
1; Olivier Devillers
2; Marc Glisse
3; Sylvain Lazard
2; Giuseppe Liotta
4; Tamara Mchedlidze
5; Guillaume Moroz
2; Sue Whitesides
6; Stephen Wismath
7
NULL##0000-0003-4275-5068##0000-0001-6914-1651##0000-0002-6032-0802##NULL##NULL##NULL##NULL##NULL
David Bremner;Olivier Devillers;Marc Glisse;Sylvain Lazard;Giuseppe Liotta;Tamara Mchedlidze;Guillaume Moroz;Sue Whitesides;Stephen Wismath
We study the following problem: Given $k$ paths that share the same vertex set, is there a simultaneous geometric embedding of these paths such that each individual drawing is monotone in some direction? We prove that for any dimension $d\geq 2$, there is a set of $d + 1$ paths that does not admit a monotone simultaneous geometric embedding.
Volume: Vol. 20 no. 1
Section: Discrete Algorithms
Published on: January 5, 2018
Accepted on: December 1, 2017
Submitted on: May 31, 2017
Keywords: [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG], [en] point hyperplane duality, graph drawing, high-dimensional space, algorithm
Funding:
Source : OpenAIRE Graph- Funder: Natural Sciences and Engineering Research Council of Canada