A graph on n vertices is equitably k-colorable if it is k-colorable and every color is used either ⌊n/k⌋ or ⌈n/k⌉ times. Such a problem appears to be considerably harder than vertex coloring, being NP-Complete even for cographs and interval graphs. In this work, we prove that it is W[1]-Hard for block graphs and for disjoint union of split graphs when parameterized by the number of colors; and W[1]-Hard for K1,4-free interval graphs when parameterized by treewidth, number of colors and maximum degree, generalizing a result by Fellows et al. (2014) through a much simpler reduction. Using a previous result due to Dominique de Werra (1985), we establish a dichotomy for the complexity of equitable coloring of chordal graphs based on the size of the largest induced star. Finally, we show that \textsc{equitable coloring} is FPT when parameterized by the treewidth of the complement graph.