Maurice Pouzet ; Hamza Si Kaddour ; Bhalchandra Thatte
-
On the Boolean dimension of a graph and other related parameters
dmtcs:7437 -
Discrete Mathematics & Theoretical Computer Science,
September 23, 2022,
vol. 23 no. 2, special issue in honour of Maurice Pouzet
-
https://doi.org/10.46298/dmtcs.7437
On the Boolean dimension of a graph and other related parametersArticle
Authors: Maurice Pouzet 1,2,3; Hamza Si Kaddour 1,2,3; Bhalchandra Thatte 4
NULL##NULL##NULL
Maurice Pouzet;Hamza Si Kaddour;Bhalchandra Thatte
4 Universidade Federal de Minas Gerais = Federal University of Minas Gerais [Belo Horizonte, Brazil]
We present the Boolean dimension of a graph, we relate it with the notions of inner, geometric and symplectic dimensions, and with the rank and minrank of a graph. We obtain an exact formula for the Boolean dimension of a tree in terms of a certain star decomposition. We relate the Boolean dimension with the inversion index of a tournament.
PROJET AVENIR LYON SAINT-ETIENNE; Funder: French National Research Agency (ANR); Code: ANR-11-IDEX-0007
Bibliographic References
1 Document citing this article
Julien Duron;Frédéric Havet;Florian Hörsch;Clément Rambaud, arXiv (Cornell University), On the minimum number of inversions to make a digraph k-(arc-)strong, 2023, Prague, Czech Republic, 10.5817/cz.muni.eurocomb23-054, https://arxiv.org/abs/2303.11719.