Ruben Ascoli ; Livia Betti ; Jacob Lehmann Duke ; Xuyan Liu ; Wyatt Milgrim et al. - Distinct Angles and Angle Chains in Three Dimensions

dmtcs:10037 - Discrete Mathematics & Theoretical Computer Science, February 27, 2023, vol. 25:1 - https://doi.org/10.46298/dmtcs.10037
Distinct Angles and Angle Chains in Three DimensionsArticle

Authors: Ruben Ascoli ; Livia Betti ; Jacob Lehmann Duke ; Xuyan Liu ; Wyatt Milgrim ; Steven J. Miller ; Eyvindur A. Palsson ORCID; Francisco Romero Acosta ; Santiago Velazquez Iannuzzelli

    In 1946, Erdős posed the distinct distance problem, which seeks to find the minimum number of distinct distances between pairs of points selected from any configuration of $n$ points in the plane. The problem has since been explored along with many variants, including ones that extend it into higher dimensions. Less studied but no less intriguing is Erdős' distinct angle problem, which seeks to find point configurations in the plane that minimize the number of distinct angles. In their recent paper "Distinct Angles in General Position," Fleischmann, Konyagin, Miller, Palsson, Pesikoff, and Wolf use a logarithmic spiral to establish an upper bound of $O(n^2)$ on the minimum number of distinct angles in the plane in general position, which prohibits three points on any line or four on any circle. We consider the question of distinct angles in three dimensions and provide bounds on the minimum number of distinct angles in general position in this setting. We focus on pinned variants of the question, and we examine explicit constructions of point configurations in $\mathbb{R}^3$ which use self-similarity to minimize the number of distinct angles. Furthermore, we study a variant of the distinct angles question regarding distinct angle chains and provide bounds on the minimum number of distinct chains in $\mathbb{R}^2$ and $\mathbb{R}^3$.


    Volume: vol. 25:1
    Section: Combinatorics
    Published on: February 27, 2023
    Accepted on: February 9, 2023
    Submitted on: September 13, 2022
    Keywords: Computer Science - Computational Geometry,Mathematics - Combinatorics,Mathematics - Metric Geometry
    Funding:
      Source : OpenAIRE Graph
    • The Williams College SMALL REU Program; Funder: National Science Foundation; Code: 1947438

    Classifications

    Mathematics Subject Classification 20201

    Consultation statistics

    This page has been seen 938 times.
    This article's PDF has been downloaded 686 times.