Discrete Mathematics & Theoretical Computer Science |
In this paper, we study a variant of graph domination known as $(t, r)$ broadcast domination, first defined in Blessing, Insko, Johnson, and Mauretour in 2015. In this variant, each broadcast provides $t-d$ reception to each vertex a distance $d < t$ from the broadcast. If $d \ge t$ then no reception is provided. A vertex is considered dominated if it receives $r$ total reception from all broadcasts. Our main results provide some upper and lower bounds on the density of a $(t, r)$ dominating pattern of an infinite grid, as well as methods of computing them. Also, when $r \ge 2$ we describe a family of counterexamples to a generalization of Vizing's Conjecture to $(t,r)$ broadcast domination.