Discrete Mathematics & Theoretical Computer Science |
Regular synchronization languages can be used to define rational relations of finite words, and to characterize subclasses of rational relations, like automatic or recognizable relations. We provide a systematic study of the decidability of uniformization and definability problems for subclasses of rational relations defined in terms of such synchronization languages. We rephrase known results in this setting and complete the picture by adding several new decidability and undecidability results.