Wenjie Fang - A generalization of the quadrangulation relation to constellations and hypermaps

dmtcs:12789 - Discrete Mathematics & Theoretical Computer Science, January 1, 2013, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) - https://doi.org/10.46298/dmtcs.12789
A generalization of the quadrangulation relation to constellations and hypermapsConference paper

Authors: Wenjie Fang ORCID1

[en]
Constellations and hypermaps generalize combinatorial maps, $\textit{i.e.}$ embedding of graphs in a surface, in terms of factorization of permutations. In this paper, we extend a result of Jackson and Visentin (1990) on an enumerative relation between quadrangulations and bipartite quadrangulations. We show a similar relation between hypermaps and constellations by generalizing a result in the original paper on factorization of characters. Using this enumerative relation, we recover a result on the asymptotic behavior of hypermaps of Chapuy (2009).

[fr]
Les constellations et les hypercartes généralisent les cartes combinatoires, $\textit{i.e.}$ les plongements de graphe dans une surface, en terme de factorisation de permutations. Dans cet article, nous généralisons un résultat de Jackson et Visentin (1990) sur une relation énumérative entre les quadrangulations ordinaires et biparties. Nous montrons une relation similaire entre les constellations et les hypercartes en généralisant un résultat de factorisation de caractère. Avec cette relation, on retrouve un résultat sur le comportement asymptotique des hypercartes dans Chapuy (2009).


Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] combinatorial maps, constellations, enumeration, character factorization
Funding:
    Source : OpenAIRE Graph
  • Interactions Of Combinatorics; Funder: French National Research Agency (ANR); Code: ANR-08-JCJC-0011

Consultation statistics

This page has been seen 194 times.
This article's PDF has been downloaded 212 times.