Discrete Mathematics & Theoretical Computer Science |
We study the vector spaces and integer lattices of cuts and flows of an arbitrary finite CW complex, and their relationships to its critical group and related invariants. Our results extend the theory of cuts and flows in graphs, in particular the work of Bacher, de la Harpe and Nagnibeda. We construct explicit bases for the cut and flow spaces, interpret their coefficients topologically, and describe sufficient conditions for them to be integral bases of the cut and flow lattices. Second, we determine the precise relationships between the discriminant groups of the cut and flow lattices and the higher critical and cocritical groups; these are expressed as short exact sequences with error terms corresponding to torsion (co)homology. As an application, we generalize a result of Kotani and Sunada to give bounds for the complexity, girth, and connectivity of a complex in terms of Hermite's constant.