Nan Li - Ehrhart $h^*$-vectors of hypersimplices

dmtcs:12798 - Discrete Mathematics & Theoretical Computer Science, January 1, 2013, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) - https://doi.org/10.46298/dmtcs.12798
Ehrhart $h^*$-vectors of hypersimplicesConference paper

Authors: Nan Li ORCID1

  • 1 Department of Mathematics [MIT]

[en]
We consider the Ehrhart $h^*$-vector for the hypersimplex. It is well-known that the sum of the $h_i^*$ is the normalized volume which equals an Eulerian number. The main result is a proof of a conjecture by R. Stanley which gives an interpretation of the $h^*_i$ coefficients in terms of descents and excedances. Our proof is geometric using a careful book-keeping of a shelling of a unimodular triangulation. We generalize this result to other closely related polytopes.

[fr]
Nous considérons que la Ehrhart $h^*$-vecteur pour la hypersimplexe. Il est bien connu que la somme de la $h_i^*$ est le volume normalisé qui estégal à un nombre eulérien. Le résultat principal est une preuve de la conjecture par R. Stanley qui donne une interprétation des coefficients $h^*_i$ en termes de descentes et excedances. Notre preuve est géométrique à l’aide d’un attention la comptabilité d’un bombardement d’une triangulation unimodulaire. Nous généralisons ce résultat à d’autres polytopes étroitement liés.


Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Hypersimplex, Ehrhart h^*-vector, Shellable triangulation, Eulerian statistics
Funding:
    Source : OpenAIRE Graph
  • Studies in Algebraic Combinatorics; Funder: National Science Foundation; Code: 0604423

Consultation statistics

This page has been seen 247 times.
This article's PDF has been downloaded 308 times.