dmtcs:12798 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2013,
DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
-
https://doi.org/10.46298/dmtcs.12798
Ehrhart $h^*$-vectors of hypersimplicesArticle
Authors: Nan Li 1
0000-0002-8600-7179
Nan Li
1 Department of Mathematics [MIT]
We consider the Ehrhart $h^*$-vector for the hypersimplex. It is well-known that the sum of the $h_i^*$ is the normalized volume which equals an Eulerian number. The main result is a proof of a conjecture by R. Stanley which gives an interpretation of the $h^*_i$ coefficients in terms of descents and excedances. Our proof is geometric using a careful book-keeping of a shelling of a unimodular triangulation. We generalize this result to other closely related polytopes.