Richard Ehrenborg ; Mark Goresky ; Margaret Readdy - Euler flag enumeration of Whitney stratified spaces

dmtcs:12799 - Discrete Mathematics & Theoretical Computer Science, January 1, 2013, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) - https://doi.org/10.46298/dmtcs.12799
Euler flag enumeration of Whitney stratified spacesConference paper

Authors: Richard Ehrenborg ORCID1; Mark Goresky 2; Margaret Readdy ORCID1

  • 1 Department of Mathematics
  • 2 School of Mathematics [Princeton]

[en]
We show the $\mathrm{cd}$-index exists for Whitney stratified manifolds by extending the notion of a graded poset to that of a quasi-graded poset. This is a poset endowed with an order-preserving rank function and a weighted zeta function. This allows us to generalize the classical notion of Eulerianness, and obtain a $\mathrm{cd}$-index in the quasi-graded poset arena. We also extend the semi-suspension operation to that of embedding a complex in the boundary of a higher dimensional ball and study the shelling components of the simplex.

[fr]
Nous montrons le $\mathrm{cd}$-index existe pour les manifolds de Whitney stratifiées en élargissant la notion d’un poset gradué à celle qu'un poset quasi-gradué. C’est un poset doté d'une fonction de rang que préservant l’ordre du poset et une fonction de zêta pondérée. Ceci nous permet de généraliser la notion classique de “Eulerianness”, et obtenir un $\mathrm{cd}$-index dans l’arène des posets quasi-gradués. Nous tenons également à l’opération de semi-suspension pour que d’intégrer une complexe dans la frontière d’une balle de dimension supérieur et étudions les composants shelling d’un simplex.


Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Eulerian condition, quasi-graded poset, semisuspension, weighted zeta function, Whitney's conditions A and B.
Funding:
    Source : OpenAIRE Graph
  • CDI Type II: Pseudorandomness; Funder: National Science Foundation; Code: 0835373
  • Collaborative Research: Understanding, Coping with, and Benefiting from Intractibility.; Funder: National Science Foundation; Code: 0832797
  • Bruhat and balanced graphs, manifolds, partitions and affine permutations; Funder: National Science Foundation; Code: 0902063

Consultation statistics

This page has been seen 252 times.
This article's PDF has been downloaded 325 times.