Satoshi Murai ; Eran Nevo - On r-stacked triangulated manifolds

dmtcs:12803 - Discrete Mathematics & Theoretical Computer Science, January 1, 2013, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) - https://doi.org/10.46298/dmtcs.12803
On r-stacked triangulated manifoldsConference paper

Authors: Satoshi Murai 1; Eran Nevo 2

  • 1 Department of Mathematical Science [Yamaguchi]
  • 2 Department of Mathematics [Be'er Sheva]

[en]
The notion of $r$-stackedness for simplicial polytopes was introduced by McMullen and Walkup in 1971 as a generalization of stacked polytopes. In this paper, we define the $r$-stackedness for triangulated homology manifolds and study their basic properties. In addition, we find a new necessary condition for face vectors of triangulated manifolds when all the vertex links are polytopal.

[fr]
Généralisant les polytopes simpliciaux empilés, McMullen et Walkup ont introduit en 1971 la notion de $r$-empilement pour les polytopes simpliciaux. Dans cet article, nous définissons la notion de $r$-empilement pour les variétés homologiques simpliciales et étudions ses propriétés élémentaires. En outre, nous donnons une nouvelle condition pour les $f$-vecteurs des variétés simpliciales lorsque tous les sommets ont un lien polytopal.


Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] stackedness, triangulation, manifold, f-vector, face ring
Funding:
    Source : OpenAIRE Graph
  • Face enumeration for spheres, balanced skeleta of polytopes, and arrangements; Funder: European Commission; Code: 270923

Consultation statistics

This page has been seen 190 times.
This article's PDF has been downloaded 172 times.