Discrete Mathematics & Theoretical Computer Science |
An action on order ideals of posets considered by Fon-Der-Flaass is analyzed in the case of posets arising from minuscule representations of complex simple Lie algebras. For these minuscule posets, it is shown that the Fon-Der-Flaass action exhibits the cyclic sieving phenomenon, as defined by Reiner, Stanton, and White. A uniform proof is given by investigation of a bijection due to Stembridge between order ideals of minuscule posets and fully commutative Weyl group elements. This bijection is proven to be equivariant with respect to a conjugate of the Fon-Der-Flaass action and an arbitrary Coxeter element. If $P$ is a minuscule poset, it is shown that the Fon-Der-Flaass action on order ideals of the Cartesian product $P \times [2]$ also exhibits the cyclic sieving phenomenon, only the proof is by appeal to the classification of minuscule posets and is not uniform.