Sara Billey ; Brendan Pawlowski - Permutation patterns, Stanley symmetric functions, and the Edelman-Greene correspondence

dmtcs:12805 - Discrete Mathematics & Theoretical Computer Science, January 1, 2013, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) - https://doi.org/10.46298/dmtcs.12805
Permutation patterns, Stanley symmetric functions, and the Edelman-Greene correspondenceConference paper

Authors: Sara Billey 1; Brendan Pawlowski 1

  • 1 Department of Mathematics [Seattle]

[en]
Generalizing the notion of a vexillary permutation, we introduce a filtration of $S_{\infty}$ by the number of Edelman-Greene tableaux of a permutation, and show that each filtration level is characterized by avoiding a finite set of patterns. In doing so, we show that if $w$ is a permutation containing $v$ as a pattern, then there is an injection from the set of Edelman-Greene tableaux of $v$ to the set of Edelman-Greene tableaux of $w$ which respects inclusion of shapes. We also consider the set of permutations whose Edelman-Greene tableaux have distinct shapes, and show that it is closed under taking patterns.

[fr]
Généralisant la notion d’une permutation vexillaire, nous introduisons une filtration de $S_{\infty}$ par le nombre de tableaux d’Edelman-Greene d’une permutation, et nous montrons que chaque niveau de la filtration se caractérise par un ensemble fini des motifs exclus. Ce faisant, nous montrons que si $w$ est une permutation qui inclut le motif $v$, il existe une injection de l’ensemble des tableaux d’Edelman-Greene de $v$ dans l’ensemble des tableaux d’Edelman-Greene de $w$ qui respecte l’inclusion de formes. Nous considérons aussi l’ensemble des permutations dont les tableaux d’Edelman-Greene ont des formes distinctes, et nous montrons que c’est clos pour l’inclusion de motifs.


Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Edelman-Greene correspondence, Stanley symmetric functions, Specht modules, pattern avoidance
Funding:
    Source : OpenAIRE Graph
  • Combinatorial and Algebraic Aspects of Varieties; Funder: National Science Foundation; Code: 1101017

Consultation statistics

This page has been seen 196 times.
This article's PDF has been downloaded 201 times.