Daniel Bragg ; Nathaniel Thiem - Poset binomials and rainbow characters

dmtcs:12806 - Discrete Mathematics & Theoretical Computer Science, January 1, 2013, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) - https://doi.org/10.46298/dmtcs.12806
Poset binomials and rainbow charactersArticle

Authors: Daniel Bragg 1; Nathaniel Thiem 1

This paper introduces a variation on the binomial coefficient that depends on a poset and interpolates between $q$-binomials and 1-binomials: a total order gives the usual $q$-binomial, and a poset with no relations gives the usual binomial coefficient. These coefficients arise naturally in the study of supercharacters of the finite groups of unipotent upper-triangular matrices, whose representation theory is dictated by the combinatorics of set partitions. In particular, we find a natural set of modules for these groups, whose characters have degrees given by $q$-binomials, and whose decomposition in terms of supercharacters are given by poset binomial coefficients. This results in a non-trivial family of formulas relating poset binomials to the usual $q$-binomials.


Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: q-binomials,posets,supercharacters,set partitions,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
Funding:
    Source : OpenAIRE Graph
  • FRG: Collaborative Research: Characters, Liftings, and Types: Investigations in p-adic Representation Theory; Funder: National Science Foundation; Code: 0854893

Consultation statistics

This page has been seen 93 times.
This article's PDF has been downloaded 77 times.