Chris Berg ; Nantel Bergeron ; Franco Saliola ; Luis Serrano ; Mike Zabrocki
-
Immaculate basis of the non-commutative symmetric functions
dmtcs:12810 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2013,
DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
-
https://doi.org/10.46298/dmtcs.12810
Immaculate basis of the non-commutative symmetric functionsArticle
Authors: Chris Berg 1; Nantel Bergeron 2; Franco Saliola 1; Luis Serrano 1; Mike Zabrocki 3,2
NULL##NULL##NULL##0000-0002-5276-1392##NULL
Chris Berg;Nantel Bergeron;Franco Saliola;Luis Serrano;Mike Zabrocki
1 Laboratoire de combinatoire et d'informatique mathématique [Montréal]
2 Department of Mathematics and Statistics [Toronto]
3 Fields Institute for Research In Mathematical Sciences
We introduce a new basis of the non-commutative symmetric functions whose elements have Schur functions as their commutative images. Dually, we build a basis of the quasi-symmetric functions which expand positively in the fundamental quasi-symmetric functions and decompose Schur functions according to a signed combinatorial formula.