Immaculate basis of the non-commutative symmetric functionsConference paperAuthors: Chris Berg
1; Nantel Bergeron
2; Franco Saliola
1; Luis Serrano
1; Mike Zabrocki
3,2
NULL##NULL##NULL##0000-0002-5276-1392##NULL
Chris Berg;Nantel Bergeron;Franco Saliola;Luis Serrano;Mike Zabrocki
- 1 Laboratoire de combinatoire et d'informatique mathématique [Montréal]
- 2 Department of Mathematics and Statistics [Toronto]
- 3 Fields Institute for Research In Mathematical Sciences
[en]
We introduce a new basis of the non-commutative symmetric functions whose elements have Schur functions as their commutative images. Dually, we build a basis of the quasi-symmetric functions which expand positively in the fundamental quasi-symmetric functions and decompose Schur functions according to a signed combinatorial formula.
[fr]
Nous introduisons une nouvelle base des fonctions syméetriques non commutatives dont les images commutatives sont des fonctions de Schur. Nous construisons la base duale des fonctions quasi-symétriques qui s’expriment de façon positive en fonction de la base fondamentale et décomposent les fonctions de Schur.
Volume: DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
Section: Proceedings
Published on: January 1, 2013
Imported on: November 21, 2016
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] non-commutative symmetric functions, quasi-symmetric functions, tableaux, Schur functions
Funding:
Source : OpenAIRE Graph- Funder: Natural Sciences and Engineering Research Council of Canada