Nicolas Loehr ; Luis Serrano ; Gregory Warrington
-
Transition matrices for symmetric and quasisymmetric Hall-Littlewood polynomials
dmtcs:12813 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2013,
DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
-
https://doi.org/10.46298/dmtcs.12813
Transition matrices for symmetric and quasisymmetric Hall-Littlewood polynomialsArticle
Authors: Nicolas Loehr 1,2; Luis Serrano 3; Gregory Warrington 4
NULL##0000-0002-5276-1392##NULL
Nicolas Loehr;Luis Serrano;Gregory Warrington
1 Department of Mathematics [Blacksburg]
2 Mathematics Department [UNSA Annapolis]
3 Laboratoire de combinatoire et d'informatique mathématique [Montréal]
4 Department of Mathematics & Statistics [Burlington]
We introduce explicit combinatorial interpretations for the coefficients in some of the transition matrices relating to skew Hall-Littlewood polynomials $P_{\lambda / \mu}(x;t)$ and Hivert's quasisymmetric Hall-Littlewood polynomials $G_{\gamma}(x;t)$. More specifically, we provide the following: 1. $G_{\gamma}$-expansions of the $P_{\lambda}$, the monomial quasisymmetric functions, and Gessel's fundamental quasisymmetric functions $F_{\alpha}$, and 2. an expansion of the $P_{\lambda / \mu}$ in terms of the $F_{\alpha}$. The $F_{\alpha}$ expansion of the $P_{\lambda / \mu}$ is facilitated by introducing the set of $\textit{starred tableaux}$. In the full version of the article we also provide $G_{\gamma}$-expansions of the quasisymmetric Schur functions and the peak quasisymmetric functions of Stembridge.